

Resolving Entity Coreference in Croatian with a Constrained Mention-Pair Model

Goran Glavaš and Jan Šnajder TakeLab UNIZG

BSNLP 2015 @ RANLP, Hissar

10 Sep 2015

Background & Motivation

■ Entity coreference resolution (CR)

- Identifying different mentions of the same entity
- Important NLP task with numerous applications: relation extraction, question answering, summarization, ...

Easy to define but difficult to tackle

■ External knowledge often required (e.g., "U.S. President" ⇔ "Barack Obama")

- Early, rule-based CR focused on theories of discourse such as focusing and centering (Sidner 1979; Grosz et al., 1983)
- Shift to machine-learning approaches occurred with appearance of manually annotated coreference data (MUC)

- Early, rule-based CR focused on theories of discourse such as focusing and centering (Sidner 1979; Grosz et al., 1983)
- Shift to machine-learning approaches occurred with appearance of manually annotated coreference data (MUC)
- The mention-pair model is the most widely applied coreference resolution model (Aone and Bennett, 1995)
 - A binary classifier for pairs of event mentions
 - **Fails to account for transitivity** of the coreference relation

- Early, rule-based CR focused on theories of discourse such as focusing and centering (Sidner 1979; Grosz et al., 1983)
- Shift to machine-learning approaches occurred with appearance of manually annotated coreference data (MUC)
- The mention-pair model is the most widely applied coreference resolution model (Aone and Bennett, 1995)
 - A binary classifier for pairs of event mentions
 - **Fails to account for transitivity** of the coreference relation
- More complex models failed to significantly outperform the mention-pair model
 - Entity-mention models (Daume III and Marcu, 2005)
 - Ranking models (Yang et al., 2008)

- Besides large body of work for English, much work has been done for other major languages as well
 - Spanish (Palomar et al., 2001; Sapena et al., 2010)
 - Italian (Kobdani and Schütze 2010; Poesio et al., 2010)
 - German (Versley, 2006; Wunsch, 2010)
 - Chinese (Converse, 2006; Kong and Zhou, 2010)
 - ...

- Besides large body of work for English, much work has been done for other major languages as well
 - Spanish (Palomar et al., 2001; Sapena et al., 2010)
 - Italian (Kobdani and Schütze 2010; Poesio et al., 2010)
 - German (Versley, 2006; Wunsch, 2010)
 - Chinese (Converse, 2006; Kong and Zhou, 2010)
 - ...
- Research for Slavic languages has been quite limited
 - Substantial research for Polish (Marciniak, 2002; Matysiak, 2007; Kopec and Ogrodniczuk, 2012)
 - Czech (Linh et al., 2009)
 - Bulgarian (Zhikov et al., 2013)

Coreference Resolution for Croatian

Data Annotation

- 2 Constrained Mention-Pair Model
 - Mention-Pair Model
 - Enforcing Transitivity via ILP
- **3** Experimental Setup and Results
- 4 Conclusion

We adopt the CR type scheme for Polish (Ogrodniczuk et al., 2013)

CR type	Example
Identity	Premijer <i>je izjavio da</i> on <i>nije odobrio taj zahtjev.</i> (The Prime Minister said he didn't grant that request.)
Hyper-hypo	Ivan je kupio novi automobil. Taj Mercedes je čudo od auta. (Ivan bought a new car. That Mercedes is an amazing car.)
Meronymy	Od jedanaestorice rukometaša danas je igralo samo njih osam. (Only eight out of eleven handball players played today.)
Metonymy	Dinamo je jučer pobijedio Cibaliju. Zagrepčani su postigli tri pogotka. (Dinamo defeated Cibalia yesterday. Zagreb boys scored three goals.)
Ø-Anaphora	Marko je išao u trgovinu. Kupio je banane. (Marko went to the store. [He] bought bananas.)

- News articles corpus of 285 documents
- Six trained annotators
 - Detailed annotation guidelines
 - In-house developed annotation tool

- News articles corpus of 285 documents
- Six trained annotators
 - Detailed annotation guidelines
 - In-house developed annotation tool
- Workflow:
 - - Three pairs of annotators, each working on 45 documents
 - \blacksquare Each annotator annotated the data independently
 - 3 Round 2
 - Same as Round 1, but with reshuffled annotator pairs
 - **4** Estimate of the average pairwise IAA \Rightarrow **70% agreement**
 - **6** Resolving the disagreements (one person)

- News articles corpus of 285 documents
- Six trained annotators
 - Detailed annotation guidelines
 - In-house developed annotation tool
- Workflow:
 - - Three pairs of annotators, each working on 45 documents
 - \blacksquare Each annotator annotated the data independently
 - 8 Round 2
 - Same as Round 1, but with reshuffled annotator pairs
 - Estimate of the average pairwise IAA \Rightarrow 70% agreement
 - **6** Resolving the disagreements (one person)
- ⇒ Final dataset: 270 documents with 13K CR relations

Our Focus

- We don't consider the mention detection but instead work on gold mentions
- We consider only the IDENTITY relation, which accounts for 87% CR relations
- **③** IDENTITY is an equivalence relation, thus we want **clusters**

Constrained Mention-Pair Model

A mention-pair model is a binary classifier

- Predicts whether two given mentions refer to the same entity
- To produce clusters of coreferent mentions, we need to couple the mention-pair model with
 - 1 A heuristic for creating mention-pair instances
 - A method for ensuring the transitivity of coreference relations (i.e., coherence of pairwise decisions)

Creating Mention-Pair Instances

- Considering all possible mention pairs is not feasible
 - **Too many instances**, the vast majority of which are **negative**
- We follow the approach by Ng and Cardie (2002) for creating training instances
 - A positive instance between a mention m_j and its closest preceding non-pronomial coreferent mention m_i
 - Negative instances by pairing m_j with all mentions in between m_j and its closest preceding coreferent mention m_i (i.e., with m_{i+1}, ..., m_{j-1})

The Mention-Pair Model

- A non-linear SVM (RBF) with 16 binary/numerical features:
 - String-matching features compare two mentions at the superficial string level
 - strings identical, mention containment, longest common subsequence length, edit (Levenshtein) distance
 - **Overlap features** quantify the overlap in tokens
 - at least one matching word/lemma/stem between mentions, number of common content (N/A/V/R) lemmas
 - **3** Grammatical features aim to indicate the grammatical compatibility of the mentions
 - pronominal mentions, gender match, number match
 - Distance-based features measure how close are the mentions
 - distance in number of sentences/tokens, same sentence, adjacent mentions, number of mentions in between

Enforcing Transitivity

- By making only pairwise predictions, the mention-pair model does not guarantee document-level coherence of coreference
- We employ constrained optimization via integer linear programming (ILP) to ensure that document-level coreference transitivity holds

Enforcing Transitivity

- By making only pairwise predictions, the mention-pair model does not guarantee document-level coherence of coreference
- We employ constrained optimization via integer linear programming (ILP) to ensure that document-level coreference transitivity holds
- Objective function (to be maximized):

(

$$\sum_{m_i, m_j) \in P} x_{ij} \cdot r(m_i, m_j) \cdot C(m_i, m_j)$$

- $r(m_i, m_j) \in \{-1, 1\}$ is the mention-pair classifier's decision for mentions m_i and m_j
- $C(m_i, m_j) \in [0.5, 1]$ is the confidence of the binary mention-pair classifier
- $x_{ij} \in \{0,1\}$ is the final decision for mentions m_i and m_j

Enforcing Transitivity

Transitivity property is encoded via linear constraints

$$\begin{aligned} x_{ij} + x_{jk} - x_{ik} &\leq 1, \\ x_{ij} + x_{ik} - x_{jk} &\leq 1, \\ x_{jk} + x_{ik} - x_{ij} &\leq 1, \\ \forall \{(m_i, m_j), (m_j, m_k), (m_i, m_k)\} \subseteq P \end{aligned}$$

After optimization, we obtain coreference clusters by simply computing the transitive closure over coherent pairwise decisions x_{ij}

Experimental Setup

- Dataset split: 220 training documents, 50 test documents
- SVM model selection (C and γ optimization) using 10-fold CV on the train set

Experimental Setup

- Dataset split: 220 training documents, 50 test documents
- SVM model selection (C and γ optimization) using 10-fold CV on the train set
- Two baselines:
 - OVERLAP baseline classifies mentions as coreferent if they share at least one content word
 - GENDNUM baseline links each mention to the closest preceding mention of matching gender and number
- Standard closest-first clustering (Soon et al., 2001) is applied for both baselines

Experimental Setup

- Standard coreference evaluation metrics: MUC and B³
- Models:
 - MP-MORPH the binary mention pair model without grammatical features
 - MP the binary mention-pair model
 - MP+ILP the constrained mention-pair model (global coherence)

Results

		MUC			B^3		
Model	Р	R	F_1	Р	R	F_1	
Overlap	81.0	42.9	54.1	75.7	54.5	61.4	
GendNum	55.2	39.0	45.4	59.8	50.5	54.3	
MP-Morph	90.6	61.1	72.1	86.2	67.3	74.6	
MP	89.4	64.7	74.2	84.0	70.1	75.4	
MP+ILP	91.9	63.5	74.4	90.6	68.7	77.6	

Results

		MUC			B^3		
Model	Р	R	F_1	Р	R	F_1	
Overlap	81.0	42.9	54.1	75.7	54.5	61.4	
GendNum	55.2	39.0	45.4	59.8	50.5	54.3	
MP-Morph	90.6	61.1	72.1	86.2	67.3	74.6	
MP	89.4	64.7	74.2	84.0	70.1	75.4	
MP+ILP	91.9	63.5	74.4	90.6	68.7	77.6	

- MP significantly outperforms the baselines
- \blacksquare Removing morphological features lowers F1 by ${\sim}2$ points
- \blacksquare Enforcing transitivity significantly increases B^3 by ${\sim}2$ points

Error Analysis

- Most false negatives due to cases where external knowledge is needed
- Most false positives due to non-coreferent mentions with significant lexical overlap

Conclusion

- The first coreference resolution model for Croatian
- A supervised mention-pair model is coupled with constrained optimization (using ILP) to enforce transitivity of coreference relations
- Most errors originate from lack of external knowledge needed to infer coreference

Future Work

- Knowledge-based features from external sources like Wikipedia
- Detection of near-identity coreference relations (e.g., meronymy and zero anaphora)
- Building an end-to-end coreference resolution system
- A model for automated mention detection

Thanks!

Test data: http://takelab.fer.hr/data/crocoref

http://takelab.fer.hr

Glavaš & Šnajder: Coreference Resolution for Croatian

20/20