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INTRODUCTION

Computer graphics are a powerful tool for depicting locations, both fictional and

real. The former have to be modelled by artists or generated procedurally from a math-

ematical model. While depictions of the real world can also be created by hand, the

possibility of generating them from collected cartographic data exists as well. Utilising

real data to render depictions of terrain allows for greater realism where desired and

lets artists spend their time on tasks which require creativity and can thus not yet be

automated.

Such realistic depictions of locations can then be used in films and video games

set in the real world, as well as in various visualisations. One recent example of a

video game relying heavily on real data is the 2020 release of Microsoft Flight Simu-

lator. It uses the same data as Bing Maps to faithfully represent buildings and terrain

on Earth.[6] Applications of such technology encompass not only flight simulators in-

tended for civilian use, but also military simulations and data visualisation tools for

fields like civil engineering.

Creating a model of a real-world rural area has applications in the aforementioned

flight simulators, products like Google Maps and Bing Maps, and films with computer-

generated imagery, as well as potentially in boundary disputes, agriculture, logging,

and drainage modelling. Additionally, a model created from previously collected data

from an area can be used to plan further surveying of the area.
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1. Tools and technologies used

1.1. The TypeScript programming language

TypeScript1 is a programming language developed by Microsoft and licensed under

the Apache License 2.0. It builds upon JavaScript by allowing the programmer to

define data types for variables and have them statically checked. TypeScript compiles

to regular JavaScript and can thus be run in the browser. Type checking is done only at

compile time, so no extra code for type checking is emitted.

TypeScript code resembles JavaScript, but has added type annotations. This helps

mitigate type errors, which in JavaScript only become apparent at run time because the

language is dynamically- and weakly-typed. Instead, when using TypeScript, these er-

rors are most likely to be detected early. The type annotations also aid in documenting

the source code by explicitly defining the types of variables, function arguments, ob-

ject properties, etc. The availability of visibility modifiers for class fields and methods

allows for easier encapsulation.

Looking at listings 1.1 and 1.2, one can see that the TypeScript compiler has kept

the program structure intact and that it has preserved the comment from the original

source code. The type annotations and visibility modifiers have been stripped from the

code, as has the property declaration for name.

Because all type checking is done statically and no type-checking code is present

in the resulting JavaScript, the type checking is not bulletproof. Runtime type errors

are possible in a variety of situations. The programmer should be aware of this, even

if such errors are not a common occurrence when using TypeScript.

1https://www.typescriptlang.org/
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1 class Student {

2 private readonly name: string;

3

4 public constructor(name: string) {

5 this.name = name;

6 }

7

8 public get greeting(): string {

9 return "Hello, " + this.name + "!";

10 }

11 }

12

13 function printGreeting(student: Student) {

14 // Greet the student on the console

15 console.log(student.greeting);

16 }

17

18 const susan = new Student("Susan");

19 printGreeting(susan);

Listing 1.1: An example TypeScript program.

1 class Student {

2 constructor(name) {

3 this.name = name;

4 }

5 get greeting() {

6 return "Hello, " + this.name + "!";

7 }

8 }

9 function printGreeting(student) {

10 // Greet the student on the console

11 console.log(student.greeting);

12 }

13 const susan = new Student("Susan");

14 printGreeting(susan);

Listing 1.2: The example program from listing 1.1 after compilation to JavaScript.
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1.2. The WebGL API

WebGL2 is a graphics JavaScript API developed by the Khronos WebGL Working

Group and supported in all major browsers.

The WebGL specification ªdescribes an additional rendering context and support

objects for the HTML 5 canvas element. This context allows rendering using an API

that conforms closely to the OpenGL ES 2.0 API.º[5, Abstract] As such, WebGL al-

lows for displaying three-dimensional graphics in the browser using a programming

interface that is a subset of modern desktop OpenGL. Vertex attribute data is held in

buffer objects (VBOs)[5, Section 5.14.5] and the pipeline is programmable. Vertex and

fragment shaders are written in GLSL ES.[5, Section 5.14.9]

1.3. The Three.js library

Three.js3 is a JavaScript library for three-dimensional graphics. It uses WebGL

internally to render the graphics in the browser, but provides a higher-level interface to

the programmer. WebGL is a low-level API and Three.js abstracts away many of its

intricacies. As a result, most users of Three.js do not need to write their own shaders

or make calls to WebGL functions, using the objects Three.js provides instead.

Three.js also contains implementations of numerous features useful for computer

graphics. These include a scene graph, shading, shadow maps, an animation system,

mouse and keyboard input, procedural noise, and loading assets like textures and mod-

els, just to name a few.

Type definitions4 for Three.js are available, so TypeScript code using the library

can be type checked. Both Three.js and the type definitions are available under the

MIT license.

1.4. The Webpack module bundler

Webpack5 is a module bundler used to bundle and package assets for the web,

primarily JavaScript files. Projects are easier to maintain if they are logically divided

into separate files instead of having all the code in one single file. However, requesting

2https://www.khronos.org/webgl/
3https://threejs.org/
4https://www.npmjs.com/package/@types/three
5https://webpack.js.org/
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many files at once via HTTP slows the web page down by introducing overhead on

both the client and the server. It is thus useful to have a tool bundle the separate

JavaScript source files into one file for distribution. This is the primary motivation for

using bundlers like Webpack.

Additionally, bundlers make it easy to use libraries, as they bundle the library code

with the user code so it can be served to the client together, instead of having to be sep-

arately downloaded from a content delivery network (CDN). The code of such libraries

(ªvendor codeº) can be bundled into a separate JavaScript file (the ªvendor bundleº).

The contents of the user code bundle change every time the application is updated, but

the vendor code changes much less often, only when a dependency is updated. This

improves cache performance, as it allows for the vendor bundle to be cached separately

in the user’s browser and re-downloaded rarely.

The TypeScript compiler when used by itself translates each source file into its

own JavaScript file. Webpack can be used in conjunction with TypeScript using the

ts-loader6 package. This avoids having to first compile all TypeScript source code into

JavaScript files on disk before bundling them. Webpack and ts-loader are available

under the MIT license.

1.5. The Blender suite

Blender7 is a software suite used to produce three-dimensional computer graphics.

Perhaps its most famous use is that of 3D modelling, though its features extend far

beyond that. Some of its other applications include ray-traced rendering, rigging of

models, animation using forward and inverse kinematics, motion tracking, and sim-

ulation of smoke, fire, fluids, cloth, hair, etc.[7] Blender is licensed as GNU GPL

Version 2 or later.

6https://www.npmjs.com/package/ts-loader
7https://www.blender.org/
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2. Rendering a scene in Three.js

2.1. Setting up

In order to begin rendering in Three.js, three objects are required: a renderer, a

camera, and a scene. The renderer contains the browser’s rendering context, as well

as information about the clipping planes, shadow map, scissor test, etc. The camera

contains its own position, orientation, and the projection to be used when rendering,

among other information. The scene contains all objects to be rendered, all lights, and

describes the fog and background to use when drawing.

Three.js’s WebGLRenderer requires an HTML <canvas> element, for which

it then creates a WebGL 2 rendering context. After the renderer is created, its render

method can be used to draw a scene to the canvas from the viewpoint of a camera. The

scene and the camera are passed to the method as parameters. This method needs to

be called every frame in order for changes to be immediately visible to the user. This

is possible using the standard JavaScript function requestAnimationFrame.

When the canvas is resized, the renderer and the camera need to be updated with

the new size. This is required because the camera needs to update its projection matrix,

and because the renderer needs to call the viewportmethod of the WebGL rendering

context in order to have WebGL draw the scene to the entirety of the canvas.

2.2. Adding objects

Objects can be added to the initially blank scene using the scene’s add method. A

kind of object which can be added are meshes, which ª[represent] triangular polygon

mesh based objects.º When using meshes, the object’s structure is defined by an in-

stance of the BufferGeometry class, and its appearance is defined by one or more

instances of the Material class.[4]
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(a) Basic material. (b) Lambert material. (c) Phong material. (d) Standard material.

(e) Wireframe. (f) Toon material. (g) Flat shading. (h) Normal material.

Figure 2.1: A white, low-poly sphere shaded with different materials and settings.

2.2.1. Mesh geometry

The geometry of a mesh describes the triangles that make it up. Though typically

loaded from a model file, it can also be generated in code. The geometry consists of

buffers which closely correspond to the underlying WebGL buffer objects. Each buffer

is assigned to an attribute, corresponding to attributes in the GLSL shaders. Some of

the attributes used by default materials are:

position The position of the vertex in model space.

normal The normal vector associated with a vertex.

uv The texture coordinates of the vertex.

color The vertex colour.

Indexed rendering can be used by providing vertex indices.

2.2.2. Mesh materials

Three.js offers several materials by default and allows the user to define their own

using shaders. Some of the materials for meshes available out-of-the-box are:

± A solid-coloured material without any shading. (figures 2.1a and 2.1e)

± Gouraud (per-vertex) shading with Lambertian (diffuse-only) reflectance. (fig-

ure 2.1b)
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± Phong (per-fragment) shading with Phong (diffuse and specular) reflectance.

(figure 2.1c) This material can also be used for flat shading. (figure 2.1g)

± Physically-based materials: without (figure 2.1d) and with a clear coat.

± A material for cartoon-like cel shading. (figure 2.1f)

± Several specialised materials for rendering data (e.g. normals: figure 2.1h) to

textures.

Meshes can be rendered as wireframes, as seen in figure 2.1e.

2.3. Instanced rendering

Three.js supports instanced rendering, which can be used when one mesh needs

to be drawn many times, each time differing only in its transformation matrix, and

optionally its colour. In the example shown in figure 2.2, each monkey head has a

distinct transformation matrix and colour.

Instanced meshes, like regular meshes, require geometry and one or more materi-

als. However, they also require as an argument the maximum number of instances they

will hold. After having been created, the number of actual instances can be set, as can

be the matrices and colours for the instances.

Without instanced rendering, one would have make a rendering call for each in-

stance. Additionally, a new matrix and colour uniforms would have to be passed to

the shader before rendering each instance. When using instanced rendering, one call

is used to draw all instances, with the matrices and colours passed to the shader all at

once as an array.

Instanced rendering improves performance, but when using it, some features are

not available. For example, shadow maps are not supported by the default instanced

rendering shaders provided by Three.js. Meshes with multiple levels of details (LODs)

are also not supported.

2.4. Loading assets

Three.js offers loader classes for many formats used in three-dimensional graphics

and game development. These loaders are used to easily retrieve assets from a given

URL. Notable loaders are:

8



Figure 2.2: A Three.js example demonstrating instanced rendering.

ImageLoader loads an image file and provides it as an HTMLImageElement.

This loader is used internally by other loaders, but can also be used on its own

where necessary.

TextureLoader loads an image file and makes it available as an instance of the

Texture class. Instances of this class can be used in Three.js as texture maps

for materials, e.g. as diffuse maps.

MTLLoader loads material descriptions from an MTL file and provides an instance

of the MaterialCreator class, which can be later used when loading an OBJ

file.

OBJLoader loads model geometry from an OBJ file and creates an Object3D. This

object can then be added to a scene.

9



3. The developed application

The web application developed as part of this thesis is codenamed RAM-BReaD,

which is an acronym of Rural Area Model Based on Real Data. It allows the user to

specify the coordinates of point on Earth’s surface. A three-dimensional model of the

surrounding area will then be generated based on aerial imagery. This model contains

an approximation of the plants present in the area. The user can move the camera

around the scene in real time using the mouse and keyboard.

This application was written in TypeScript, uses Three.js for graphics, and uses

Webpack for bundling.

3.1. Running the application

To build the application, Node.js and NPM are required. The Google Maps API

key to be used for getting the aerial imagery should be specified as per the instructions

in the file src/apiKeys.ts_TEMPLATE.

In the root of the repository, the command npm install should be run in order

to download and install dependencies. The application can then be built using the com-

mand npm run all. This will create the build directory and build the application

in it.

Finally, to run the application, an HTTP server should be run from the build

directory. A simple way to accomplish this is using the http-server package from NPM

by running the command npx http-server.

The location to show in the application is defined using the lat and long query

parameters in the URL. These values represent the latitude and longitude of the centre

of the area, respectively. Both values are in decimal degrees. For example, if the

application is hosted at http://127.0.0.1/, then the location at 45°52′12.25′′N,

16°52′57.91′′E can be viewed by accessing the URL http://127.0.0.1/?lat=

45.870070&long=16.882753.
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(a) Aerial imagery retrieved from the Static Maps

API.

(b) The location from figure 3.1a rendered in the

application.

Figure 3.1: Aerial imagery and generated model of fields.

3.2. Data fetching

Numerous providers of cartographic data exist. The OpenStreetMap Overpass API

provides read-only access to data from OpenStreetMap. This data includes buildings,

marked places, public transit stops, streets and roads, etc. Open Data on AWS (Ama-

zon Web Services) contains datasets available to anyone, including geospatial ones.

This includes imagery from multiple satellites, air quality data, elevation, and more.

Google Maps Platform provides access to much of Google Maps and Google Street

View functionality via APIs. It includes APIs like static and dynamic maps, marked

places, elevation, directions, Street View panoramas, etc. Although use of the API

is not free, users receive $200 in credit every month[1], which has been more than

enough for the requirements of this thesis.

The data used to construct the rural landscape model is retrieved from the Google

Maps Platform. The Maps Static API is used to obtain aerial or satellite imagery

of the area for which the model is being generated. For the square 100 m × 100 m

area, a 500 pixel × 500 pixel image is fetched. This allows for a resolution of up to

5 pixels per metre. However, the actual resolution of the imagery available is several

times lower in many areas.

The Static Maps API is available at the URL https://maps.googleapis.

com/maps/api/staticmap using the GET method. The application uses the fol-

lowing query parameters when fetching the imagery:

11



center Coordinates of the centre of the depicted area.

zoom The zoom level of the map.

maptype The type of the map, the value satellite is used to get satellite or aerial

imagery.

size The size of the resulting image.

format The file format of the resulting image.

key The Maps API key of the application.

3.3. Image sampling

The application takes a sample every 2.5 metres. Sampling is done by computing

a weighted average of the colour in a square around the sampled point. Every sample

is taken from a 7.5 m × 7.5 m area centred on the centre of the sample. The value of

each pixel is weighted according to its distance from the centre point of the sample.

The weight w(P ) of the pixel at the point P is calculated as follows:

w(P ) =
1

1 + dPC

dPC is the distance in metres between the point P and the centre of the sample, C.

This kind of weighting function ensures that pixels which are further away from

the centre contribute less to the overall average, while also preventing division by zero

when the distance is zero. Each component of the colour is averaged individually. The

components are treated as linear, that is, no gamma correction is performed. Listing 3.1

shows this sampling function in its entirety.

The average colour of the sample is then converted into its HSL (hue, saturation,

lightness) representation. Then, depending on these components, a plant type is chosen

for the current sample.

1 private static readonly METERS_PER_SAMPLE = 2.5;

2 private static readonly SAMPLE_RADIUS = 3.75;

3 // ...

4 private readonly width: number;

5 private readonly height: number;

6 // ...

7 private sampleAverageColor(

8 imageData: ImageData,

9 x: number,

10 z: number

11 ): [number, number, number] {

12



12 const pixelsPerMeterWidth = imageData.width / this.width;

13 const pixelsPerMeterHeight = imageData.height / this.height;

14

15 const pixelXMin =

16 (x + this.width / 2 - RuralAreaModel.SAMPLE_RADIUS) *

17 pixelsPerMeterWidth;

18 const pixelYMin =

19 (z + this.height / 2 - RuralAreaModel.SAMPLE_RADIUS) *

20 pixelsPerMeterHeight;

21

22 const pixelXMax =

23 pixelXMin +

24 2 * RuralAreaModel.SAMPLE_RADIUS * pixelsPerMeterWidth;

25 const pixelYMax =

26 pixelYMin +

27 2 * RuralAreaModel.SAMPLE_RADIUS * pixelsPerMeterHeight;

28

29 const average: [number, number, number] = [0, 0, 0];

30 let scalingFactor = 0;

31

32 for (

33 let pixelY = Math.max(pixelYMin, 0);

34 pixelY < Math.min(pixelYMax, imageData.height - 1);

35 pixelY++

36 ) {

37 for (

38 let pixelX = Math.max(pixelXMin, 0);

39 pixelX < Math.min(pixelXMax, imageData.width - 1);

40 pixelX++

41 ) {

42 const pixel = RuralAreaModel.getPixel(

43 imageData,

44 pixelX,

45 pixelY

46 );

47 const distance = Math.hypot(

48 pixelX / pixelsPerMeterWidth - x,

49 pixelY / pixelsPerMeterHeight - z

50 );

51

52 const weight = 1 / (1 + distance);

53 scalingFactor += weight;

54 for (let i = 0; i < 3; i++) average[i] += weight * pixel[i];
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55 }

56 }

57

58 for (let i = 0; i < 3; i++) average[i] /= scalingFactor;

59 return average;

60 }

Listing 3.1: The method used to calculate the average colour of a sample.

3.4. Plant models

Three plant models were created for the application:

± European beech, Fagus sylvatica (figure 3.3a),

± maize, Zea mays (figure 3.3b), and

± wheat, mostly based on common wheat, Triticum aestivum (figure 3.3c).

(a) Beech. (b) Maize. (c) Wheat.

Figure 3.2: Screenshots of individual plant models in Blender.

(a) A beech forest. (b) A maize field. (c) A wheat field.

Figure 3.3: The different types of plants, rendered in the application.
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Figure 3.4: The OBJ export dialogue in Blender.

These models were created in Blender and exported as OBJ files. By default,

Blender exports objects from the project as distinct objects in the OBJ file (figure 3.4).

This then causes Three.js to import the model as multiple meshes with different ge-

ometries. This is not suitable for instanced rendering, as the instanced mesh requires

exactly one geometry. Therefore, it is necessary to uncheck the option ªObjects as OBJ

Objectsº if one wishes to use these models for instanced rendering.

Because each sample uses only one instance of a model, the models for maize

and wheat have to contain multiple plants. This could be done manually, copying and

pasting each plant the desired number of times, perturbing each plant’s rotation and

scale slightly each time.

However, this can be done much more easily using the particle system in Blender.

When using the hair option in the particle toolbar (figure 3.6), Blender will place

ªhairsº on the surface of an object. These ªhairsº can be made to look like any object

or collection. A plane the size of a single sample was created and made a particle

emitter. The model of a single maize plant was made into a collection and used as the

ªhairsº for the emitter (figure 3.5). By using this system, parameters like the number

of plants or the random distribution of their scale and rotation can be easily adjusted.

It is worth noting that the particle system expects the collection or object used as

the ªhairsº to be pointing in the positive X direction, which means that the template

model of a single plant needs to be laid on its side in order for the hairs to be pointing

15



Figure 3.5: The maize model being created in Blender.

in the correct direction.

These models are intentionally simple, seeing as they will be drawn many times in

a single frame. A complex model containing more polygons would adversely impact

performance. An entire area model contains 1600 samples, each with 200 individual

wheat plants, resulting in up to 320,000 wheat plants on screen at once. At 16 triangles

per plant, this adds up to over five million triangles on screen. Without levels of detail

(LODs), it is infeasible to have more realistic models.

3.5. The ground

The ground is made up of a mesh with a soil texture. The height of the ground is

slightly randomised using simplex noise in order to introduce detail. Simplex noise is

a gradient noise developed by Ken Perlin as an improvement upon his earlier Perlin

noise.[2] This noise is used as a base for octave noise. Octave noise is obtained by

repeatedly adding the base noise to itself with increasing frequencies and decreasing

amplitudes. Listing 3.2 contains the method used to do this.
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Figure 3.6: A close-up on the particle toolbar in figure 3.5.
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1 private readonly octaveCount: number;

2 private readonly baseFrequency: number;

3 private readonly persistence: number;

4 private readonly lacunarity: number;

5 // ...

6 private applyOctaves(

7 noiseFunction: (...baseNoiseCoords: number[]) => number,

8 ...coords: number[]

9 ): number {

10 let cumulativeAmplitude = 0;

11 let sum = 0;

12

13 let currentAmplitude = 1;

14 const scaledCoords: number[] = coords.map(

15 (c) => c * this.baseFrequency

16 );

17

18 for (let i = 0; i < this.octaveCount; i++) {

19 sum += noiseFunction(...scaledCoords) * currentAmplitude;

20

21 cumulativeAmplitude += currentAmplitude;

22 currentAmplitude *= this.persistence;

23

24 for (let j = 0; j < scaledCoords.length; j++)

25 scaledCoords[j] *= this.lacunarity;

26 }

27

28 return sum / cumulativeAmplitude;

29 }

Listing 3.2: The method used to evaluate octave noise.
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3.6. Performance

The application was developed and tested in Mozilla Firefox 89 on a computer with

an AMD Ryzen 5 2500U processor at 2 GHz with integrated Radeon Vega 8 Graphics,

running Windows 10 Pro, version 20H2.

The scene depicted in figures 3.8 and 3.9 contains 3,956,650 triangles. Running at

a resolution of 1280 × 720 pixels, it is displayed at frame-rates between 20 and 40 FPS,

depending on which parts of the scene are visible. With antialiasing disabled in code,

the frame-rate never dropped below 30 FPS, at the cost of introducing a lot of visual

noise in the wheat fields.

Figure 3.7: Aerial imagery and generated model of the edge of a forest.

Figure 3.8: Aerial imagery and generated model of a forest and fields.
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Figure 3.9: Closer images of the model from figure 3.8.
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CONCLUSION

The application created as part of the thesis allows the user to specify coordinates

on Earth, defining the centre of a square area. Aerial imagery will be retrieved for

this area. A three-dimensional model of the area will be populated with three different

kinds of plants, according to the imagery. This creates an approximate model of the

area in question. The developed implementation has several flaws which could be

improved upon.

The method used to map aerial imagery samples to plant types is very simple and

was devised from looking at imagery from inland Croatia, combined with trial and

error. There exist datasets which could potentially be used with machine learning

in order to derive a better, more realistic method to determine plant types from im-

agery. Even with an improved classifier, mistakes will be inevitable. Identifying plant

species from cartographic data is a difficult problem, one not even Microsoft can solve

perfectly[3]. Still, even a minor improvement would likely lead to models with vastly

better representation of reality.

Additionally, more plant types could be modelled and added to the application.

The application is currently limited by the choice of plant species to the region where

these plants grow in the wild. By increasing the number of plant species, more diverse

areas could be modelled. To aid in this, additional data, like mean temperatures and

yearly rainfall, could be fed into the plant species classification algorithm along with

the imagery. The time of year when the imagery was taken would help make the

application capable of recognising the same plant at different points in its lifecycle.

Looking into writing a custom shader in order to support shadow maps with in-

stanced meshes in Three.js would be worthwhile. Additionally, it might be possible

to use levels of detail with instanced rendering. This would allow for more detailed

and realistic models to be used closer to the camera and for simpler models with fewer

triangles to be used farther from the camera. The result would be greater realism with

potentially better performance.

Integrating more data into the model should be investigated. Elevation data might
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be a good start for this. A different approach to sampling could yield more natural-

looking results. For example, a grid based on triangles instead of squares, or different

sampling resolutions for different plant types.

The arrival of new technologies like WebGPU has the potential to allow improve-

ments to the quality and fidelity of models in web applications utilising computer

graphics while achieving the same or better level of performance.

Standardisation of new APIs has led to the deprecation of proprietary plug-ins like

Adobe Flash and Java applets, therefore leading to a safer and more secure Web, since

the track record with security of such plug-ins has been less than stellar. In the past

decade, several new major web technologies have been standardised, of which WebGL

is just one. These have played a major role in providing users with novel experiences

on the Web, as well as also opening the gates to making previously native-only appli-

cations available in the browser. I believe that these are of tremendous value to users

of the Web and I am hopeful for what the future may bring.
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Model ruralnog područja temeljen na realnim podacima

Sažetak

Ovaj rad istražuje generiranje trodimenzionalnih modela proizvoljnih ruralnih po-

dručja korištenjem knjižnice Three.js. Rad diskutira o izvorima kartografskih po-

dataka. Predstavljen je kratak uvod u korištenje Three.js-a i objašnjene su neke od

njegovih poveznica s WebGL programskim sučeljem. Razvijena je web aplikacija u

programskom jeziku TypeScript radi istraživanja načina generiranja takvih modela iz

podataka dostupnih korištenjem programskog sučelja Google Maps Platform. U radu

je opisana ta aplikacija. Modeli biljaka izra Ådeni za aplikaciju su prikazani. Zaključno,

diskutira se o rezultatima rada, utjecaju novih tehnologija na Web, kao i potencijalnim

poboljšanjima razvijene aplikacije.

Ključne riječi: računalna grafika, ruralno područje, Three.js, instancirano crtanje,

zračne snimke

Rural Area Model Based on Real Data

Abstract

This thesis explores generating three-dimensional models of arbitrary rural areas

using the Three.js library. Sources of cartographic data are discussed. A short intro-

duction to using Three.js is presented and some of its links to the underlying WebGL

API are explained. A web application was developed using the Typescript program-

ming language in order to explore the generation of such models from data available

using Google’s Maps Platform API. This application is described in the thesis. The

plant models created for the application are displayed. Finally, the results of the thesis

are discussed, along with potential improvements to the application developed, and the

effect of new technologies on the Web.

Keywords: computer graphics, rural area, Three.js, instanced rendering, aerial im-

agery
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