Alison Cawsey

Department of Computing and Electrical Engineering
Heriot-Watt University

Edinburgh EH14 4AS, UK

Rule-Based Systems

Instead of representing knowledge in a relatively datila, static way (as a bunch of things that are tru&);
based system represent knowledge in terms of a burrdfesfthat tell you what you should do or what you could
conclude in different situations. A rule-based systensists of a bunch of IF-THENIles, a bunch ofacts, and
someinterpreter controlling the application of the rules, given thegac

There are two broad kinds of rule systéanward chaining systems, andackward chaining systems. In a forward
chaining system you start with the initial facts, &edp using the rules to draw new conclusions (or takeicer
actions) given those facts. In a backward chaining sygtenstart with some hypothesis (or goal) you are gryin
prove, and keep looking for rules that would allow youdwatude that hypothesis, perhaps setting new subgoals to
prove as you go. Forward chaining systems are pringatig-driven, while backward chaining systems are goal-
driven. We'll look at both, and when each might be useful.

[Note: | previously used the term production system fier te rule-based systems, and some books will use this
term. However, it is a non-intuitive term so I'll &Vdt.]

Forward Chaining Systems

In a forward chaining system the facts in the systanwepresented inv@orking memory which is continually
updated. Rules in the system represent possible aatidalset when specified conditions hold on items in the
working memory - they are sometimes called conditiotien rules. The conditions are usugiiterns that must
match items in the working memory, while the actions usuialiolve adding or deleting items from the working
memory.
The interpreter controls the application of the ruipgen the working memory, thus controlling the syste
activity. It is based on a cycle of activity sometirkeswn as aecognise-act cycle. The system first checks to find
all the rules whose conditions hold, given the curséate of working memory. It then selects one and peddim
actions in the action part of the rule. (The selectiba rule to fire is based on fixed strategies, knoswosaflict
resolution strategies.) The actions will result in a new workimgmory, and the cycle begins again. This cycle will
be repeated until either no rules fire, or some spdojfaal state is satisfied.
Rule-based systems vary greatly in their details anthgyso the following examples are only illustrative.
First we'll look at a very simple set of rules:
1. IF (lecturing X)
AND (marking-practicals X)
THEN ADD (overworked X)
2. IF (month february)
THEN ADD (lecturing alison)
3. IF (month february)
THEN ADD (marking-practicals alison)
4. |IF (overworked X)
OR (slept-badly X)
THEN ADD (bad-mood X)
5. IF (bad-mood X)
THEN DELETE (happy X)
6. IF (lecturing X)
THEN DELETE (researching X)
Here we use capital letters to indicate variablestheraepresentations variables may be indicatedfereint
ways, such as by a ? or a” (e.g., ?person, ~person).
Let us assume that initially we have a working memori #it following elements:

(month february)
(happy alison)
(researching alison)

Our system will first go through all the rules checking Wwhdaes apply given the current working memory. Rules 2
and 3 both apply, so the system has to choose betwemn tising its conflict resolution strategies. Let ustbay
rule 2 is chosen. S¢J ect uri ng al i son) is added to the working memory, which is now:

(lecturing alison)
(month february)
(happy alison)
(researching alison)

Now the cycle begins again. This time rule 3 and rulevé ltfzeir preconditions satisfied. Lets say rule 3 @seh
and fires, sq mar ki ng- practi cal s al i son) is added to the working memory. On the third cycle rule 1
fires, so, with X bound to alisofipver wor ked al i son) is added to working memory which is now:

(overworked alison)
(marking-practicals alison)
(lecturing alison)

(month february)

(happy alison)
(researching alison)

Now rules 4 and 6 can apply. Suppose rule 4 fires(&iadl- nood al i son) is added to the working memory.
And in the next cycle rule 5 is chosen and fires, Whlappy al i son) removed from the working memory.
Finally, rule 6 will fire, and r esear chi ng al i son) will be removed from working memory, to leave:

(bad-mood alison)
(overworked alison)
(marking-practicals alison)
(lecturing alison)

(month february)

(This example is not meant to a reflect my attitudedturing')

The order that rules fire may be crucial, especiallynutudes may result in items being deleted from working
memory. (Systems which allow items to be deleted aosvk asnonmonotonic). Anyway, suppose we have the
following further rule in the rule set:

7

IF (happy X)
THEN (gives-high-marks X)

If this rule fires BEFORE (happy alison) is removed freorking memory then the system will conclude that I'll
give high marks. However, if rule 5 fires first theneridl will no longer apply. Of course, if we fire rulerfdahen
later remove its preconditions, then it would be niiées iconclusions could then be automatically removethfr
working memory. Special systems caltegth maintenance sysems have been developed to allow this.

A number of conflict resolution strategies are typicalbgd to decide which rule to fire. These include:

» Don't fire a rule twice on the same data. (We don'ttwu@keep on addingl ect uri ng al i son) to
working memory).

» Fire rules on more recent working memory elementsrbeaftaler ones. This allows the system to follow
through a single chain of reasoning, rather than keeping orindraew conclusions from old data.

» Fire rules with more specific preconditions before amiéls more general preconditions. This allows us to
deal with non-standard cases. If, for example, we have “IF (bird X) THEN ADD (flies X)" and
another rule “IF (bird X) AND (penguin X) THEN ADDwans X)" and a penguin called tweety, then we
would fire the second rule first and start to drawobasions from the fact that tweety swims.

These strategies may help in getting reasonable behdneaua forward chaining system, but the most important
thing is how we write the rules. They should be calgfidnstructed, with the preconditions specifying asipetg
as possible when different rules should fire. Othexwis will have little idea or control of what will happen
Sometimes special working memory elements are usedgadebntrol the behaviour of the system. For example,
we might decide that there are certain basic stage®oéssing in doing some task, and certain rules shouycbenl
fired at a given stage - we could have a special workinganeatemen{ st age 1) and add st age 1) to the
preconditions of all the relevant rules, removingwloeking memory element when that stage was complete.

2

Backward Chaining Systems

[Rich &Knight, 6.3]
So far we have looked at how rule-based systems carebbléadraw new conclusions from existing data, adding
these conclusions to a working memory. This appraaahost useful when you know all the initial facts, but'do
have much idea what the conclusion might be.
If you DO know what the conclusion might be, or have sepecific hypothesis to test, forward chaining system
may be inefficient. You COULD keep on forward chaininglurd more rules apply or you have added your
hypothesis to the working memory. But in the processsifstem is likely to do alot of irrelevant work, adding
uninteresting conclusions to working memory. For exangulppose we are interested in whether Alison is in a bad
mood. We could repeatedly fire rules, updating the workiegiory, checking each time whetl{drad- nood
al i son) is in the new working memory. But maybe we had a whateh of rules for drawing conclusions about
what happens when I'm lecturing, or what happens in Febrwegyeally don't care about this, so would rather only
have to draw the conclusions that are relevant to thle goa
This can be done Wyackward chaining from the goal state (or on some hypothesised stdtevhare interested in).
This is essentially what Prolog does, so it should bky familiar to you by now. Given a goal state to &yd prove
(e.g.,(bad-mood alison)) the system will first check to see if the goal rhatcthe initial facts given. If it does, then
that goal succeeds. If it doesn't the system will laokidiles whose conclusions (previously referred taciiens)
match the goal. One such rule will be chosen, and themsysill then try to prove any facts in the precoiotis of
the rule using the same procedure, setting these agoswto prove. Note that a backward chaining system does
NOT need to update a working memory. Instead it needs totkaek of what goals it needs to prove to prove its
main hypothesis.
In principle we can use the same set of rules for fasthard and backward chaining. However, in practice wg ma
choose to write the rules slightly differently if weeayoing to be using them for backward chaining. In backward
chaining we are concerned with matching the conclusianrofe against some goal that we are trying to prdoe.
the 'then' part of the rule is usually not expresseth aston to take (e.g., add/delete), but as a state wiiliche
true if the premises are true.
So, suppose we have the following rules:
7. IF (lecturing X)
AND (marking-practicals X)
THEN (overworked X)
8. IF (month february)
THEN (lecturing alison)
9. IF (month february)
THEN (marking-practicals alison)
10. IF (overworked X)
THEN (bad-mood X)
11. IF (slept-badly X)
THEN (bad-mood X)
12. IF (month february)
THEN (weather cold)
13. IF (year 1993)
THEN (economy bad)
and initial facts:

(month february)
(year 1993)

and we're trying to prove:

(bad-mood alison)

First we check whether the goal state is in the irftietis. As it isn't there, we try matching it agaiiest
conclusions of the rules. It matches rules 4 and Susetssume that rule 4 is chosen first - it will trptove
(overwor ked al i son). Rule 1 can be used, and the system will try to p(dvect uri ng al i son) and
(marki ng practical s alison). Trying to prove the first goal, it will match rulea®d try to prove
(mont h february). Thisisin the set of initial facts. We still hawepgrove(mar ki ng- practi cal s

al i son) . Rule 3 can be used, and we have proved the origina{ aal- rood al i son).

3

One way of implementing this basic mechanism is to wack of goals still to satisfy. You should repeatedly pop
a goal of the stack, and try and prove it. If itéhia set of initial facts then its proved. If it ntaés a rule which has a
set of preconditions then the goals in the preconditrerpushed onto the stack. Of course, this doesnistethat

to do when there are several rules which may be usedve prgoal. If we were using Prolog to implement this
kind of algorithm we might rely on itsacktracking mechanism - it'll try one rule, and if that results itufa it will

go back and try the other. However, if we use a progragtaimguage without a built isearch procedure we need

to decide explicitly what to do. One good approach is taosgenda, where each item on the agenda represents
one alternative path in the search for a solution. Ve should try “expanding' each item on the agenda,
systematically trying all possibilities until it findssolution (or fails to). The particular method usedsecting

items off the agenda determines the search strategythér words, determines how you decide on which optmns t
try, in what order, when solving your problem. We'll gmititis in much more detail in the section on search.

Forwar ds vs Backwar ds Reasoning

Whether you use forward or backwards reasoning to spvetdem depends on the properties of your rule set and
initial facts. Sometimes, if you have some particglzal (to test some hypothesis), then backward chainithge

much more efficient, as you avoid drawing conclusions firoetevant facts. However, sometimes backward
chaining can be very wasteful - there may be many dessdys of trying to prove something, and you may have to
try almost all of them before you find one that worksrward chaining may be better if you have lots wfgh you
want to prove (or if you just want to find out in genewllat new facts are true); when you have a small gattiaf
facts; and when there tend to be lots of different rat@ish allow you to draw the same conclusion. Backward
chaining may be better if you are trying to proverglsi fact, given a large set of initial facts, and whiéngu

used forward chaining, lots of rules would be eligiblérein any cycle.

