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Abstract—In this paper, the performance of a topological- current and reference images and by using the stored actions
metric visual path following framework is investigated in dif- However, storing the robot actions is not necessary forgaavi
ferent environments. The framework relies on a monocular tion. In [33] a robot navigates a 127m long path outdoorsevhil

camera as the only sensing modality. The path is represented . | . fi f ith a fish
as a series of reference images such that each neighboring pairsavIng only a series ol Images from a camera with a fish-eye

contains a number of common landmarks. Local 3D geometries lens. To enable pose-based control of the robot in a global
are reconstructed between the neighboring reference images in metric coordinate frame, a precise 3D reconstruction of the
order to achieve fast feature prediction. This allows recovery camera poses is performed of the frequently (approximately
from tracking failures. During navigation the robot is controlled every 70cm) saved reference images. In the 3D reconstructio

using image-based visual servoing. The focus of the paper is on lied to feat ints of th f .
the results from a number of experiments conducted in different process applied to featureé points o € reierence images,

environments, lighting conditions and seasons. The experiments global bundle adjustment is used which results in a long (1
with a robot-car show that the framework is robust against hour) learning phase unsuitable for on-line use. The lenfth

moving objects and moderate illumination changes. It is also the path measured by odometry is used to correct the scale of

shown that the system is capable of on-line path learning. the map. After learning the path, the robot can very acclyrate
Index Terms—visual servoing, mapping, localization, visual reproduce it at 50cm/s velocity.
memory, path following It turns out that reconstructing the robot's path, or hav-
ing 3D information is not necessary either. In [4] a robot
I. INTRODUCTION navigated 140m outdoors at a speed of 35cm/s with 2D

ILé%age information only. During mapping, image featuresever

Intelligent autonomous vehicles have performed amazi o ; ;
g P cked and their image patches together with theimage

feats outdoors. They have driven thousands of kilometers

freeways [31], navigated on the surface of Mars [6] and mvé:oo_rdinates were saved approximately every 600_m traveled.
over 200km on a challenging desert route [37]. Systems baé%ld”ng navigation, the robot control was based on simplesul
on visual odometry, stereo vision and inertial measurem plied to the tracked feature coordinates shared between t

unit based systems have achieved significantly high pre?f?Xt refere?ce and current |m_aghe. The robot hc;wever refied o
sion, for example just 9m error after a 9km travel [Lg]Teduent reference image switches to recover from ocafissio

Even monocular vision based map building is in the reaIFHJIEéI tof mOV'Eg objects. A p;erson walking acrpss the ca;(rjnﬁra’s
of mapping whole suburbs [27] or rapidly performing loop€d Of view between two reference image switches could have

closure detection on images collected over a 1000km pajh [16a|used a pkroblerr:l duer:o covfering (lng Zacg tracked fet;aturgi In
However, reliable autonomous navigation outdoors using off 'ater wor [5] the authors of [4] added odometry to be able

camera and no other sensor still remains an exciting crgﬁlento compensate for roll on non—]_‘lat terrqln. L
The work described in [15] aimed at indoor navigation, can

One of the approaches for autonomous navigation usigg | with lusi h ) f using 3D inf .
monocular vision is visual path following. In visual path al with occlusion at the price of using Information.

following, a path to follow can be represented by a series éf local 3D reconstruction is done between two reference

reference images and corresponding robot actions (go fdlrWaomn|d|rect|onal images. During navigation, tracked feasu

turn left, turn right) as in [24]. There a mobile robot nawiggh Wh'Ch h_?\r/]e been OCCLUded ge; prrIOJectsd t_)ack |r:jto the p;rrer?t
through indoor corridors by applying template matching ghage. 1he recovered pose o the robot Is used to guide the
robot towards the target image.
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to images covering 185 degree field of view. A step towar@sploration of the implementation’s limitsExperiments were
commercialisation is presented in [8] as a similar framéworarried out mostly on roads using an autonomous electric
is applied to an indoor robot with a potentially inexpensiveehicle capable of carrying two passengers.

processing unit entailing an ARM9 microprocessor and anThe presented framework is similar to [15] in that only
FPGA. local 3D reconstruction is used and that occluded featueés g

Not all robots in the visual path following literature usé’rojectéd back into the image. However the rest of the detail
manually controlled map acquisition. In [13] the robot gene'® different. For example in this paper a standard camera is

ated an indoor topological-metric map by performing randoiS€d instead of an omnidirectional one, tracking is used for
motions. During mapping the 3D positions of point featurd9aPPing instead of matching, experiments are done outdoors
of individual reference images were estimated using visu@d Not indoors and the centroid of image features is used to
and odometry measurements fused together in a Kalman filfggntrol the robot.

The estimation of point feature positions continued during 'N€ Paper is organized as follows: a description of the
navigation as well. ramework is given in Section Il. More details of the vision

system for the interested reader are given in Section IH fol

Convincing experimental results for outdoor visual patlyeqd by a description of the experiments. After a discussio

following using omnidirectional vision and odometry argy ihe results the paper ends with conclusions.
presented in [40]. In the simple and effective approach, one

dimensional localization along the path is performed using
particle filter in conjunction with odometry and an effeetiv _ _ . _VISUAL NAVIGATION _
patch normalized implementation of correlation based inag This section briefly describes the implemented visual nav-

matching. In the thorough experimental results, the aogurdgation framework. The teaching of the robot (mapping) is
and the effects of illumination were investigated. described first, followed by the description of the navigati

- : . rocess consisting of localization and robot control.
Building an accurate and consistent 3D representationeof t% 9

environment can also be done using monocular SLAM [11]. .
For example in [19] a robot mapped a 100m path outdof¢ Mapping
using a monocular camera and odometry. There were only

350 features in the map which may approach the limit that Init. tracker

a simple Kalman filter SLAM implementation can handle Save image

in real time on current PCs. However the simulation result !

in [14] of closing million landmark loops and building large Getimage

hierarchical maps with monocular SLAM [7] predicts that ]

monocular SLAM may be a viable choice for creating accurate Track Reinitialize

maps with large numbers of landmarks. i trafker
In this paper a visual path following framework is presented Discard Save new

L : . : bad points ref. image

to the research community in the field of intelligent transpo i

tion systems. General concepts such as representing maths a 3D geometry

series of images and extracting these series of images fnom a

image database were presented in [32]. The current paper on
the other hand is oriented towards applying the same general
idea for controlling real autonomous cars. An account of the
employed vision system has been previously presented Jn [35
In this paper the presented experiments describe the lmhravi

of the system in many different outdoor environments, and
thus provide a qualitative and quantitative insight int@ th
feasible range of navigation performance. Additionallyist Fig. 1. The steps involved in building a representation ofathfrom a
paper presents a more advanced implementation of the syst&§fience of images, i.e. mapping.

with a refined control law and an improved implementation

of the vision system. Consequently, the system presented if-€a/ning a path (i.e. mapping) starts with the manual dgvin

this paper exhibits faster, smoother and safer motions sinc®| th€ robot on a reference path while processing (or stdang
capable to perform online mapping. off-line mapping) the images from the robot’s camera. From

o ] the images an internal representation of the path is created

The contribution of this paper, based on [1-"2_]5 the 55 summarized in Fig. 1. The mapping starts with finding
application of the vision system to a robotic vehicle usingaris points in the first image, initializing a Kanade-Laea

an image-based visual servoing strategy and the expemneRi,masi (KLT) feature tracker [36] and saving the first image

2\ideos showing results presented in this paper can be
accessed at http://www.irisa.fr/lagadic/video/Cycatilyation.mov and
1Compared to [12] a gap in the experimental work has been fillddhaore  http://www.zemris.fer.hrissegvic/pubs/dioset_al_07iros 0581 VI_i.mp4.
details of the vision system are given. [Accessed: February 22, 2011]



oint corresp., oint corresp., oint corresp., . . .
previous— 5D geometry 5D geometry 5D geometry the camera pose using the matched points enables to project

Previous =" Tsprevious ,-T s next oo s nextonext map points from the reference images into the current image.
: @ @ @ @ @ @ A The projected points are then used to initialize a KLT tracke
- At After the initial localization a new image is acquired and th
point positions are updated by the tracker. Using the tidcke
= x e points a three-view geometry calculation (see Sectionisll)
performed between the current image, previous referende an
next reference image (Fig. 2). If the current image is found t
precede the next reference image, then points from the map
Fig. 2. The map consists of reference images, point corregpwed, 2D are projected into the current image using the estimateal loc
anc! 3D information. During navigation, the point featuresnirthe map are pose. The projected points enable one to restart the trgm:ifin
projected into the current image and tracked. ) . .
points currently not tracked and to stop the tracking of {®in
which are far from their projections. A new image is acquired

as the first reference image. A version of the Ritfacker was N€xt and the whole cycle continues. However, if it is found
modified as proposed in [17] in order to improve performandBat the current image comes after the next reference image,
in outdoor sequences acquired from a moving car. In t|_zi\et0polog|cal transition is made i.e. the next-next refeeen
tracker, position, scale and contrast parameters of festare Mage (Fig. 2) becomes the next reference image. The tracker
tracked. In the next step a new image is acquired and t§ethen reinitialized with points from the map and the preces
tracked features are updated. The tracking of features wifintinues with acquiring a new image. Similarly to forward
a large appearance change compared to their reference img@sitions, & topological transition is performed backdsaif
appearance is abandoned. The rest of the features are #n [} current image precedes the previous reference image.

to estimate the 3D geometry between the previous referencd© achieve seamless switching between nodes, points from
and the current image. In the 3D geometry estimation, theXt-next, previous and Préevious-previous reference @nage
essential matrix is recovered using the calibrated 5 pofdSC tracked in the current image (see Fig. 2). L
algorithnf [29] used in the MLESAC [38] random sampling W|_de-pasellne m_atchlng is only used outside the initial
framework. The inlier points are then used in a final 3ﬂpcallzat|on phase.lf most features arellost for .example due
geometry calculation using the 8-point algorithm [38]. et to a total obstruction of the camera’s fl_e!q qf view. .Ir'1 such
3D reconstruction error is low and there are enough trackE@S€ the robot stops and automatic re-initialization isiear
features a new image is acquired. Otherwise the previo?Jgt by matching with the nearest reference images.

image is saved as the new reference image. The relative pose

current

. . . . Localize in map

of the previous image with respect to the previous reference (wide-baseline
image and the 2D and 3D coordinates of the point features matching)
shared with the previous reference image are also saved. The Init. tracker
the tracker is reinitialized with new Harris points addedte v Check point
old ones and the processing loop continues with a new image ’—> Getimage =—— consistency
acquired by the Camera. . Reinitialize : RestartAtrackin

To handle gaps in the image sequence and to close a loop  tracker Track of points
between the first and the last image of the teaching sequence, I} i N
wide-baseline matching is utilized as described in sedtion re?"i",%‘;ges oty Prgg'scitﬁgr?;“t

The resulting map (Fig. 2) is used during autonomous
navigation in the localization module to provide stable gma
points for image-based visual servoing.

Switch
reference
images?

YES

B. Localization

The localization process during navigation is depicted in
Fig. 3. The navigation process starts with initial localiaa Fig. 3. Visual localization during navigation.
where the user selects a pair of reference images close to
the robot’s current location. Then an image is acquired and )
matched to the selected reference images. The wide-basefn Motion Control
matching is done using a correlation based approach [42] andn the motion control scheme the robot is not required
by matching SIFT descriptors [21] applied to DoG [21], multito accurately reach each reference image of the path, nor
scale Harris [25] and MSER [23] keypoints. The estimation ¢ follow accurately the learned path since this may not be
useful during navigation. In practice, the exact motion e t
3The source code of the KLT tracker maintained by Stan Birahiain be robot should be controlled by an obstacle avoidance module

found at http://www.ces.clemson.edstb/klt/ [Accessed: February 22, 2011] that will constitute future work. Therefore a simple cohtro
4An implementation is available in the VW library downloadable

from http://www.doc.ic.ac.uk/ajd/Scene/index.html. [Accessed: February zzglgoriFhm was implgmented where th_e difference in the
2011] coordinates (assuming the forward facing camera’s hot@on



axis is orthogonal with the axis of robot rotation) of theé\. Keypoint detection for wide-baseline matching

centroid of features in the currenkf and next reference Tpe purpose of wide-baseline matching is to detect corre-
image &) are fed back into the motion controller of the rObOEpondences without any prior knowledge about the relative
as the steering angle: orientation of the two views. Our images are acquired from
D= — aX—X), (1) @ moving car so that we especially require robustness dgains
pearance distortion along the scale axis. The desirast-ob

. . . . . a
wherea is the gain. To smoothen rapid steering actions Wh?‘lgss can be achieved by matchingariant feature descriptors

switching reference images, a feed-forward part is ad_ded [%] which are independently extracted in both images. This
the steering angle. The calculation of the feed fo.rward Barthoroach is based on recent advances in robust and regeatabl
bazed on the centro]:ds of th_e shareghfeatﬁre? ml the Cu_rragfection of characteristic image locations callegpoints

an next-nextu) reference image. Thus the fina equat'°'f39]. Usually the detected keypoints are locally distimetivith

is: o : .
B respect to position, scale and rotation, while some appesac
® =~ alXe—Xn) — b —Xm), (@) even address affine invariance [25]. The obtained descsipto
whereb is the feed forward gain. are exhaustively compared against the descriptors from the

The translational velocity is set to a constant value, eixcepther image, typically with respect to L2 distance. The cor-
during turns, where it is reduced to a smaller constant valuespondences are usually established as distinctive fmirs
to ease the tracking of rapidly moving features in the imagehich the best distance is less than 60% of the distance of the
Such turns are automatically detected during navigatign, becond-best match [21].
thresholding the difference in the feature centroids in the We evaluated three keypoint detectors: the maxima of
current, next and next-next image. the difference of Gaussians [21], multi-scale Harris cosne
The decision of when to stop when reaching the goal po$25], and maximally stable extremal regions [23]. The three
tion is carried out similarly to the reference image switchi detectors extract different kinds of features (blobs, emn
strategy of [4] by detecting when the variance of the diffiee and regions, respectively [39]) and complement each other
between current and last-reference image feature codedinavith more or less success, depending on the scene. Our
starts to rise. final procedure combines the correspondences obtained by

individually matching the descriptors extracted by allethr
I11. VISION TECHNIQUES AND ALGORITHMS algorithms

This section describes the main details about the employed
vision techniques and algorithms. A key ability in visionB, Point feature tracking
based path following is to correctly locate mapped features When approximate current feature locations are known
images acquired during navigation. We therefore first ohice é

basi hes f blishi : il as is often the case when processing an image sequence)
two basic approaches for establishing point correspore®eng, esnondences can be established by tracking. The two
between images: wide-baseline matching in IlI-A and tragki

main point feature tracking approaches are iterative first-

in II_I—B. Section IlI-C presents an empirical performanmlg order differential approximation [36], [17], and exhausti
uation of the two correspondence approaches. The expe:smqﬂatching of light-weight point features [28], [22] such as

|nd|c§lte that correspondences recovered t,’y trackln.g mov'l—larris corners. We believe that the former approach is bette
con5|der_ably more accurat_e 3D reconstructions (besideg b_esuited to appearance-based navigation since it tends teske |
several times faster to obtain). Consequently, we emploewi g 50 il to association errors and provides more aecura
baseline matching only for obtaining initial localizatiah the point tracks

beginning of the navigation session (cf. the top box of the |, orger to tolerate significant inter-frame displacements

, the current appeaganc
warped to achieve optimal resemblance with the stored

not tracked in the previous frame (cf. the right branch q mplate image oreference®. This alignment can be achieved

the flowchart in Fig. 3). During the typical fo_rward motion,b minimizing the norm of theerror image obtained by
tracked features gradually Ieayg the field of view and need§ btracting the warped current feature from the referetfe [
be replaced by new ones. Additionally, tracked features lmay.Shi and Tomasi [36] have described the warp as a 2D affine

lost in any moment due to local disturbances such as OCC'“,S'Pransform. An extended warp which additionally compersate

motion blur, iI_Iumination effe_cts, noise, or any Combilati ¢, ,gine photometric deformations of the grey level valoe i
thereof. A suitable geometric procedure has therefore begn image has been proposed in [17]

devised for predicting the locations of mapped featureLwhi |, the rest of the subsection, we first provide a formulation
are currently not tracked. This procedurg is describedlib |l of the general point feature tracker [36], [17], [1] in II1B
Note that a part of this procedure (caching the recovered two

view geometries between the key-images) is performed gurin *We used two additional pyramid levels which are iterativelyained by

the mapping stage (Cf. Fig. 1)’ while the actual prediCtiOWbsamp"ng each second pixel in a properly smoothed image.
8During mapping, the reference is obtained by simply storing finst

. . e N : )
S gmploy(_ed ‘?'U“ng navigation (cf. the box "Predict poméppearance of the feature. During localization, the refegeis taken from
positions” in Fig. 3). the corresponding key-image.



and then in IlI-B2 we describe our variant of the concept 2) Differential tracker with isotropic scaling and contrast
with which we obtained best results. The main changes of czampensation: In order to mitigate the danger that a physically
final implementation with respect to the public KLT libraryunrelated image patch might be well transformed towards the
are outlined in I1I-B3, while in 1lI-B4 we summarize somereference, a trade-off between modelling power and tragckin
computational considerations. security should be carefully chosen. For our application, a

1) General differential tracker with warp correction: Let good balance is obtained by a 5-dimensional warp consisting
the feature in the current frame be givenlify), its appearance of a 2-dimensional translational offsed)( isotropic scaling
after a warp with parametens by lw(x,p), and the corre- (m), and the affine contrast compensation modeld) [17].
sponding reference byr(x). Then the differential tracking It is convenient to express the warp in terms of geometric and
consists of findingd which minimizes the norm of the error photometric components gs= (q,r), whereq = (m,d), and
over the feature window: r =(A,0). The warped feature is then obtained as:

p—argminy lw(x.p) ~ =) 3) w(X,p) = A-1(msx+d) +8=U(I(T(x,q)),1). (9)

The minimization is performed in a Gauss-Newton style, b\ order to use the general formulation given in (8), an
employing a first-order Taylor expansion of the warped femtu€Xpression fo% = [94 971 must be derived using the chain

around the previous approximationfaf This can be expressedrule. The second term is simpler to obtain:

in different ways [1], and here we present a “forward-aaditi
formulation with which the best accuracy has been obtained. aiu
In this formulation, the current feature warped with a sum or
of the previous parameter vectprand an unknown additive

improvementAp is approximated as:

(ITx@).)=[1 1], (10)

wherely is the current feature warped with I: = 1(T (x,Qq))).
The derivative of the first term is more involved:

Olw

~ ——.Ap. Ju
Iw (X, p+Ap) ~ lw(X,p) + ap Ap 4) TqU(T(X»Q)),f) _
The scalar residual norm appearing in (3) can now be repre- o 07U ﬂ (LT B
Sented as.: - dl (I(T(qu))’r) aT (T(qu)) dq (Xaq) -
. X1 1 0 B 1 2
R(Ap) = Z||Iw(x,p+Ap)—lR(x)|| =A-1%. { % 0 1 ] =A [ ¥ IF1F ] , (11)
X
s Elllw(X,p)+m—W-Ap—lR(x)H _ (5) Wwherelf is the gradient in the feature warped by If: =
z Jp 2L(T(x,9))). The combined result, (11) and (10), can be

For clarity, we omit the arguments, denote the previousrerr'gserted into (8), withg given by:

image ase, and introduceg as the transposed warped feature

T X x1 X2
gradient over the warp parameters: g' =[ Al Al A I 1], (12)
R(Ap) ~ z e+ QTAPH . (6) 3) Implementation: Our implementation of the KLT tracker
X derives from the public library maintained by Stan Bircldiel

. A . at Clemson universify We performed several modifications
The requirement (3) can be enforced by findinggefor which to the original code, but the most important among them

the gradient of the residual vanishes. In case of the L2 norm : :
oS ) are contrast compensation warp extensions such as the one
this is easy to perform:

described in 1l1I-B2 and evaluated in 1lI-C. Additionally,ew
IR(AD) R provided code for (re-)starting the tracking of features at
0D Y2 (et g'ap)-g' =0". (") predicted locations. Finally, we also improved warp cdicec
X results for features at large scales by employing the pydami
After transposing both ends of (7), we arrive at the findével which most closely matches the current feature size.
expression for an iteration in the context of a general warp4) Computational considerations. The performance of dif-

(note thate is a scalar function): ferential tracking comes at a price of considerable computa
_— tional complexity. In fact, code profilifgshowed that feature
Z(ge+ 99 Ap) =0. (8) tracker is a major performance bottleneck of the navigation

X system presented in this paper. We are currently working

Thus, in each iteration, the additive improvement is calted on several opportunities to address this problem. Pretirgin
by solving a linear system of equations. The procedure stagsults indicate that the performance can be more than eédubl
when the norm of the improvemenAp|| falls below a by harnessing vector extensions of the x86 instruction set.
threshold, or when the new feature position falls outside th

. ! T
image bounds, or when the determindgg’ | becomes t00  7yRL: hitp://www.ces.clemson.edustb/kit/ [Accessed: February 22, 2011]
small. 8We employed GNU profiler gprof.



C. Performance evaluation of the correspondence approaches The adopted feature prediction approach exploits geometri

Evaluating the correspondence performance for real scer‘f@g's”a(;nts prowde(; by curre_nrt]l_y tr?ck?d featufres anwrh the
is tricky since ground-truth correspondences typically nat mapped correspondences, within the irame of a technique

be recovered in experiments with real 3D scenes. Con lown aspoint transfer [16]. Point transfer locates an un-

quently, it is very difficult to assess the alignment accyra hown 2D_ point in fthﬁ current3|[r)nag¢ b_y emplozmg. ) the
of the correspondences. However, a correct corresponde ggwn projections ol the same pointin two other images,
alignment is very important in feature-based navigatiamces and ii) some additional correspondences across the three

the existing correspondences are employed to predictitomsat images. This problem is illustrated in Fig. 5. In order to

of previously unseen features. Bad predictions can be exc@ﬁrform the point transfer, one.needs to recover th.e thise-v
tionally troublesome, since they may give rise to assamiati geometry between the current image and two key-images from

errors and subsequent degradation of the geometricaltyqua“1e map.
within a positive feedback spiral.

Here we estimate the correspondence alignment accuracy
by looking at the reprojection error of the recovered twewi
geometries. The smaller the reprojection error of the tiegul
two-view geometry — the better the correspondence approach
The four evaluated correspondence approaches are: o,

« isotropic scaling with contrast compensation (trackb)
« affine warp with contrast compensation (track8) P=[1]0] Px=[R¢ | Tx]
« affine warp without contrast compensation (track6)

« wide-baseline matChmg by employing Lowe’s I<(:"ypomtlgig. 5. The point transfer problem: given two known projesti@f the same
and SIFT descriptors (match) point Q onto key-images A and B, find its projection in a current viewTXe

. . . composed solution of that problem is: (i) image correspoceke are used
The experiment Is dESIQHed as follows. For each of ﬂ? recover the two-view geometry (A,B); (ii) the two known ctionsqa

23 key-images of the sequence referenced in V-G, we lo@kdqg are used to triangulate the 3D poi@ (i) the two-view geometry
at correspondences between the key-image (iridéx the (AX) is recovered and put into the frame of the geometry (A@)) the
sequence), and the five subsequent images at indieek desired pointgx is obtained by projecting onto image X.
i+2,i+3,i+4, andi+5. For matching, we simply match
the pairs(i,i+1), (i,i+2) etc. For tracking we initialize the
tracker at index, and then track 5 frames forward. In each ca
we record 5 reprojection errors, for geometries frGm+ 1)
to (i,i +5). The results are summarized in figure 4, as mea
of the five reprojection errors.

The results illustrate that the correspondences obtai

There are many ways to compute the three-view geometry,
é@ith different assumptions and performance requiremditts.
golden standard method described in [16] involves bundle
ﬁgjustment with respect to the reprojection error in allwge
which may be costly for a real time implementation. A more
n%lﬂ'table solution would observe that many three-view geome
éries need to be recovered for the same key-image pair during

and significantly more stable two-view geometries than tH@V'gat'qn’ and therefore strive to reuse precomputgo\/ﬂm—
correspondences obtained by matching (track5 vs matcg?ometrleg for such pairs. Such decomposed solution has b‘?e
The figure also shows that contrast compensation provide? onsed n [20]_' A similar gpproach has be_:en employed_ n
significant performance gain when tracking outdoors (Eacﬁh's paper but W|th|n_the calibrated context, 1.e. py assigmi

vs track6). Finally, the figure suggests that track5 is sonaw that all observed points have been expressed in normalized

better than track8 (track5 vs track8). Our result regardirfgordmate% corresponding to the case of unit focal distance

tracking performing better than matching is consistenhhe 2]. _Some_: |mplement_at|on details of our solution will be
findings in [34] where a similar comparison was performed.Olescr'beoi in the following pqragraphs. i
Each of the two geometries (A,B) and (A,X) (cf. Fig.5)

is recovered independently. The two essential matrices are
D. Decomposed point transfer in the calibrated context estimated by the random sampling scheme MLESAC [38],
Hsing the recent five point algorithm [29] as the generator of
motion hypotheses. The employed implementation has been
provided within the librarpy\\841° maintained at the Imperial

by providing a module for predicting the locations of featur CoIIe_ge_ n Lono_lon, UK. The dec_:omposmon of the essential
which are currently not tracked. After an approximate fesaty ALX |n_to motl(_)n componer_ﬂs is performed next, followed
location is provided by the prediction module, the correé}y the triangulation of 3D points [16].

Iocatlon Can.be recovered by differential trackmg with |war_ %We employ the usual model for transforming pixels into normalize
correction with respect to the reference appearance @&wjUigoordinates comprising of a 5-DOF linear transformation dwedfourth order
during the mapping stage. Feature prediction is thereforeadial distortion model [41]. We recovered calibration paeters for our

critical task which enables the system to deal with Iarg{é;{%‘i;%im;’g“g‘aﬁggr?b‘g dom”[il’?{"ementation of the procedutreavtianar

monon? and local disturbances, by providing means for @woyg| nitp:/www.doc.ic.ac.ukiajd/Scene/Release/vwa4.tar.gz [Accessed:
dynamic update of tracked features. February 22, 2011]

The main shortcoming of tracking is that it requires al
auxiliary technique for establishing initial correspondes
and recovering from tracking failures. We address this lerb
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Fig. 4. Performance evaluation of four approaches for @stdhfy correspondences between a given image and five sudrgdmages in the sequence. The
horizontal axis holds the sequential number of the frame,enthié vertical axis shows the mean reprojection error.

Consequently, the geometries (A,B) and (A,X) (cf. Fig.5) During all experiments (except the last), no software pa-
are expressed in the common frame. In the calibrated conteximeters were changed except that of the forward and turning
the adjustment involves estimation of only one parametspeed. Mapping has been performed off-line, except in éxper
(scale), while in the projective context the ambiguity has dhent 6. The image resolution in the experiments was 320x240.
degrees of freedom [20]. The scale factor between two metficacked feature patch sizes were 15x15 pixels.
frames is estimated by requiring that pairs of correspandin
points visible in both frames have the same depth. In practi\. Experiment 1. Basic experiment
different points vote for different scale factors due tosegi
but a robust result is in the end obtained as the median of all
individual factors.

3D coordinates of the desired poiQQ are obtained by
triangulating its projections onto the two key-images A and
B (cf. Fig.5). This can be performed offline, during mapping.
The desired predictiony of the triangulated poin@ to the
current image X is finally obtained by simple projection.

The described prediction procedure is very sensitive to the
accuracy of the estimated two-view geometries. Thus, iterak
sense to disregard the predictions when the estimates rappea
to be inaccurate with respect to the reprojection error.[16]
The reprojection error may be deter.mined either in a sttangig_ 6. Paths for experiments 1 and 2.
forward manner, or as calculated in the presented work by
taking into account the probability that a bad geometry may
produce a low reprojection error by chance (as proposed in
[35]). s s

IV. EXPERIMENTAL RESULTS /

The goal of our experiments is to explore the possibilities
and limits of the current implementation of the framework by
navigating in different scenarios, environments with efiint Fig. 7. Navigation results in experiment 1 shown as recooftlrobot poses
proportions of vegetation to human made structures, afithck) overlaid on 77 reconstructed reference image pdagteef colored
different illumination conditions. We also explore the fim 90t and barely visible sequence numbers). The first referimnage pose is
in speed and in lateral deviation from the path. A practical
application of on-line mapping and autonomous parkingss al Experiment 1 (see Fig. 6) was conducted on an overcast day
given. The results are evaluated quantitatively. with a short time between mapping and navigation. Most views
In all but the last experiment a CyCab, a French-madeof the 158m long path contained buildings which provided
wheel drive, 4 wheel steered intelligent vehicle designed stable image features. The main potential challenges & thi
carry 2 passengers was used. On our CyCab all computatiewperiment were (i) motion blur in the teaching sequence
except the low-level control were carried out on a laptofhwitcaused by fast driving for the used exposure times, (ii)ialgiv
a 2GHz Pentium M processor. A 7@ield of view, forward under a building which caused a quick illumination change
looking, B&W Allied Vision Marlin (F-131B) camera was and (iii) people (more than 10) and cars covering up features
mounted on the robot at a 65cm height. Except in experimehiring navigation.
3 the camera was used in auto shutter mode, with the rest ofn the teaching phase, 958 logged images were reduced into
the settings constant. 77 reference images in 257s (3.7fps). While the robot was



Fig. 8. Every second frame of a sequence from experiment 1 derat@ssrobust feature (light colored crosses) trackingmggion after occlusion by a
passing car.

moving at 50cm/s in turns and at 90cm/s otherwise during — §
navigation, 934 images were processed at 4.1fps on averagens
Statistics regarding mapping and navigation are shown in
tab. I. Reconstructed robot and reference image poses show
in Fig. 7 were only used for assessing the performance of thelig
system. 4
The quick illumination change when driving under the
building was easily handled due to the implemented illu- ) ] )
mination compensation in the tracker [17]. Motion blur G, 1% Diferere between e refrence image (ef) st image
the teaching sequence did not impair the performance Ndtice the missing flowers in the flowerbed.
the system. The moving objects and persons did not affect
the navigation because the tracking of features re-appgari
after occlusion were restarted immediately due to the featu
reprojection scheme. Figure 8 contains images processkd at
end of the navigation. They describe an interesting sibnati
where a moving car progressively occludes most features.
It can be seen that the tracking of re-appearing features is
restarted, as there were enough good features trackedefor th

camera pose estimation used in point reprojection.

B. Experiment 2: Robustness to environment changes

Fig. 9. Navigation results in experiment 2 (left) using a magated 4 months
earlier. As can be seen from the proportion of black and éighblored dots,
CyCab completed about 80% of the path. A successfully regeageeriment
(right) with a new map suggests the previous experiment dichésr the end
because of large changes in the appearance of the enviranment

Fig. 10. Large difference in illumination and vegetationvizetn a 4 month
old reference image (left) and a current image used duringgagen in
experiment 2.

Fig. 12. CyCab driving autonomously on the narrow path in erpent 2.

Experiment 2 was conducted on a narrow path along a
small lake (Fig. 6 and 12). Mapping was carried out in
June, under the strong summer sun. Navigation took place
in October, when vegetation and illumination conditiongave
very different (Fig. 10). Despite the large change in the
environment, CyCab managed to navigate about 80% of the
path with only one human intervention. At one place CyCab
started brushing the rose plants on the left side of the path
(the inside of the bend) in Fig. 10 therefore we stopped the
vehicle. Such a corner cutting behavior comes naturally wit
wide separation between reference images and the chosen
control strategy. Without stopping the vision system, QyCa
was moved 50cm to the right and its automatic motion was
resumed. CyCab’s vision system gave up close to the end
of the track when the change in the environment was too
large (see Fig. 11). Even though CyCab did not complete the
whole path (see the left image in Fig. 9 where it failed), this
experiment still represents a success because of the Hifficu
conditions CyCab handled.

Shortly after CyCab got lost, we have repeated the experi-
ment using a new map. As it can be seen in the right image
of Fig. 9, CyCab completed the path without any problems
and with smaller localization noise. Note that as image thase
visual servoing was used, localization noise had only an



indirect effect on the motion of the robot, as it only influedc =~ As one can expect, the error in the estimated pose during
feature point reprojection and reference image switching. navigation was the largest at those places where there were

This experiment indicates that seasonal vegetation clsange close features. Such large pose errors are represented by
may negatively affect the performance of the frameworbluttered points in Fig. 14, for example at the right bottom
in environments where most features are provided by tpart of the path. In this case the 3D pose error resulted in
vegetation. This experiment also suggests that in the shart early switching of a few reference images during turning,
term, under favorable conditions vegetation may provide aand subsequently following the learned path with a 1m latera
large number of well textured features which can result error for a short section of the path. Other than that, CyCab
high quality 3D geometry estimation. However, unfavorablgerformed excellently even when the sun was shining into its
conditions such as wind or rain may easily degrade the gualtamera as in Fig. 15. With seamless motion over the first and
of the created map. final reference frame, CyCab demonstrated that the framewor

The frame rates during navigation are lower in this exdoes not require global consistency in the 3D reconstmctio
periment (see tab. 1) due to temporary implementation and

processing platform limitations. D. Experiment 4: Driving in a loop

C. Experiment 3: Deterioration due to distant features P ™

{ﬁ e Lﬂ.n St IIE]
v =F S
S 2P S Aﬂae Henri Pulncar# 3 —

RS S5 Y 7 E«. y

Fig. 16. Navigation results in the loop closing experimenxpgriment 4).

Fig. 14. Larger noise in the reconstructed robot poses wélefeatures are
far away in experiment 3.

Fig. 17.  Sun shining into the camera in the reference image) (&&f
experiment 4, but not in the current image (right) during natran.

The aim of this experiment was to investigate navigation
in a loop. The teaching was performed by driving CyCab in
a full loop in a circular parking lot of approximately 119m
circumference. The beginning and end of the loop were closed
by matching the first and last image of the teaching sequence.
If neighbouring nodes were connected with line segments,
Fig. 15. Sun shining into the camera in the reference imagg,(laft not then the first and the last light colored dot in Fig. 16 were
in the current image (right) during navigation in experiment 3 connected.

CyCab managed to complete 1.25 loops even though the

In experiment 3 CyCab completed an approximately 304axperiment was conducted at the end of day where people
track, where in some places (right side in Fig. 13), the dbsavere driving their cars away from the car park and the sun
features were more than 100m away. As the width of thwas shining into the camera (Fig. 17). The change in the scene
footpath matched that of CyCab, it was easy to observe thersened at the beginning of the second loop where one of
lateral error during navigation. The mapping and navigatidhese cars provided the only close features. The lack of good
part of the experiment was conducted in succession, undgr veatures in conjunction with a lateral error resulted inpgoor
bright lighting conditions. Instead of the usual auto-$fiut pose estimates as seen in Fig. 16. Therefore this experiment
mode, the camera was used in its high dynamic range modemonstrated that the lack of global consistency in poses do
The start and end positions were identical. not preclude navigation as long as local consistency isredsu




(in Fig. 16 the path does not join up into a circle). This i80cm/s. Then CyCab was manually driven to the entrance of

due to the ability of the image based visual servoing scherflRISA where the driver got out and CyCab drove itself into

to handle situations where pose based schemes may strugigde garage. During mapping clouds covered the sun, while

when fed with poor pose estimates. during navigation the sky was clear. CyCab even handled the
Eventually CyCab was manually stopped when it no longéansition from strong sunshine to the darkness of the garag

followed the curvature of the road (see short straight sacti

of black dots in Fig. 16 where it happened), however thg. Experiment 7: Robustness to lateral deviation

experiment was a success because it did demonstrate that

CyCab can connect the beginning and end of a loop and drive 200

through the joint.
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E. Experiment 5: Robustness to speed
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Fig. 18. The first images during navigation in experiment 5tXlehd in  Fig. 23, The number of points in the map and the average numbeaakied

6 (right). In experiment 5 the robot drove until the end of tad while points for each node in experiment 7. With increasing latealiation the
maintaining 1.8m/s speed. In experiment 6 after on-line patinieg the ayverage number of tracked points decreases.

robot parked itself into the garage close to the center ofrtteme.

A navigation system based on vision should also handle
situations where the autonomous vehicle is required toatievi
from the reference path to avoid an obstacle. Because dbstac
detection and avoidance is out of the scope of this paper, in
Fig. 19. Navigation results in experiment 5. this experiment only the. maximgm possibk_a Ia.teral devia.tio

from the reference path is investigated. Unlike in the presi

This experiment investigates how fast can CyCab na\,igaﬁéperiments, a firewire color webcam, the Unibrain Fire-swa
on a straight path. On the track shown in Fig. 18 and 1g0unted on the top of a 1995 right hand drive Renault Clio.
CyCab completed a 100m straight path at a 1.8m/s (6.5kmMyring the experiment images were logged at 30Hz while the
speed. Raising the speed even higher caused oscillation&/§Ricle was traveling at approximately 5m/s.
the robot’s motion to appear. The oscillations were preslyna  The experiment was conducted on a single direction, double

caused by the delay between image measurements and cot@f: L-shaped road of a small town at 7:30 on a sunny Satur-
action and by the frame rate. day morning in June. The time of the experiment was chosen

to minimize the effect of moving objects as the goal was
to test the sensitivity of localization to lateral deviatiorhe
place of the experiment was chosen to emulate an unfavorable

B R

F. Experiment 6: Application to automatic parking with on-

line mapping scenario where the houses are close to the road (Fig. 219, Suc
situations where the lateral deviation is large compareithe¢o
I L distance from the scene are challenging, as the trackedspoin
E s undergo a large amount of appearance and position change.
The distance between the camera and the nearest house on the
Fig. 20. Navigation results in experiment 6. left was often just 2m during the mapping of the approximatel

100m long path. The right side of the road was occupied by
In this experiment on-line mapping (i.e. processing thearked cars. During mapping, one car drove past. Data was
images as they are grabbed) and a practical applicationgasthered for localization in the subsequent runs, at ettitna
demonstrated. In the current state of the navigation systdateral deviations of Om (left side), 2.5m (middle) and 5m
i.e. without obstacle detection-avoidance, etc. the aict (right side) from the reference path.
applications are limited. However, even now the framework Off-line localization during the Om deviation and the 2.5m
can be used for automatic parking on private properties lwhideviation was successful, however the initial localizatiaith
are under the control of the user. wide-baseline matching at the 5m lateral deviation failed f
During the experiment a map was created on-line whitbe first few reference images. After a later successfuiainit
driving CyCab from the entrance of IRISA to the CyCaliocalization, the framework kept the camera localized lunti
garage approximately 50m away (see Fig. 18 and 20) at abtha pose tracking failed just after the turn. One can observe



Fig. 21. View difference example in experiment 7. Left and righages are the previous and next image from the map capturedeoleft side of the
road, while the middle image is the current one captured onigfi side of the road. Notice the large separation betweendference images and the large
lateral displacement of the current image from the referemamges.

Fig. 22. Off-line localization result in experiment 7 whildtiving on the reference path (left), in the middle (center)l @n the right (right) of the path.
Notice the increase of noise in the reconstructed robotgusth increasing lateral deviation. The point of gettingtlin the rightmost track coincided with
performing a right angle turn while being close to the trackethts.

the increase of jitter with increasing lateral deviationtlie between reference images, and the memory requirement for
localization results (Fig. 22). A decline in the number o$toring the map is reduced. This can be seen for example in
tracked points with increasing lateral deviation can benseexperiment 3 where the average distance between reference
in Fig. 23. It is also visible from the figure, that the numbeimages was 3.1m. Sparse reference images improve not only
of points in the map increased as the car approached the tweglability but performance as well as the overhead adsakcia
and decreased as it came out of the turn. with the loading of reference images and their switching is
The results indicate that with increasing lateral deviatioreduced.
the localization accuracy and the number of tracked points
decreases. The limit of the vision system for lateral déwat
in the tested environment lies between 2.5 and 5m.

The framework enables the learning and navigation of long
paths because the total memory and computational require-
ments for creating a map grow linearly with the length of
the path. The computational cost during each navigation ste
V. DISCUSSION ANDLESSONSLEARNED is approximately constant. As for the memory requirements,
A. Scalability and performance when calculating with 3.1m between reference images, a 1km
- . . long path can be represented using 25MB of storage if one uses
Statistics frpm e?<per|rr_1ents 1-6 are presented n ta_b. . 320x240 uncompressed images and neglects the storedefeatur
By performing simple image-based visual servoing inste int coordinates. As one can store the reference images on

of position-based control of lthe robot, one can have ma hard drive, a 1TB drive may store approximately 40000km
advantages. Because there is no need for an accurate r Hen of path.

pose during navigation, one can allow a larger 3D recon-

struction error during mapping. Because of this, there isThere is a relationship between camera field of view and dis-
no need to perform a computationally costly global bundlance between reference images. In experiments not dedcrib
adjustment and mapping can be done on-line. During tirethis paper due to the lack of space, we noticed that when
experiments it was noticed that, after the baseline betweesing only the center half of the images, or when using a
reference images increased beyond a certain distancePthelL®gitech Quickcam Pro 4000 camera, the average distance
reconstruction error increased as well. Therefore if adaBP between reference images increased up to 12m. The detailed
reconstruction error is allowed, one can have larger digtsin study of the effects of field of view constitutes future work.



TABLE |
SUMMARY OF THE VISUAL PATH FOLLOWING EXPERIMENTS

Learning Navigation

exp. raw ref. proc. fps | path | meters per|| images| time | fps | v forw. | v turning | human

images | images | time [s] [m] ref. image [s] [cm/s] [cm/s] interv.
1 958 77 257 3.7 ] 158 2 934 226 | 4.1 90 50 0
2 862 51 208 411 96 1.9 532 262 | 2 50 30 1
3 2454 97 592 4.1 | 304 31 2272 | 516 | 44 80 30 0
4 1425 48 237 6 119 25 1812 385 | 4.7 50 40 0
5 785 32 167 4.7 | 100 3.1 280 78 | 3.6 180 40 0
6 371 22 102 3.6 | 50 2.4 406 94 | 43 80 40 0

B. Mision techniques navigating with a different, but reasonably similar camera

The implemented contrast compensation in the tracker
able to handle large affine changes of illumination betwéen t
reference and current images which was crucial for example
du_nng e>_<|<_)er|ment. 2 (Flg. 10)._Even though the tracke_r WaS | imitations
fairly resilient against illumination changes, the sameds
true of the wide-baseline matching. Problems occurred fromAs shown in experiment 7, the framework has handled
time to time when buildings holding the majority of thelateral deviations in excess of 2.5m even when used with
features reflected the sun light directly into the camera TR noisy camera with a high radial distortion. This indicates
matching of overexposed features with well exposed ontat the framework may enable obstacle avoidance as long the
using SIFT descriptors often failed even when the trackggene is not totally covered up by the obstacle.
was capable of tracking them. As initial localization or re- In the current implementation the framework relies on
localization is done on a stationary robot, the use of exgosiBD pose to switch reference images. In cases where the
bracketing (see [30] for stereo vision) and the utilizatimn 3D pose is less accurately recovered, it can happen that a
points resulting from all images in the matching process magference image switch is not performed, or is performed in
alleviate this problem. the wrong direction. Such behavior occasionally happereswh

The use of 3D information enables to restart the tracking gfost of the observed points are located on a plane or on
features just becoming visible after occlusion as can ba seetree. A wrong reference image switch more likely caused
in Fig. 8. This property is important in dynamic environnmgent problems in turns where not turning in the right direction
Also, having 3D information enables the system to chediiickly reduced the number of visible feature points. With
the consistency of the tracked features. Tracked pointstwhiess points, the reconstructed geometry is often less ategur
“jump” from the background onto a moving object in thevhich further worsens reference image switching and also
foreground are discarded. Even though having 3D informati¢educes the accuracy of points projected from the map irgo th
may not be necessary for path following as stated in tfigage. When there is no replacement for lost feature points,
introduction, it may extend the area of applicability of athe number of feature points declines... To address the issu
outdoor path following system. of reference image switches, we are planning to investigate

As only features that were reliably tracked are kept betweé&gference image switching strategy based on the more stable
two possibly distant reference images, the feature seteétir  image information. Pose estimation based on homography for
3D geometry estimation did not pose a significant probleralanar scenes is also an option.

One may intuitively think, that maps built with an EKF A further limitation is that of illumination. Extreme illum
based monocular SLAM implementation are more accuratation changes such as the sun shining into the camera during
due to a larger amount of information integrated into th@apping but not during navigation, or the lack of light may
maps. However the superiority of many EKF based monocul#anpair the performance of the framework, especially that of
SLAM implementations is not so clear as unstable featurtf®e matcher.

or features located on slowly moving objects (for example The navigation at night remains an open question. Sen-
clouds) may be tracked and incorporated into the map befaitive cameras and artificial illumination may help in some
being discarded. This incorporation of bad features magl-gracases. Encouraging results in localization have been idescr
ually compromise the integrity of the map. In contrast, erroin [3] where image based localization was demonstrated at
in the 3D reconstructions always stay local in our frameworkight using headlights in sequences taken also at night. The
and do not affect other nodes of the map. Similar effect can lmealization in sequences taken during the day were not so
achieved with local SLAM maps as well. Local SLAM mapssuccessful.

may also alleviate the effects of linearization errors inFEK  Even though the mapping and localization part of the system
implementations. is 3D, the control algorithm is 2D. This does not imply that

The use of normalized image coordinates in the visidhe framework can only handle flat terrains. Many of the tests
system together with tracked image patch scale estimatioere performed on moderately sloping terrains. The system
does not preclude performing mapping with one camera aaf$o handled twists in the slopes.

iéjch capacity enables mapping by one vehicle and sharing
the map by many.



Navigation frameworks for uncontrolled environments such VI. CONCLUSIONS

as the one described in this paper should be able to detecin experimental evaluation of a framework for visual path
and avoid obstacles. Since this is not implemented in th&|owing in outdoor urban environments using only monoc-
framework yet, it constitutes part of the future work. ular vision was presented in this paper. In the framework no
The choice of the speed of the robot should depend on h@er sensor than a camera was used. The path to follow was
following factors: (i) exposure time as it influences mOtiorﬁepresented as a series of images with overlapping landmark
blur, (ii) frame rate and distance to features (as they ini&e |t \yas shown that the use of local 3D information, contrast
how much features move between frames) and (iii) safefympensation and image-based visual servoing can lead to a
considerations. o system capable of navigating in diverse outdoor envirortien
When considering navigation based on maps created a Ifjgh reasonable changes in lighting conditions and moving
time ago, one can expect vegetation to change significan%jects_ On-line learning was also demonstrated.
This restricts the long term application of such system to ag the framework does not rely on odometry, the range of

places with a slower rate of change such as to urban argggjications may also include boats navigating on urbaalsan
where buildings are visibl&€ It seems to be reasonableg, gircraft.

to assume that the appearance of buildings changes slowly.
However, old buildings are rebuilt and new buildings are VIl. ACKNOWLEDGMENTS
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Experts may easily assess environments for vision systefH Simon Baker and lain Matthews. Lucas-Kanade 20 years amifying
. . . L framework. International Journal of Computer Vision, 56(3):221-255,
related risks of failures during navigation. However, com-  \ioion 2004.
mercial systems would benefit of such output as part of thp] O. Booij, z. Terwijn, Z. Zivkovic, and B. Krosse. Navigah using an
mapping process. appearance based topological map.|QRA 07, 2007.
[3] D.Bradley, R. Patel, N. Vandapel, and S. Thayer. Reaktimage-based
topological localization in large outdoor environments. [ROS 05,
i ~afi 2005.
D. Appllcatlons ) ~[4] Z. Chen and S. T. Birchfield. Qualitative vision-based fitelrobot
Frameworks such as this may be used one day on arbitrary navigation. InICRA'06, Orlando, 2006.

; ; ] Zhichao Chen and Stanley T. Birchfield. Qualitative isibased path
systems which have to move on a previously completeH’ following. Trans Rob., 25(3):749-754, 2009,

track. Such systems are for example: people carriers,tstrgg] v. cheng, M.W. Maimone, and L. Matthies. Visual odometry thre
cleaning robots, robots transporting goods between Imgj&li Mars exploration rovers - a tool to ensure accurate driving science

i i imaging. Robotics & Automation Magazine, 13(2), 2006.
Of. a factory, etc. The framework is not limited to SyStem_s[7] L. A. Clemente, A. J. Davison, |. Reid, H. Neira, and J. Drdkss.
with wheeled or tracked locomotion. Because the only sensin * wapping large loops with a single hand-held cameraRSS 07, 2007.

modality is a single camera (no odometry), coupled with full8] J. Courbon, Y. Mezouar, and P. Martinet. Indoor navigatdf a non-

; ; ; holonomic mobile robot using a visual memonAutonomous Robot,
3D geometry estimation, one could likely use the framework 25:253. 266, 2008.

on hovercrafts, blimps, helicopters and airplanes. Howde (9] j. Courbon, Y. Mezouar, and P. Martinet. Autonomous natiig
aircrafts, the affine tracking of the tracker should be es@bl of vehicles from a visual memory using a generic camera model.

(for the experiments in this paper, this property was disabl '4%';'5 2&?3’““”“ on Intelligent Transportation Systems, 10(3):392-
to obtain more accurate results) to be able to handle rotajeg| w. Cummins and P. Newman. Highly scalable appearance-Shij-

image patches, and the control algorithm changed to handle FAB-MAP 2.0. InRSS09, 2009.

i ; Andrew J. Davison, lan D. Reid, Nicholas D. Molton, aniiM@r Stasse.
3D motion. One could also envisage the use of such SyStéer MonoSLAM: Real-time single camera SLAMIEEE Transactions on

on autonomous boats in places such as canals in some Cities pattern Analysis and Machine Intelligence, 26(6):1052—1067, 2007.
where many stationary features are visible. [12] A. Diosi, A. Remazeilles, S. Segvic, and F. Chaumette.dOott visual

T ath following experiments. IhROS 07, 2007.
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