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Distributional Semantics

Representation of word meaning as vectors

Vector components: co-occurrences with context features
Firth (1957): You shall know a word by the company it keeps

Peter convinced to write reportshimself ⇒

report

Peter 1
convince 1
write 1

Vector similarity approximates semantic similarity

Simple, unsupervised induction of word meaning
Used in variety of tasks (Turney and Pantel, 2010)
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Main Context Choices

shoot

eat

hunter
grass

deer

subj-shoot

obj-eat

hunter

grass

deer

lexical vector space syntactic vector space

Lexical (word) context captures topical similarity

Syntactic (word-relation) context captures relational similarity

Can model fine-grained information (Baroni and Lenci, 2010)
More appropriate for free word order languages
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A problem for syntactic vector spaces: Sparsity

Syntactic vector spaces are very sparse

Even if constructed from very large corpora

Reason: Less cooccurrences

ncmod

Peter convinced to write reports

dobjxcomp

ncsubjncsubj

himself

⇒
report

write 1

Many word pairs receive semantic similarities of zero

Real dissimilarity or missing data?
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Derivation Smoothing

The question

Where can we get semantic relatedness information to smooth
distributional similarity?

The answer: Derivational morphology

Consider derivational families:

argumentation

argumentative

argue

argument

arguably

Words that are derived from one another have similar meaning

Available from resources like CatVar (Habash and Dorr, 2003)
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Derivational Smoothing

If vectors are sparse, do not compute semantic similarity directly

Instead, back off to less sparse members of derivational families

sim(arguably, debatably)  = 0
sim(argue, debate)  > 0

smoothed-sim(arguably, debatably) =

f(       arguably       ,       debatably     )

back-off

(Similar to back-off to less sparse n − 1 grams in LMs)
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Derivational parameters: Two parameters

1 Smoothing trigger: When is a vector considered too sparse?
Smooth always
Smooth only if sim(l1, l2) = 0 (or undefined)

2 Smoothing scheme: How to bring in derivational family

maxSim: Consider most similar
pair between families

avgSim: Consider average sim-
ilarity of all pairs

centSim: Consider similarity of
family centroids
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Experiments

Language choice: German

Resource situation comparable to English, but not quite as good

Derivation important process of word formation

Distributional models

Base Model: German Distributional Memory Dm.De
(Padó and Utt, 2012)

900M-token sdewac web corpus (Faaß et al., 2010)

DErivBase derivational families (Zeller et al., 2013)

Rule-based resource for German, focus on precision
18.000 non-singleton families covering 60.000 lemmas

Baseline: Bag-of-words models (same corpus)
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Evaluation

Task 1: Synonym choice

980 targets with four candidates each (Reader’s Digest)
“Which term is antiquated most similar to?
(a) venerable, (b) old, (c) unusable, (d) outdated?”

Prediction: candidate with max cosine similarity to target

Evaluation: Accuracy (%) + Coverage (%)

Task 2: Word similarity prediction

350 pairwise judgments on 5-point scale (Zesch et al., 2007)
(monkey, macaque) ⇒ 4
(office, tiger) ⇒ 1

Prediction: Cosine similarity

Evaluation: Correlation (Pearson’s r) + Coverage (%)
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Results: Synonym choice

Model Acc. % Cov. %

Dm.De, unsmoothed 53.7 80.8

Dm.De, smooth always
avgSim 46.0 86.6
maxSim 50.3 86.6
centSim 49.1 86.6

Dm.De, smooth if sim = 0
avgSim 52.6 86.6

maxSim 51.2 86.6
centSim 51.3 86.6

BoW “baseline” 56.9 98.5

Gain in coverage (+6%), but small loss in accuracy (-1%)

BoW “baseline” performs best

Conservative trigger (smooth if necessary) works best
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Results: Semantic similarity

Model r Cov. %

Dm.De, unsmoothed .44 58.9

Dm.De, smooth always
avgSim .30 88.0
maxSim .43 88.0
centSim .44 88.0

Dm.De, smooth if sim = 0
avgSim .43 88.0
maxSim .42 88.0

centSim .47 88.0

BoW baseline .36 94.9

Again, conservative trigger works best

Big increase in coverage (+30%), small increase in correlation
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Task Comparison

Result change through smoothing

Task Quality Coverage
Synonym choice −0.09 % Acc. +6%
Semantic similarity +0.03 Corr. +30%

Semantic similarity benefits more from derivational smoothing than
synonym choice

Derivational families contain related words, not synonyms

argumentation

argumentative

argue

argument

arguably
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Summary

Sparsity is a problem for syntax-based distributional models

“Derivational smoothing”: Back off from rare word to derivational
family

Initial experiments

Conservative trigger (smooth only when sim=0) works best
Jury still out on smoothing scheme (combination method)

Future work

More experiments on smoothing schemes
Use richer information about derivational families
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