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Abstract

Document representation using the bag-of-words approach may require bringing
the dimensionality of the representation down in order to be able to make effective
use of various statistical classification methods. Latent Semantic Indexing (LSI)
is one such method that is based on eigendecomposition of the covariance of the
document-term matrix. Another often used approach is to select a small number
of most important features out of the whole set according to some relevant crite-
rion. This paper points out that L SI ignores discrimination while concentrating on
representation. Furthermore, selection methods fail to produce a feature set that
jointly optimizes class discrimination. As a remedy, we suggest supervised linear
discriminative transforms, and report good classification results applying these to
the Reuters-21578 database.

1 Introduction

Document classification denotes assigning an unknown document to one of predefined classes. This
is a straightforward concept from supervised pattern recognition or machine learning. It implies V)
the existence of a labeled training data set, 2 away to represent the documents, and 3) a statistical
classifier trained using the chosen representation of the training set.

Some classifiers are very sensitive to the representation, for example, failing to generalize to unseen
data (overfitting) if the representation containsirrelevant information [2]. It would thus be advanta-
geous to be able to extract only information pertinent to classification. However, some classifiers,
such as Support Vector Machines[16], tolerate better irrelevant information. Either case, in general,
it is computationally cheaper to operate the classifier in low dimensional spaces. If this can be done
without sacrificing the accuracy of the classifier, the better.

We present afairly straightforward application of Linear Discriminant Analysis (LDA) to document
classification, when vector space document representations are employed. LDA is a well known
method in statistical pattern recognition literature, to learn a discriminative transformation matrix
from the original high-dimensional space to a desired dimensionality [10]. The idea is to project
the documents into a low dimensional space in which the classes are well separated. This can also
be viewed as extracting features that only carry information pertinent to the classification task. A
subsequent classification task should then become easier.

This paper proceeds as follows. We discuss document representation methods and approaches to
reduce their dimensionality, especially Latent Semantic Indexing [7]. We discuss why LS| cannot
result in optimal representation for document classification. Methods to select a number of relevant
features, as well as their shortcomings are then discussed. We introduce LDA, and we present how
it can be applied to very high dimensional data. We describe classification experiments applying a



support vector machine classifier to the Reuters-21578 database, and we discuss the computational
complexity of the approach.

The point of view of this paper isthat of statistical pattern recognition. This meansthat we approach
the problem as a classification task with exclusive classes aiming to minimize the classification
error rate. Performance is evaluated by assigning a single label to each unknown document. This
label can be either correct or incorrect, and the error rate is defined as the number of incorrectly
assigned labels divided by the total number of documentsin the test set. Thisis not the usual case
in information retrieval where documents may carry several labels (or topics). Given a document
collection, the am is to retrieve al documents relevant to a particular topic or class. Performance
is measured as precision and recall [14], that cannot be easily related to the classification error rate.
Thus, in the last section of the paper we also discuss possible extensionsto information retrieval.

2 Vector space document representations

The dominant vectorial document representation is based on the so called bag-of-words approach,
in which each document is essentially represented as a histogram of terms, usually divided by the
number of terms of the document to normalize for different document lengths.

What are the terms that are counted in the histograms? Terms (words) that occur in every document
obviously do not convey much useful information for classification. Same appliesto rare terms that
are found only in one or two documents. These, as well as common stop words, are usually filtered
out of the corpus. Furthermorethe words may be stemmed. These operations|eave aterm dictionary
that can range in size from thousands to tens of thousands. Correspondingly, this is the dimension
of the space in which documents now are represented as vectors. Although the dimension may be
high, a characteristic of this representation is that the vectors are sparse.

For conventional classification methodsthis dimensionality may betoo high. Thus dimension reduc-
tion methods are called for. Two possibilities exist, either selecting a subset of the original features,
or transforming the featuresinto new ones, that is, computing new features as some functions of the
old ones. We examine each in turn.

3 Feature sdection

Optimal feature sel ection coupled with a pattern recognition system leadsto acombinatorial problem
since al combinations of available features need to be evaluated, by actually training and evaluating
aclassifier. Thisis called the wrapper configuration [20, 22]. Obviously wrapper strategy does not
alow to learn feature transforms, because al possible transforms cannot be enumerated.

Another approach is to evaluate some criterion related to the fina classification error that would
reflect the “importance” of a feature or a number of features jointly. This is caled the filter con-
figuration in feature selection [20, 22]. What would be an optimal criterion for this purpose? Such
a criterion would naturally reflect the classification error rate. Approximations to the Bayes error
rate can be used, based on Bhattacharyya bound or an interclass divergence criterion. However,
these joint criteria are usually accompanied by a parametric estimation, such as Gaussian, of the
multivariate densities at hand [12, 26], and are characterized by heavy computational demands.

In document classification problems, the dominant approach has been sequential greedy selection
using various criteria[30, 4, 23]. Thisis dictated by the sheer dimensionality of the document-term
representation. However, greedy algorithms based on sequential feature selection using any criterion
are suboptimal because they fail to find a feature set that would jointly optimize the criterion. For
example, two features might both be very highly ranked by the criterion, but they may carry the
same information about class discrimination, and are thus redundant.

Thus, feature selection through any joint criteria such as the actual classification error, leads to a
combinatorial explosion in computation. For this very reason finding a transform to lower dimen-
sions might be easier than selecting features, given an appropriate objective function.



4 Latent Semantic Indexing

One well known dimension reducing transform is the principal component analysis (PCA), aso
called Karhunen-L oevetransform. PCA seeksto optimally represent the datain alower dimensional
spacein the mean squared error sense. Thetransformisderived from the el genvectors corresponding
to the largest eigenval ues of the covariance matrix of training data.

In the information retrieval community this method has been named Latent Semantic Indexing (or
LSI) [7]. The covariance matrix of datain PCA corresponds now to the document-term matrix mul-
tiplied by its transpose. Entries in the covariance matrix represent co-occurring terms in the docu-
ments. Eigenvectors of this matrix corresponding to the dominant eigenvalues are now directions
related to dominant combinations of terms occurring in the corpus ("topics’, ” semantic concepts’).
A transformation matrix constructed from these eigenvectors projects a document onto these ” latent
semantic concepts’, and the new low dimensional representation consists of the magnitudes of these
projections. The eigenanalysis can be computed efficiently by a sparse variant of singular value
decomposition of the document-term matrix [1].

Although LS| has been proven to be extremely useful in variousinformation retrieval tasks, it is not
an optimal representation for classification. LSI/PCA are completely unsupervised, that is, they pay
no attention to the class labels of the existing training data. LS| aims at optimal representation of
theoriginal datain thelower dimensional spacein the mean squared error sense. Thisrepresentation
has nothing to do with the optimal discrimination of the document classes.

Independent component analysis (ICA) has also been proposed as a tool to find "interesting” pro-
jections of the data [11, 29, 19]. Girolami et al. maximize negentropy to find a subspace on which
the data has the least Gaussian projection [11]. The criterion corresponds to finding a clustered
structure in the data, and bears a close relationship to projection pursuit methods [9]. This appears
to be avery useful tool revealing non-Gaussian structuresin the data. However, as PCA, the method
is completely unsupervised with regard to the class labels of the data, and it is not able to enhance
class separability.

Thus, supervised feature extraction schemes are called for. We describe one such method, Linear
Discriminant Analysis.

5 Linear Discriminant Analysis

The term linear discriminant analysis (LDA) refers to two distinct but related methods. The first
is classifier design. Given a number of variables as the data representation, each class is modeled
as Gaussian (with a covariance matrix and a mean vector). Observations are now classified to the
class of the nearest mean vector according to Mahalanobis distance. The decision surfaces between
classes become linear if the classes have a shared covariance matrix. In this case the decision
surfaces are called Fisher discriminants, and the procedure of constructing them is called Linear
Discriminant Analysis[10, 2].

The second use of the term LDA refers to a discriminative feature transform that is optimal for
certain cases [10]. Thisiswhat we denote by LDA throughout this paper. In the basic formulation,

LDA finds eigenvectorsof matrix T = S;'S;. Here S, is the between-class covariance matrix, that
is, the covariance matrix of classmeans. S, denotesthe within-class covariance matrix, that is equal
to the sum of covariance matrices computed for each class separately. S ! captures the compactness
of each class, and S; represents the separation of the class means. Thus T captures both. The
eigenvectors corresponding to largest eigenvalues of T form the rows of the transform matrix W,

and new discriminative featuresy are derived from the original onesx simply by y = Wx.

Therelation to LDA asaclasifier designisthat these eigenvectors span the same space as directions
orthogonal to the decision surfaces of Fisher discriminants.

The straightforward algebraic way of deriving the LDA transform matrix is both a strength and
a weakness of the method. Since LDA makes use of only second-order statistical information,
covariances, it is optimal for data where each class has a unimodal Gaussian density with well



separated means and similar covariances. Large deviations from these assumptions may result in
sub-optimal features. Also the maximum rank of S, in this formulation is N. — 1, where IV, is
the number of different classes. Thus basic LDA cannot produce morethan N . — 1 features. This
is, however, simple to remedy by projecting the data onto a subspace orthogonal to the computed
eigenvectors, and repeating the LDA analysisin this space [24].

Further extensionsto L DA exist. For example, Heteroscedastic Discriminant Analysis (HDA) allows
the classes have different covariances[21]. However, simple linear algebrais no longer sufficient to
compute the solution. One must resort to iterative optimization methods. Same applies to methods
that further relax the Gaussianity assumptions of the classes[26, 28].

The following section discusses why LDA and the assumptions behind it are well suited for
document-term data, and how L DA can be made feasible with high-dimensional data.

6 Linear Discriminant Analysisfor document-term data

To our knowledge, LDA feature transforms have not been applied earlier to document classification
tasks, although LDA has been used before in the sense of designing alinear classifier [15, 27]. In
contrast, we suggest LDA as a means of deriving efficient features, which can be classified by any,
possibly nonlinear, classifier.

If LDA is such awell known and well-behaved method why is it not in wider use in the document
analysis community? LDA is, of course, only applicable when labeled training data exists, and this
representsonly apart of possible document analysistasks. Unsupervised methods, such as clustering
are thus excluded. However, nothing prevents applying LDA after clustering to find features that
best separate the clusters, then repeating the clustering using new features, and iterating this a few
times.

One high barrier in applying LDA directly to document-term data of tens of thousandsdimensionsis
the following. Unlike the document-term matrix, the criterion matrix T in LDA is no longer sparse.
Thus efficient methods for inversion, SVD, or eigenanalysis of sparse matrices cannot be used *.

Luckily, a simple remedy exists. Random projections have been shown to be very useful in various
dimension reduction tasks where the source data has had extremely high dimensionality [3, 25, 6].
Random projectionstend to Gaussianize the data, since each resulting component isasum of alarge
number of original componentswith random weights. In thisrespect, data after arandom projection
conforms well to the assumptions behind LDA. A straightforward method is thus to generate a
random matrix with, say, normally distributed entries, to transform the origina dimension down by
an order of magnitude, thereafter followed by a normal LDA transformation with one more (or two)
order(s) of magnitude further dimension reduction.

Another option is to perform a conventional L SI-based dimension reduction by an order of magni-
tude starting from the original document-term matrix. Since thisis a sparse matrix, it is afeasible
task. This can again be followed by LDA.

7 Document classification experiments

Experiments were performed using the Reuters-21578 database?. We used the "ModLewis’ split
of the database into training and testing parts. Since the aim is classification, in which each doc-
ument has an exclusive category, we discarded documents with no label or with multiple labels.
Furthermore, those rare classes were discarded that did not occur at least once in both training and
testing set. The resulting training set has 6535 documents, and the test set 2570 documents with 52
document classes.

For example, if the number of terms D = 20.000, T requires memory of 3.2GB. Since inversion of a
matrix requires computation O(D?), only the inversion of S,, would take approximately 12 hours of CPU time
on a 750MHz machine (on which the inversion of a 1000x1000 matrix takes 5.6 seconds).

2http://www.research.att.com/ lewis/reuters21578.html



Granted, from the information retrieval standpoint thisis an artificial task, which makes it difficult
to compare our results to those of others. However, this facilitated a straightforward application
of statistical pattern classification tools to the task. Possible improvementsin class discrimination
within this classification task are very likely to carry over to aretrieval task.

The term dictionary was constructed by discarding stop words, too frequent words, too infrequent
words, and words shorter than three letters. Porter stemmer was used. This resulted in a term
dictionary of 5718 terms. Normalized term histograms of this dimension were thus produced from
the corpus.

As the classifier, we used a Support Vector Machine implementation called SVMTorch?, which is
well suited for large scale and/or sparse problems|[5]. In al experiments we used a Gaussian kernel

(width = 10), and C' = 100 as the trade-off between training error and margin. A binary classifier

was trained for each of the 52 classes by using each class at a time as positive examples with the
rest of the data as negative examples. The output of an SVM is positive when it decides that an
unknown test vector belongsto the class it was trained for. Since there may be several simultaneous
such claims, and since the setting is exclusive classification, a simple maximum selector is applied
to the SVMs to make the final decision for an exclusive class. The LSl analysis was done using
SVDPAKC/las2* [1].

Results are depicted in a single chart in Fig. 1. The horizontal axis denotes the dimension of
the document representation. Instead of precision/recall we are reporting just a single number, the
error rate, which is common in pattern recognition literature. This is defined as the number of
misclassified documents divided by the total number of documents. This would trandate to one
minus micro-averaged recall in the information retrieval terms. Calculating corresponding precision
requires computation of the full confusion matrices, which the used SVM package does not directly
do. The error rate is represented by the vertical axis of the chart. Naturally, the classifier is trained
using only the training set, and the error rate is evaluated using only the testing set.

The single blue diamond represents the error rate using the original 5718-dimensional normalized
term histograms as the document representation (11.2%). Results on features generated using com-
pletely random transform matrices to various output dimensions are plotted as black triangles. Each
point is an average of results from five random trials. Variance is high (not plotted) at low dimen-
sions depending whether and how pertinent information happened to be included in the features.
Results with LSl are plotted as magenta squares ranging from an order of magnitude dimension re-
duction (513) down to one. LS| with dimension 513 is very close to the original error rate (11.4%),
but deteriorates approximately logarithmically: halving the dimension increases the error rate by
4-5 percentage points, which resembles the behavior of arandom projection [3], and showsthat LSI
does not really provide good features for discrimination.

In contrast, LDA exhibits much lower error rates (yellow triangles). The starting point of LDA
was the 513-dimensional representation produced by LSI, which was transformed down to 1-64
dimensions. It is remarkable that a document representation of only twelve features achieves an
error rate as low as 8.9%. The optimal dimension appearsto be somewhat higher. With dimension
64 we achieved an error rate of 7.8%. LDA computed from a 513-dimensional random projection
behaved very similarly (black crosses). These figures are again averages of five random trials. LSI
appearsto be able to provide somewhat more pertinent information to the 513-dimensional datafor
classification purposes, than a mere random transformation matrix, which LDA takes advantage of .

A transform to a lower dimension can only retain or reduce information of the original data. If an
SVM was completely immune to irrelevant information, the error rate should only increase as the
dimension is reduced. As lower error rates were achieved, this is not obviously the case. Further-
more, this difference should be much more pronounced when classifiers, such as neural networks or
decision trees are used that are more susceptible to overfitting than SVMs.

3hitp://www.idiap.ch/learning/SVM Torch.html
“http://www.netlib.org/svdpack/
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Figure 1. Classification error rates on Reuters-21578 test data using LDA, L SI, and random projec-
tions.

Figure 2 depicts an example projection of the training data onto a discriminative subspace of dimen-
sion two (which resulted in an error rate of 34.9%). Figure also lists al the categories present in this
experiment. We can see that the two largest categories, “acq”’ and “earn” are not really well sepa-
rated, although both have quite compact clusters. In this projection, the class distributions appear
to be Gaussian-like, with unequal covariances, though. Thus there might be hope that projections
based on HDA, or joint maximum mutual information [28], might provide even better results.

8 Discussion

Computational Complexity. With an SVM, the classification process consists of evaluating the
kernel between an unknown vector and all the support vectors. When a kernel that makes use of
an inner product is used, the bulk of computations consists of evaluating the inner products. The
document-term data is sparse by nature, and since support vectors are actual samples of the data,
the inner products are between two sparse vectors. In the Reuters-21578 experimentsin this paper
the dimension of the sparse vectors is 5718, but on the average, each vector has only 36 non-zero
components. The inner product between two such vectors requires on the average 72 indexing
operations of which some may lead to actual multiply-accumulate operations. We count this as 72
operations/vector. Direct application of the SVM to the document-term data and to the 52 binary
classification problems produced 10496 support vectors atogether in the 52 classifiers. Roughly,
the total number of operations in classifying one unknown vector is thus 10496 x 72 = 755712
operations.

Assuming an LDA transform to dimension 12, the transform matrix size is 12 x 5718. Computing
the transform consists of evaluating the 12 inner products between the sparse input vector and each
row of the dense transform matrix. This takes on the average 36 indexing operations and as many
multiply/accumulates. We count this as 72 operations/vector, too, which resultsin only 12 x 72 =
864 operations. This amount is independent of whether LSI or a random projection is applied prior
to LDA, because the final transform matrix is a product of the two matrices, and it is computed
beforehand. Assuming the same number of support vectors, we have now 10496 x 12 = 125952
operations. Thus even with an efficient sparse implementation of the SVM, using LDA features cuts
the computation down to one fifth of the original. Comparing to the direct application of an SVM



to the data, the breakeven point appears to be at the LDA transform dimension of about twice the
average number of nonzero entries in the origina document vectors. The exact point depends, of
course, on the implementation. For example, inner products with LDA vectors, as they are dense,
can be made using the vector instructions of the processor.

A Gaussian kernel is somewhat less favorable to the direct sparse implementation, as computing the
difference between two sparse vectors effectively doubles the number of nonzero elements in the
result. The norm of the differenceis then computed as an inner product with itself. This doubling of
the size does not happen with dense and low-dimensional LDA vectors.

Computation in SVM training appears to retain the same proportions as the testing phase. Comput-
ing the LSl and LDA are extra, but the L SI takes only afew minutes for the Reuters collection, and
the LDA no more than 30 seconds (on a 750 MHz Pentium 111), and these only need to be computed
once. Of course, the training data needs to be transformed, but thisis again an insignificant amount
of computation and it only needs to be done once.

Application toretrieval tasks. Thebiggest difference between aclassification and aretrieval task is
the use of multiplelabels per documentin retrieval. There are two possible waysto incorporatethem
into the LDA. Thefirst is what has been done in this paper: Assume that the documents possessing
multiple labels do not carry information about class separation and ignore them in the computation
of the LDA basis vectors.

The second optionis to account for multiply labeled documents multiple times, once for each label,
wighted by the reciprocal of the number of labels. For example, when computing the class meansand
covariance matrices, adocument carrying three labels is added to the mean vectors of all those three
classes, but by a weight of one third each. This may have an effect of smearing class distinctions,
and needs to be experimentally eval uated.

The actual SVM approach is straightforward to modify so that it can make use of training data with
multiple labels. Since a multiclass SVM can consist of a number of binary classifiers where one
classis set against all others, all documents carrying a particular label, independent of whether they
aso have other labels or not, are counted as positive examples of that class, and the rest as negative.
Setting the decision thresholds for desired precision/recall is then another matter that may require a
validation data set.

Interpretation of the LDA basis vectors. It would be interesting to study to what original terms
these discriminating features correspond. However, these 12 basis vectors are dense and have both
positive and negative entries, which makes the interpretation hard. Now, as the transform, we can
have any 12 vectorsthat span the same subspace as the original basis vectors. It is possibleto find a
rotation of this 12-dimensional subspace such that the basis vectors become positiveand sparse. This
has been suggested by Kaban and Girolami as ameansto make LS| more amenableto interpretation
[17]. They propose projection pursuit with a skewness projection index. Same method can now be
applied after LDA if interpretability by the original termsis desired.

Other work on feature selection and feature transforms. Comparing this work to others on
both feature selection and feature transforms using the same database, Joachims reports SVM ex-
periments with 86.4% precision using 9962 features [16]. Yang and Pedersen report an average
precision of about 90% with 2000 selected features on a same task [30]. They used a k-NN classi-
fier, but kept multiply labeled documentsin thetrain and test sets. A few papers report classification
error rate (or accuracy which is one minus error rate) on Reuters. Han et a report a classification
accuracy of 90% also by using 2000 selected features, and aweighted k-NN approach [13]. Karypis
et a describe a method that determines the columns of the projection matrix as the differences of
the means between clusters or classes in the data[18]. Thisis asimilar but slightly more heuristic
criterion than using only the between-class covariance matrix in LDA and paying no attention to
class compactness. This criterion has been used earlier in data visualization [8]. Their results are
82-85% classification accuracy on small subsets of Reuters using 50 transformed features.



9 Conclusion

This paper shows how Linear Discriminant Analysis can be used to reduce drastically the dimen-
sion of document representation in classification tasks without sacrificing the accuracy. In fact, the
classification error rate decreased from 11.2% to 8.9% when reducing the original 5718 dimensional
document representation into mere 12 features.

Although these results can not be directly compared to previous work on the same database due
to different methods of selecting the train/test data and different scoring methods, the trend is vis-
ible: Previous work shows that a high accuracy is possible with a large subset of features. This
work points out that a high accuracy in document classification is possible with a small number
of discriminative features. This offers some computational advantages even with Support Vector
Machines that take advantage of the sparse nature of the data.
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Figure 2: LDA projection of the Reuters-21578 training set onto a two-dimensional discriminative
subspace.



