
University of Zagreb
Faculty of Electrical Engineering and Computing
Text Analysis and Knowledge Engineering Lab

October 8th, 2012 UNIZG FER TakeLab

Event and Temporal Relation Extraction from
Croatian Newspaper Texts
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Motivation and goal

Event extraction (EE) and temporal relation extraction
(TRE) – non-trivial information extraction tasks
Important role in various NLP applications
EE: event identification or event classification
TRE: classification of temporal relations between extracted
pairs of events

Our goal

Develop and evaluate EE and TRE from Croatian newspaper
text using supervised machine learning with simple features
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Related work – event extraction

[Vendler, 1957] – states, activities, accomplishments,
achievements
[Pustejovsky, 1991] – structural event hierarchy
[Siegel & McKeown, 2000] – machine learning for
determining the aspectual properties of verbs
[Pustejovsky et al., 2003a] – TimeML, eight classes of
events
[Pustejovsky et al., 2003b] – TimeBank manually
annotated for events

[Saurí et al., 2005], [Boguraev & Ando, 2005],
[Bethard & Martin, 2006]
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Related work – temporal relations

[Allen, 1983] – interval temporal algebra
[Pustejovsky et al., 2003a] – TimeML, eight labels for
relations
[Pustejovsky et al., 2003b] – TimeBank annotated with low
inter-annotator agreement
[Mani et al., 2006] – expanded TimeBank using a temporal
closure algorithm
[Lapata & Lascarides, 2004, Lapata & Lascarides, 2006] –
probabilistic models for inserting temporal connectives
(during, after, . . . ) into sentences
[Verhagen et al., 2007], and [Verhagen et al., 2010]–
TempEval and TempEval-2 evaluation exercises
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Corpus

230 newspaper articles from the Croatian newspaper
Vjesnik spanning years 1999—2009
Avg. article length: 500 tokens (including words and
punctuation marks)
Topics: daily news, sports, politics, and culture
Opinionated text (i.e., columns, reviews) was not
considered
102,830 words, 26,095 word-form types, 10,963 lemma
types
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Events and event classes

Because we focus on news corpora, we introduce three
modifications to TimeML guidelines:

1. only realis events
2. no generic events
3. no states (only state changes)

Events considered on a single word basis
7 event classes
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Event annotation summary

5 annotators
Inter-annotator agreement: F1 = 0.7951

Event Class Frequency IAA

OCCURRENCE 6,867 0.6537
REPORTING 1,303 0.8207
I_ACTION 1,124 0.3341
HALF_GENERIC 642 0.2080
STATE_CHANGE 348 0.2349
ASPECTUAL 301 0.4272
PERCEPTION 58 0.3383

Total 10,643
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Temporal relations

Based on Allen’s relation, but with some conflations
8 relations
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Temporal relation annotation summary

4 annotators
Inter-annotator agreement: κ = 0.5855

Relation Type Frequency IAA

BEFORE 4,860 0.7660
AFTER 3,500 0.8676
EQUALS 1,880 0.4968
COVERS 1,597 0.5847
DURING 1,341 0.5775
NON-DETERMINABLE 763 0.1813
OVERLAP 46 0.0000
OVERLAPPED_BY 24 0.0833

Total 14,011
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Classifiers and features

Naive Bayes (NB), k-nearest neighbors (k-NN) with k = 3,
and support vector machine (SVM)
Baseline: word-conditioned majority class (events) and
majority class (temporal relations)
Event extraction features:

word, lemma, stem, POS tag, case, number, modality,
auxiliary words, verb form, verb valence class (from
CROVALLEX), negation, surrounding words

Temporal relation extraction features:
word, lemma, stem, POS tag, modality, auxiliary words,
verb valence class (from CROVALLEX), event class, binary
feature vector for words between events
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Experimental evaluation

Event extraction: two experiments
binary classification (event identification)
multiclass classification (event classification)

Temporal relation extraction: classification of relations
between all pairs of events within the same sentence
Performance estimates: ten-fold cross-validation
Results: macro-averaged F1 scores averaged over ten
folds

UNIZG FER TakeLab | October 8th, 2012 12/20



Results – event extraction

Baseline NB k-NN SVM

Event identification 5.82± 0.69 68.85± 0.63 71.07± 1.31 77.40± 0.80

Event classification 0.84± 0.20 33.56± 1.27 43.63± 2.93 48.04± 3.21

OCCURRENCE 3.10± 0.76 55.40± 2.04 53.33± 2.14 62.34± 1.23
REPORTING 0.69± 0.87 75.28± 1.09 76.44± 3.32 79.91± 2.36
ASPECTUAL 0.39± 1.24 12.25± 2.31 58.42± 7.37 59.21± 5.48
PERCEPTION 0.00± 0.00 24.66± 8.65 50.80± 15.64 56.32± 18.18
I_ACTION 0.99± 0.90 28.63± 1.88 24.21± 4.26 24.28± 2.40
STATE_CHANGE 0.72± 0.93 25.11± 3.62 23.18± 8.04 23.17± 6.49
HALF_GENERIC 0.00± 0.00 13.59± 2.11 18.99± 5.70 31.04± 6.15
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Discussion – event extraction

Comparison difficult due to differences in comparison
schemes
[Saurí et al., 2005]

Slightly higher event identification results (80%), based on
word chunking, whereas we consider only single words
Much better results for event classification (86%), but with a
different set of event classes, unfair performance estimate
[Bethard & Martin, 2006]

[Bethard & Martin, 2006] – F1 scores of up to 76% for
event identification, 58% for event classification
[Verhagen et al., 2010] – F1 scores for Spanish and
English – 88% and 80% for event identification, 66% and
79% for event classification
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Results – temporal relations

Baseline Bayes k-NN SVM

Temp. relation classif. 6.44± 0.01 38.77± 1.87 32.17± 1.86 51.16± 2.94
BEFORE 51.43± 0.05 63.63± 1.74 59.61± 3.47 73.12± 0.85
AFTER — 59.35± 2.18 56.16± 3.83 71.08± 1.46
OVERLAP — 11, 88± 11.70 0.00± 0.00 32.07± 19.44
OVERLAPPED_BY — 2.64± 2.37 0.00± 0.00 20.67± 23.82
DURING — 55.59± 3.14 46.16± 4.26 60.41± 2.89
COVERS — 36.51± 2.52 24.49± 3.72 50.83± 3.49
EQUALS — 36.91± 3.54 33.87± 2.30 46.01± 3.43
NON-DETERM. — 43.63± 3.71 37.05± 7.22 55.11± 8.20
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Discussion – temporal relations

Comparison difficult due to differences in relation types
and the pairs of events considered
[Verhagen et al., 2010] – F1 scores of 58% and 66% for the
relevant temporal relation extraction tasks
Higher results are expected because only specific event
pairs are considered
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Conclusion

We’ve addressed EE and TRE for Croatian
F1 scores of 77% for event identification, 48% for event
classification, and 51% for temporal relation classification
Difficult to compare to work of others, but satisfactory given
the simplicity of features
We believe results are indicative for other Slavic languages
Future work

a more detailed analysis of the annotation scheme and
guidelines
use of more sophisticated features (syntactic functions)
relating events to normalized TIMEXes
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Thanks for your attention!
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