Instant messaging program
Problem description

In the age of general internetization of society, the programs for instant messaging (IM) between Internet users have become a de-facto standard in quick communication. IM programs are a subset of chat programs for which the communication is being performed through client programs. A central server delivers the addresses of other users to the client program and therefore it serves as a locator for registered users. Here, the message transfer can be performed between two users or between multiple users (multicasting). Examples of IM program include Windows Live Messenger, Skype, ICQ, AIM, Facebook chat, etc. 

The aim of this project is to design and implement a simple IM program that will allow sending textual messages between two users.
Functional requirements
In the system, there are multiple program users and a single administrator. The users should be able to start the program on the client side. During start-up, the program has to ask the user for a user name and password. It is assumed that the user already has them. The program then has to allow the users the following features: adding a new user – friend, in a way that they only need to input the data about his e-mail or first and last name; deleting a friend from the list; quick search of the existing users by their names; sending a message to a user, accepting incoming message from other user; changing program parameters, and logging out of the program.
The program parameters on the client side that the user can change are the following: IP address and port on which the central server listens, saving the content of each communication session to a file on the user's hard drive (yes/no), and folder path in which the files with communication sessions are saved. Personal data about the users include: first and last name, present status, e-mail address, user name and password, and a list of blocked users. A user cannot recieve a message from a user on his list of blocked users. In the main window, the name of the user, present status and the list of all connected and disconnected users have to be displayed (their names and e-mail).

Sending and recieving messages is done in a separate window each time when a user is selected or a message from other user arrives. The content of communication is saved regularly after the first message has been sent by writing them into a separate file on the hard drive (if allowed by the program settings). For each message, exact time (down to the level of seconds) is written in the interface. It is assumed that communication can be done only between presently connected users. After disconnection of a user, the communication is terminated. A user is considered disconnected from the server if he chooses to log out from the client program or if he closes down the client program. 

Central server has to have a program that will track the list of existing users and track the list of connected users. The list of friends of a particular client has to be delivered refreshed to the user every few seconds. The server has a unique IP address and port on which a single thread listens to users' connection and a separate thread for each connected user. 

System administrator has a separate small program in which he can add a new user by entering his user name, password, and e-mail, or he can delete a user from the users' database. After closing the program on the server side, all communication is discontinued and all the connected clients receive a message about central server shut down.
Other requirements

It is recommended that this system is to be implemented in one of object-oriented languages that support network protocols as well as multithreading (Java, C#, Python...).
General instructions:

The project goal is to practically apply the principles of software design for solving specific problems. The program will be tested by querying each part of functionality. 
The project assignment can be discussed in more detail by contacting assistant Alan Jović using the following e-mail address: alan.jovic@fer.hr
