

Experiments on Active Learning for Croatian Word Sense Disambiguation

Domagoj Alagić and Jan Šnajder TakeLab UNIZG

BSNLP 2015 @ RANLP, Hissar

10 Sep 2015

Problem

Many words are polysemous:

- The flight was delayed due to trouble with the plane.
- Any line joining two points on a plane lies on that plane.

Problem

Many words are polysemous:

- The flight was delayed due to trouble with the plane.
- Any line joining two points on a plane lies on that plane.

Word Sense Disambiguation

Word sense disambiguation (WSD) is the task of computationally determining the meaning of a word in its context (Navigli, 2009).

WSD approaches

- Knowledge-based WSD vs. supervised WSD
- Supervised WSD systems give the best results
- However, they require large amounts of sense-annotated data as we need a separate classifier for each word
 ⇒ extremely expensive and time-consuming
- Workaround: use both labeled and unlabeled data

Our work

- Goal: Cost-efficient WSD for Croatian
- Objective: Preliminary experiments using active learning (AL) for Croatian WSD
- Methodology:
 - Create a small manually-annotated lexical sample
 - Use simple supervised models with readily available features
 - Plug the models into an AL framework and evaluate their effectiveness (WSD accuracy) and efficiency (annotation effort reduction)

Contributions:

- First sense-annotated dataset for Croatian
- Preliminary findings/recommendations on the use of various AL models on this dataset

Dataset

Corpus and sampling

- Croatian web corpus hrWaC (Ljubešić and Klubička, 2014) containing 1.9M tokens, lemmatized and MSD-tagged
- For the sense inventory, we have initially adopted the Croatian wordnet (CroWN), containing ~10k synsets
- We selected six polysemous words with 2 or 3 senses: okvir_N, odlikovati_V, vatra_N, lak_A, brusiti_V, prljav_A
- For each word, we sampled 500 sentences (contexts), yielding a total of 3000 word instances

Sense annotation

- 10 annotators
- 600 sentences (100 per word) per annotator
- Each word instance was double-annotated to obtain a more reliable annotation

Annotation guidelines

- Annotators were instructed to select a single word sense which they found the most appropriate for the given context, even in situations where multiple senses could be used
- For semantically opaque contexts (idioms, metaphors), we asked the annotators to choose the literate sense (e..g, "dirty laundry")
- In other cases (no adequate sense, erroneous instance), they were asked to select the "none of the above" (NOTA) option

Inter-annotator agreement

Word	κ	Word	κ
okvir _N	0.704	odlikovati _V	0.978
vatra _N		lak _A	0.582
brusiti _V		prljav _A	0.690

- Average Kappa coefficient of 0.761
- Substantial variance in Kappa across the different words (indicative of sense overlaps, missing senses, etc.) ⇒ FW

Gold standard sample

- Manually resolved all the disagreements
- In the majority of cases NOTA was among the responses ⇒ CroWN incompleteness
- CroWN sense inventory modified to get a reasonable sense coverage on our lexical sample
- Total annotation effort: 36+6 hours

Dataset statistics

Word	Freq.	# Senses	Sense distr.	NOTA
okvir _N	141,862	2	381 / 115	4
vatra _N	45,943	3	244 / 106 / 141	9
$brusiti_V$ odlikovati $_V$	1,514	3	205 / 262 / 27	7
	15,504	2	425 / 75	0
lak _A	15,424	3	277 / 87 / 113	23
prljav _A	14,245	2	228 / 187	85

Model

Active learning

- Key idea: allow the model to dynamically choose the instances from which it learns
- Assumption: by doing so the model can use fewer instances to achieve performance which is on par with the purely supervised models
- We use the **pool-based strategy** with **uncertainty sampling**
 - assumes that only those instances that carry the most information need to be labeled by an expensive human expert

Active learning loop

- L : initial training set
- U : pool of unlabeled instances
- P : pool sample size
- G : train growth size
- f : classifier

while stopping criteria not satisfied do

$$\begin{cases} f \leftarrow train(f, L); \\ R \leftarrow randomSample(U, P) \\ predictions \leftarrow predict(f, R) \\ R \leftarrow sortByUncertainty(R, predictions) \\ S \leftarrow selectTop(R, G) \\ S \leftarrow queryForLabels(S) \\ L \leftarrow L \cup S \\ U \leftarrow U \setminus S \end{cases}$$
end

Active learning loop

- L : initial training set
- U : pool of unlabeled instances
- P : pool sample size
- G : train growth size
- f : classifier

while stopping criteria not satisfied do

$$\begin{cases} f \leftarrow train(f, L); \\ R \leftarrow randomSample(U, P) \\ predictions \leftarrow predict(f, R) \\ R \leftarrow sortByUncertainty(R, predictions) \\ S \leftarrow selectTop(R, G) \\ S \leftarrow queryForLabels(S) \\ L \leftarrow L \cup S \\ U \leftarrow U \setminus S \end{cases}$$
end

Active learning loop

- L : initial training set
- U : pool of unlabeled instances
- P : pool sample size
- G : train growth size
- f : classifier

while stopping criteria not satisfied do

$$\begin{cases} f \leftarrow train(f, L); \\ R \leftarrow randomSample(U, P) \\ predictions \leftarrow predict(f, R) \\ R \leftarrow sortByUncertainty(R, predictions) \\ S \leftarrow selectTop(R, G) \\ S \leftarrow oracleLabel(S) \\ L \leftarrow L \cup S \\ U \leftarrow U \setminus S \end{cases}$$
end

Uncertainty sampling

• Least confident (LC):

$$x_{\mathsf{LC}}^* = \operatorname*{argmax}_{x} \left(1 - P_{\theta}(\hat{y}|x) \right)$$

2 Minimum margin (MM):

$$x_{\mathsf{MM}}^* = \underset{x}{\operatorname{argmin}} \left(P_{\theta}(\hat{y}_1|x) - P_{\theta}(\hat{y}_2|x) \right)$$

③ Maximum entropy (ME):

$$x_{\mathsf{ME}}^* = \underset{x}{\operatorname{argmax}} \left(-\sum_{i} P_{\theta}(y_i|x) \log P_{\theta}(y_i|x) \right)$$

Classifier and features

Model:

- Core classifier: a linear Support Vector Machine (SVM)
 + fitted logistic curve at the output (Platt, 1999)
- Baseline: Most Frequent Sense (MFS) classifier

Features:

- Simple word-based context representations:
 - 1 Bag-of-words (BoW) average dimension of \sim 7000
 - 2 Skip-gram (SG) 300 dimensions
- Feature vector computed by adding up the vectors of all content words from the context (sentence)

Results

Supervised baselines

Random train-test split for each of the six words:
 400 instances for training and 100 for testing

Supervised baselines

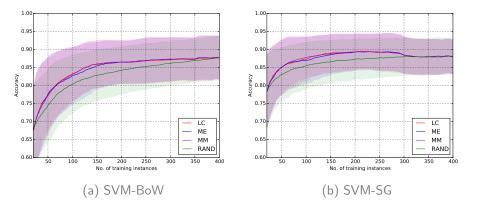
Random train-test split for each of the six words:
 400 instances for training and 100 for testing

MFS	SVM-BoW	SVM-SG
0.53	0.92	0.89
0.49	0.91	0.88
0.53	0.85	0.86
0.85	0.97	0.97
0.55	0.80	0.81
0.46	0.82	0.88
0.57	0.88	0.88
	0.53 0.49 0.53 0.85 0.55 0.46	0.530.920.490.910.530.850.850.970.550.800.460.82

Active learning experiments

- The same train-test split (400 train, 100 test)
- The initial training set L is a randomly chosen subset of the full training set
- Results averaged across 50 trials for each word
- Initial training set to 20, train growth size set to 1

Learning curves



Alagić & Šnajder: AL for Croatian WSD

20/30

Active learning experiments

- All uncertainty sampling methods outperform RAND baseline (~2% points for 100 instances)
- All three uncertainty sampling methods perform comparably
- SVM-BoW: training on 100 instances gives ~0.94% of the maximum accuracy (RAND requires twice that size)
- SVM-SG: training on 100 instances already gives the maximum accuracy

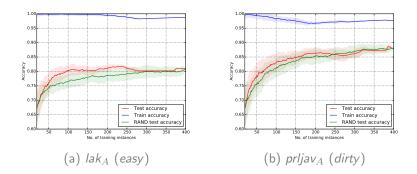
Parameter analysis

- A grid search over $L \in \{20, 50, 100\}$ and $G \in \{1, 5, 10\}$
- 300 runs per parameter pair (50 runs for each of the six words; 50 × 6 = 300)
- Area Under Learning Curve (ALC) sum of accuracy scores across AL iterations normalized by the number of iterations

Parameter analysis

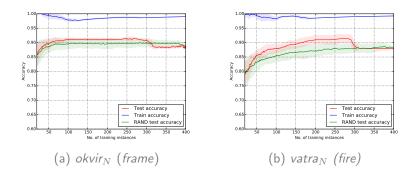
		G	
L	1	5	10
20	0.8794	0.8772	0.8760
50	0.8824	0.8819	0.8810
100	0.8843	0.8836	0.8833

- With larger *L*, more information is available to the learning algorithm up front
- With smaller *G*, model can make more confident predictions on yet unlabeled instances in each iteration



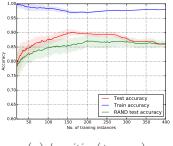
Alagić & Šnajder: AL for Croatian WSD

24/30

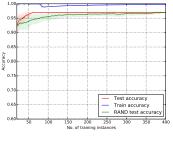


Alagić & Šnajder: AL for Croatian WSD

25/30



(a) $brusiti_V$ (to rasp)



(b) $odlikovati_V$ (to award)

- MM outperforms the RAND baseline for all six words
- AL gain is most prominent for vatra, lak and brusiti
 - full accuracy reachable with as few as **60** training instances
- For *prljav*, the learning curve does not saturate even after reaching 400 training instances ⇒ too many NOTA labels?
- For *lak*, we observe the biggest train-test gap ⇒ model overfits ⇒ noisy dataset Low IAA? Non-informative contexts? Sense overlaps?

- For some words the accuracy rises above that of a model trained on entire training set of 400 instances after which it drops
- Hypothesis: the model starts to overfit at some point (as we observe no drop in the training error)
- The subsequent drop in accuracy may be due to the sampling of a sequence of noisy instances from the training set
- Noise is likely not due to mislabeling (disagreements have been resolved), but rather due to non-informative contexts
- Should be further investigated

Conclusion

- On our 6-words dataset, uncertainty-based sampling AL gives 99% of accuracy of a fully supervised model at the cost of annotating only 100 instances
- On some words, AL model even outperforms a fully supervised model (when trained on a certain number of instances)

Conclusion

- On our 6-words dataset, uncertainty-based sampling AL gives 99% of accuracy of a fully supervised model at the cost of annotating only 100 instances
- On some words, AL model even outperforms a fully supervised model (when trained on a certain number of instances)

Future work:

- Lexical sample should be extended to enable more significant claims and recommendations
- Investigate issue of class imbalance
- Investigate stopping criteria
- Explore other uncertainty sampling methods
- Adapt to a noisy multi-annotator setup (crowdsourcing)

Thanks!

Dataset: http://takelab.fer.hr/data/cro6wsd

http://takelab.fer.hr