
SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 1372

Modeling and simulation of a 3D
musical instrument

Modeliranje i simulacija 3D
glazbenog instrumenta

Luka Kunić

Zagreb, lipanj 2017.

iii

CONTENTS

1. Introduction 1

2. Modeling the 3D bass guitar 3
2.1. Self-play mechanisms . 4

2.1.1. Left-hand fretting mechanism 4

2.1.2. Right-hand picks . 6

2.2. Strings . 8

2.3. Fretboard . 9

2.4. Exporting the model . 10

3. Parsing MIDI files 11
3.1. MIDI file structure . 11

3.2. Creating the MIDI files . 12

3.3. Extracting note data . 13

4. Mapping the notes to fretboard positions 15
4.1. Graph traversal algorithm . 16

4.1.1. Scoring . 17

4.1.2. Building the graph . 18

4.1.3. The algorithm . 18

4.1.4. Cleaning up the calculated sequence 20

5. Action timeline 21
5.1. Actions for a bass guitar . 21

5.1.1. Pick actions . 22

5.1.2. Fretting finger actions . 24

5.1.3. String actions . 25

5.1.4. Audio actions . 26

5.2. Executing the actions . 27

iv

6. Results 28

7. Conclusion 31

Bibliography 32

v

1. Introduction

Music has always been a major source of entertainment in our society. Throughout

history, live concerts were used by musicians to display their skill to an audience.

In the recent years, with the introduction of on-line media sharing services such as

YouTube, music videos have become the go-to platform for promotion of new talent.

This does not only apply to professional artists, but to amateur musicians as well.

The biggest challenge for aspiring musicians is learning the art of playing an instru-

ment. This is a long and difficult process that can require years of hard work and dedi-

cation, which is why skilled musicians have always been highly valued members of the

society. Another challenge is related to the acquisition of instruments, especially the

more uncommon ones. Most instruments require complex designs and precise crafting

in order to produce the correct notes and pleasant tones, which can make the crafting

process quite expensive and time consuming. This thesis aims to tackle these two chal-

lenges, although not by inventing new ways of crafting and playing instruments in the

physical world, but by moving the instruments into the virtual world.

A virtual environment provides two main benefits: programmability and design

freedom. The programmability aspect allows the instrument to be interactive and self-

playing, meaning that the animations and sounds are triggered automatically based

on given input data. Design freedom comes from the fact that the instruments and

all accompanying mechanisms will not need to actually work in the physical world.

The main purpose would be visualization, so the design can instead be approached

from a purely visual perspective, with focus on animations that can even be slightly

overexaggerated to increase the interest.

The goal of this thesis is to develop an extensible framework for visualizing self-

playing musical instruments. This task involves (1) designing an efficient process for

modeling and animating the instruments, (2) creating a prototype model of an instru-

ment that will be used for development and testing the framework, (3) importing the

model into a suitable 3D environment that allows programming the required behavior,

(4) finding a suitable data source which will provide input for the visualization, and

1

(5) developing a system that will guide the animations and sounds based on the given

input data.

A bass guitar was chosen to be the instrument used in development. Firstly, the bass

guitar is a string instrument so it shares similarities with many musical instruments of

the same family, which means that the implementation can easily be adapted to other

similar instruments. Another important consideration is the playstyle, which for the

bass guitar is mostly based on playing single notes and arpeggios1, unlike the regu-

lar six-string guitar which is most often played by strumming chords. This simplifies

the development of certain mechanisms involved in playing the instrument. Chapter 2

contains the description of how the bass and the accompanying mechanisms were mod-

elled using Blender and then imported into Unreal Engine for further development.

MIDI files are used as input data for the system. Chapter 3 describes the process of

parsing the MIDI data to extract the notes that will be played by the virtual instrument.

Because of the way notes are distributed on the neck of a bass guitar, the given MIDI

notes need to be mapped to the fretboard positions so that the fretting sequence is

efficient and visually pleasing. This process is described in Chapter 4. Chapter 5

explains the timeline mechanism responsible for guiding the animations and sounds

for the visualization. The final results of this work are presented in Chapter 6.

1Arpeggio is a form of a chord which is played as single notes in an ascending or descending order.

2

2. Modeling the 3D bass guitar

To create a self-playing virtual instrument, the 3D model of the instrument must first

be created and animated. In the case of a bass guitar, this includes modeling the body

of the instrument, creating and animating the strings, and adding fretting and picking

mechanisms which will be used to press the strings onto the fretboard and pluck the

strings as notes are played.

The body of the bass guitar, along with all the static accessories such as pickups,

tuning heads and volume knobs, are all created manually and do not require a detailed

description of the modeling process. The more interesting elements of the model are

described in the following sections.

Figure 2.1: The bass guitar model with the picking and fretting mechanisms imported into

Unreal Engine.

3

2.1. Self-play mechanisms

Although a musical instrument would generally be played by a musician, many me-

chanical engineers throughout history have attempted to build real robotic self-playing

pianos, guitars, and other types of instruments [4, 9, 10]. These devices use complex

mechanisms to produce sound, and designing such mechanisms poses a significant

challenge when building robotic instruments. However, putting the instrument into a

virtual environment allows a much easier implementation of such mechanisms, since

there are no physical constraints limiting the design.

A self-playing bass guitar requires two such mechanisms. One mimics the left hand

of a guitarist and is used to press strings onto the fretboard, while the other is used to

pluck the strings, simulating movements of the right hand.

2.1.1. Left-hand fretting mechanism

To play notes on a guitar, the strings need to be pressed down onto corresponding frets.

A mechanism for pressing strings must be robust enough to allow playing various

note configurations efficiently, while maintaining simplicity and remaining visually

interesting.

When designing such a mechanism, one can look at how real guitarists use their

left-hand fingertips to press strings down on frets. The obvious idea would be to recre-

ate a human hand and animate real finger behavior, which would give a realistic inter-

pretation of the fretting hand. However, in order to properly simulate finger movement,

this animation system would have to be very complex, yet at the same time highly con-

strained because of the physical limits of a human hand. The problem becomes appar-

ent when looking at chords. The same chord can be part of multiple note sequences,

and each sequence may require the chord to be played using slightly different finger

positions, depending on the surrounding notes in the sequence. One must also consider

the physical constraints of the fingers, such as the maximum fret span between the first

and last finger, and the undesirable overlapping of fingers. Another problem rises from

the fact that string spacing decreases from the body towards the head of the guitar,

while the fret spacing grows larger towards the lower frets. This means that playing

the same chord shape on various positions along the fretboard results in different finger

spacing or positioning. While it may be plausible to develop a sufficiently robust and

flexible system for a realistic fretting hand, this thesis does not further explore such an

approach, and instead investigates a simpler alternative.

4

Figure 2.2: One fretting finger. The bottom of the finger attaches to the guide rail, allowing it

to slide along the length of the neck. The pins can be spaced vertically or pressed down using

the corresponding shape keys.

The designed fretting mechanism consists of several mechanical fretting fingers

that slide along the neck of the guitar using a guide rail. The rail is positioned below

the neck, with attach points on the back side of the neck. Each finger consists of a frame

and a set of five pins, one pin per string. Each pin is used to press its corresponding

string down onto the fretboard. The frame holds the pins and enables them to slide

vertically, so that they can always stay aligned with the strings as the finger moves

along the neck.

Shape keys are used to control pin movement in order to avoid creating an armature

for each finger. Shape keys are animation mechanisms that are used to deform the

mesh without the use of an armature. They store displacement information for the

vertices of the string mesh, allowing interpolation between the initial vertex positions

and the deformation. As shown by Figure 2.2, one shape key controls the spacing

between pins, while the remaining shape keys are used for pressing each pin down

towards the fretboard. These shape keys can be blended, which allows multiple pins

to be pressed down at the same time. Since the vertex positions can be interpolated

5

between the initial position and the fully displaced position stored in the shape key,

the interpolation value can be gradually increased or decreased, resulting in a smooth

transition over time without the need for a baked animation.

This implementation offers several benefits over a realistic human hand model.

The constraints for this system are much more relaxed because the fingers can move

independently. This is especially true for the finger span constraint, as this system

even allows two fingers to simultaneously press strings on the opposite sides of the

fretboard. Also, one finger can easily press multiple strings on the same fret at the

same time, which is not always a simple task for a real human hand. Furthermore, the

animation system is very robust and flexible because there are no baked animations

involved. All animations are created at runtime using shape keys, which results in a

lot of freedom when determining the animation speed and blending the pin movements

into a single flowing transition.

2.1.2. Right-hand picks

To pluck guitar strings, a musician would generally use a plastic plectrum or their fin-

gers. A plectrum would usually produce a brighter sound compared to fingers, so the

usage depends on the genre of music being played. Different fingerstyle techniques

could also be considered, as classical finger picking will produce a significantly dif-

ferent sound to slapping or tapping the strings. The tone of the notes also depends on

Figure 2.3: The five pick fingers used for plucking the strings. Each finger moves indepen-

dently and can reach all five strings.

6

the location where the string is being plucked, because plucking a string in the middle

would produce different amplitudes of certain harmonics than plucking the same string

right next to the bridge. These considerations would be crucial when designing a phys-

ical picking mechanism, but are not as important in a virtual environment. The project

described in this thesis does not aim to create a realistic simulation of a guitar, but to

provide a visualization framework for musical instruments which only look realistic.

The picks will not actually trigger string vibration, so they can be designed purely for

the purpose of visual appeal.

Inspiration for the design was the way actual fingers move when plucking the

strings using a classic two-finger technique. The mechanism consists of individual

fingers attached to the guitar body just above the strings. Just like fingers on a human

hand, each finger of the mechanism is built out of three joints that allow the finger to

easily reach all five strings. To keep the animations reasonably paced, the finger count

is expanded from two to five so that each finger may be used less frequently.

The animation system for a finger relies on a state machine with six states. The

initial state corresponds to the idle pose of the finger, and the remaining five states

correspond to the ready poses in front of each of the strings. In the idle pose, the

finger is in a relaxed position above the top string. When a string needs to be plucked,

the finger will transition from its current pose towards the ready pose in front of the

string that needs to be plucked. After the finger is in the ready pose, the plucking

animation for that string can be played. The plucking animation slides the tip of the

finger behind the string, then quickly pulls the finger upwards before returning to the

Figure 2.4: The pick state machine. The states are labeled according to the root notes of the

strings they represent – from top to bottom the root notes are B, E, A, D, and G.

7

ready pose. Since the final frame of the animation is the same as the first frame, the

plucking animation can be seamlessly looped.

The states of the state machine are fully interconnected and every transition be-

tween any two states is created as a separate animation. All animations have been

created manually. Since the animations are purely visualizations and the finger mesh

does not actually interact with the string, the animations can contain slightly overex-

aggerated motions, which helps keep them visually interesting.

2.2. Strings

The strings of a guitar produce sound by vibrating with a certain frequency. The vi-

bration is triggered by plucking the string using fingers, a plectrum, or in this case

an animated picking mechanism. One way to create a visualization of a vibrating

string would be to simulate the interaction between the pick and the string. This would

make the animation seem more realistic, but simulating this type of behavior at run-

time would be quite computationally demanding. To reduce the runtime complexity,

the animations are precomputed and stored, which allows an animation to be simply

played back as required while mostly preserving the realism of a simulation.

The task of modeling and animating guitar strings can be approached in several

ways. One could attempt to do this manually, but it would require an immense amount

of work to create realistic animations for the strings. Consequently, the only reasonable

alternative would be to automate this process.

A detailed description on the entire string creation and animation process can be

found in [6]. Blender and its powerful Python scripting API [1] are used to develop a

Figure 2.5: Five bass strings were created and animated using the string generator tool.

8

tool that automatically generates models of musical strings. The tool first generates a

string mesh based on the given parameters such as string length, radius, and number

of vertices. Then it creates and animates an armature which controls the vibration of

the string. Finally, it adds shape keys that are used for the string bending. The bend

positions are calcualated using the equation (2.1) described in the next section.

For the bass guitar model, five strings were generated using the developed tool.

The input parameter values for the strings were set to a range between .040 and .130

inches for the diameters, and to 34 inches for the length of the strings. For each of the

generated string meshes, additional geometry was added to both ends of the mesh to

form the static portions of the string which hold it in place – the start of the string at

the saddle, and the ending of the string which wraps around a tuning post.

2.3. Fretboard

Fret positions on a guitar neck are mainly determined by the length of the string. When

pressed down to a fret, the string is effectively shortened, so it produces a higher note

than the root. Since the chromatic scale consists of 12 notes, a string pressed at the

12th fret should produce the note exactly an octave higher than the root, which means

that the string should be shortened to half its original length. Similar logic applies for

determining the positions of the other frets. The exact equation that determines the

position of fret i for a string of length l is

di = l − l

2i/12
(2.1)

where di is the distance from the nut on the neck of the guitar to the fret i. The finished

fretboard model with the generated frets is shown in Figure 2.6.

Figure 2.6: The finished fretboard for the model. A script was used to calculate the fret

positions and to scale the frets to match the width of the neck.

9

A script is used to generate individual frets for the fretboard. The script duplicates

a template model of a fret and translates it to the correct position based on the result of

(2.1) for each fret i. The duplicated fret is then scaled vertically so that it matches the

width of the neck at its position.

2.4. Exporting the model

Models created in Blender can be exported in various formats. One of the most com-

monly used formats for this task is the FBX1 file format. An FBX file stores infor-

mation about the geometry, materials and animations of a 3D model, and is supported

by Unreal Engine which will be used for the implementation. The created model of

the bass guitar is split into separate elements in order to make exporting and managing

animations easier:

– Bass guitar body – Together with the neck and head of the guitar, the body

does not contain any animations. Only contains the mesh data with material

channels.

– Accessories – Pickups, tuners, volume knobs, strap holders.

– Fretboard – Exported as a single file, but each individual fret is a separate

mesh because their positions will be used for guiding the fret fingers along the

neck.

– One fretting finger – Only one finger needs to be exported because it can

be simply duplicated inside Unreal Engine. This avoids the need to import

multiple identical animations and meshes, which would unnecessarily increase

the size of the executable produced by the engine.

– One pick finger – Same logic applies as for the fretting finger.

– Strings – Each string is exported separately because they don’t share mesh

geometry nor animation data.

1FBX (Filmbox) is a digital content sharing file format owned by Autodesk.

10

3. Parsing MIDI files

A form of input is required on order to feed the note data into the visualization. The

input data should be easy to parse, while providing all the required information about

the notes: the pitch, timings and duration. Developing a custom file type to contain the

data would offer some flexibility, as the data could be designed in a way that would

facilitate parsing for this particular use case. However, a custom data type requires a

custom way to create the data, and developing software specifically for this use would

be a daunting task. A better alternative would be to use one of the standard file formats

for storing music note data, such as the MIDI file format.

3.1. MIDI file structure

The MIDI file format (Musical Instrument Digital Interface [11]) is a binary format

used to store MIDI stream data. The data is stored into several data blocks called

chunks. Each chunk consists of a 4-character type descriptor and a 32-bit length value,

followed by the chunk data. The type descriptor is used to differentiate between two

types of chunks: header and track chunks. Each MIDI file contains exactly one header

chunk that can be followed by one or more track chunks.

The header chunk provides metadata for the file. This metadata is used to specify

the format of the file, the track count and the time division. The format determines

how the file is organized – whether it contains a single track, multiple tracks played

Type Length Data

MThd 6 <format> <tracks> <division>

MTrk 32-bit value <delta tick> <event> <delta tick> <event> ...

Table 3.1: The structure of the MIDI chunks. MThd indicates the header chunk, and MTrk is

a track chunk.

11

simultaneously, or multiple independent tracks. The division is specified as the number

of ticks per quarter note. Ticks function as timestamps that can be used to indicate the

start time and duration of track events. Together with the information about the tempo

of a song track, which equals the number of quarter notes per minute, one can easily

determine the exact duration of each tick.

Track chunks contain the actual song data in the form of MIDI events: channel

events, system events, or meta events. Channel events contain information about notes

in the song. System events are used for controlling MIDI devices and modifying device

settings. Meta events contain information about the track such as the tempo, time

signature, and indicators for the start and end of the track. Each event is prefixed by a

timestamp indicating the delta time since the previous event.

Meta event Control code Length Data

sequence no. FF 00 2 numeric index of the track sequence

track name FF 03 var-length string of ascii characters

tempo FF 51 3 microseconds per quarter note

Table 3.2: The meta events useful for this implementation. All meta events start with the

control code FF, followed by a specifier code, a length value, and the event content.

All length specifiers in the file are expressed as variable-length values. To prevent

unnecessary allocation of memory, this system is used to express values up to a 4-byte

integer using at least one, and at most four bytes. The lower 7 bits of each byte are

used to store the value, while the most significant bit indicates whether the value is

continued in the next byte. If the bit is set, the following byte contains the continuation

of the value, and if it is unset, the byte is the last one in the sequence. As an example,

the value 0x817F would be used to store 0xFF, and 0x828000 would result in

0x8000.

3.2. Creating the MIDI files

FL Studio software [2] was used for generating the MIDI files used in this project.

The software provides tools for recording and mixing audio input, as well as a MIDI

sequencer that allows creating music using various sound samples.

An exported MIDI file contains a standard header, followed by an empty track

chunk that only contains information about the tempo of the song. The subsequent

12

track chunks each specify a name that can be used to differentiate between the tracks,

followed by the note data.

3.3. Extracting note data

A custom parser is used to read the note data from the MIDI file. The parser first reads

the header to determine the track count and the number of ticks per quarter note. After

that, each track is parsed and the notes are stored in separate containers.

The first track contains the tempo information. The tempo is stored as a 3-byte

value inside a meta event, and is expressed in microseconds per quarter note. This

value is used to calculate the number of quarter notes per minute and combined with

the value for ticks per quarter note in order to determine the correct tick length.

The subsequent track chunks contain the note data in the form of MIDI events.

Each note is represented by two 4-byte channel events, one for the start and another

for the end of the note. The first byte indicates the number of ticks since the previous

event. This means that the absolute tick value needs to be calculated for each event.

The second byte is the control byte indicating whether the note is starting or ending.

The note start event is indicated by the control code 9x, and the note end event uses

the control code 8x. The x value indicates the MIDI channel used for playing the note.

Octave C C# D D# E F F# G G# A A# B

-1 0 1 2 3 4 5 6 7 8 9 10 11

0 12 13 14 15 16 17 18 19 20 21 22 23

1 24 25 26 27 28 29 30 31 32 33 34 35

2 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59

4 60 61 62 63 64 65 66 67 68 69 70 71

5 72 73 74 75 76 77 78 79 80 81 82 83

6 84 85 86 87 88 89 90 91 92 93 94 95

7 96 97 98 99 100 101 102 103 104 105 106 107

8 108 109 110 111 112 113 114 115 116 117 118 119

7 96 97 98 99 100 101 102 103 104 105 106 107

8 108 109 110 111 112 113 114 115 116 117 118 119

Table 3.3: The table of MIDI note pitch indices by octave.

13

The third and fourth bytes contain values for the pitch and velocity of the note.

Pitch is determined by the values in Table 3.3 which map 8-bit indicators to notes

over eight octaves. The values start from the C0 note at the frequency of 16.35Hz

and end with the B8 at 7902.13Hz. The commonly used reference note A4 with the

frequency of 440Hz is represented by the value 0x69. The note velocity indicates

the audio volume of the note. The value can change between the start and end events,

causing the note to fade in or out over time.

14

4. Mapping the notes to fretboard
positions

One specific property of string instruments is that individual notes can be played at

several points on the neck. For example, the same note can be played on up to five dif-

ferent positions on a five-string bass, as shown in Figure 4.1. This allows the musician

to adjust the positions of their fingers depending on the surrounding notes that need

to be played. Playing notes on different positions also slightly changes the tone of the

notes – higher strings generally produce a brighter sound, while the lower strings are

heavier and give softer tones.

Figure 4.1: The notes on the fretboard of a five-string bass guitar. The highlighed note A4 can

be played once on each string of the bass.

This ambiguity creates a problem when finding the optimal fretboard positions for

playing the notes in a given song. Parsing the MIDI file only gives information about

the pitch of the notes, so the best position on the fretboard needs to be chosen for

each note. The choice will mostly depend on the surrounding notes, with the goal of

minimizing movement of the fretting fingers. Another problem rises from the fact that

there are four fret fingers pressing the strings onto the fretboard. This complicates

the matter even further because the finger indices also need to be considered when

determining the optimal fretting positions.

Finding the fretboard positions for a given set of notes can be approached as an

optimization task. The goal of the optimization process is to produce a sequence of

note positions that will allow the fingers to play the correct notes while abiding to a

15

set of rules and limitations posed by the design of the mechanism. The guitar finger-

ing problem for a human hand has already been investigated in several papers which

consider automatically generating tablatures [12], finding optimal chord sequences [5],

and finding alternative viable fingering sequences for the same set of notes [8]. These

works take various approaches to solving the problem using dynamic programming,

genetic algorithms, and artificial neural networks.

The approach used here is similar to the one described by Radicioni et al. [7].

They use a form of dynamic programming to find the optimal sequence in a layered

graph. The only major difference is the manner of calculating the cost because of

the different fretting mechanisms used – Radicioni was simulating a real human hand,

which has significantly more limitations when compared to the fingering mechanism

implemented here.

4.1. Graph traversal algorithm

The optimal fingering is computed by building a graph of possible finger movements.

Each graph node contains information about the note being played, a chosen fretboard

position for the given note, the index of the finger that was assigned for pressing a

string at that position, and a set of possible finger states. The finger states are based on

the possible paths through the graph that have been taken up to that point. Each finger

state tracks the positions of all fretting fingers and the states of their pins. For each

finger pin, the finger state monitors whether the pin is pressed, and if so, the duration

of the string press action.

Figure 4.2: The layout of the generated graph. The nodes correspond to position-finger com-

binations. The graph is built in layers, one layer per note in the song. The layers of the graph

are fully connected.

16

The graph is built in layers by passing over all notes in the song and generating a

layer of graph nodes for each note. The nodes of subsequent layers are fully connected.

The transitions between them are scored to determine the cost, after which a backwards

pass is performed to reconstruct the optimal fingering sequence.

4.1.1. Scoring

To optimize the fingering and fretting positions, a measure of cost needs to be defined.

The goal of the optimization process is to minimize the total cost of all movements of

the fretting fingers. Sets of heuristics and rules are used to determine the cost value for

a sequence of movements.

The heuristics guide the optimization process by discouraging undesired behavior.

For example, playing empty strings is discouraged because it eliminates the need for

using fretting fingers, making the visualization less active and therefore less appealing.

Another example is determining which area of the fretboard contains most commonly

played notes and favoring the nearby positions by inflicting a cost based on the distance

from that area. The distance between the previous position of each finger and the new

position can also be added to the final cost, as it will prevent fingers from unnecessarily

moving too much. Having a large distance between the first and last finger is also

discouraged to avoid playing all notes on the same string.

Criteria Cost Description

finger index value of the index fingers with lower indices are preferred

fret position 6 · |fi − 6| positions around fret 6 are highly favoured

empty string 400 high cost in attempt to avoid empty strings

travel distance 2 ·
∑5

i=1 di sum of distances traveled by each finger

finger span 2 · |f1 − f5| distance between the first and last finger

Table 4.1: The main criteria for calculating the transition costs. The value fi indicates the fret

where the finger i is positioned.

Apart from those heuristics, a few strict limitations need to be set to avoid impossi-

ble finger movements. One major example are fingers that cross paths. This may never

happen because the visualization would lose its realism. Also, if a finger is already

being used to press a string on a certain fret, that finger cannot be moved until the note

finishes playing because the string needs to remain pressed. This is closely related to

17

the finger crossing restriction because it can lead to a finger being stuck on a fret and

blocking the path of other fingers, making it impossible for any finger to press the next

note.

4.1.2. Building the graph

The graph is built in layers, with each layer corresponding to one note in the given song.

For each given note, a new layer is first added to the graph by calculating the possible

fretboard positions for the note, and then combining each of those positions with each

finger. For N fretboard positions for a note and F available fingers, N · F new graph

nodes would be initially created in each layer. One exception to this rule are graph

nodes that correspond to empty strings being played, as they do not require any fingers

to press down on the strings. The layers are initially fully connected, and the list of

candidate finger states is empty. The correct values are calculated later by determining

the best parent node and disconnecting all impossible connections between subsequent

nodes.

4.1.3. The algorithm

The forward pass is used to calculate the costs of the various paths through the graph.

The algorithm uses a form of dynamic programming to gradually calculate the transi-

tion costs layer by layer.

As mentioned previously, every node has a collection of possible finger states.

Those states are calculated from the finger states of the nodes in the previous layer.

Initially, all fingers are resting at the base of the neck and are not pressing any strings.

That makes every position-finger combination valid for the first note, since all fingers

are available and no position restrictions are violated.

The process is less trivial for the subsequent layers, as some transitions between

nodes may become impossible. The obvious first example can already manifest in the

second layer. If the leftmost finger is already pressing a string on a fret and the next

note needs to be played on a lower fret, no finger can reach that position because of

the finger crossing restriction. The transition between the two nodes with that finger

state is therefore impossible. However, it is worth noting that one parent node can

have multiple finger states, and that some of those states may allow a valid transition,

while the transitions for other states might be impossible. The nodes only become fully

disconnected if no transitions are possible for any of the parent finger states.

18

After the impossible transitions have been eliminated, the remaining ones are scored.

Every node in the parent layer stores a cumulative score for each of the finger states.

The score of each state represents the cost of the optimal path through the graph which

results in that finger state. The cost is calculated for every node in the current layer

by combining the cost of the best finger state in a parent node with the transition cost

between the two nodes. The best finger state is simply the one with the lowest cost, as

long as it allows a transition to the current node. A new finger state is calculated by

altering the best finger state with the position and finger data from the current node.

A reference to the parent finger state is stored to enable reconstructing the path during

the backward pass. The same process is repeated for each of the current nodes and all

their connected parent nodes. As a result, the number of finger states for each of the

current nodes equals the number of connected parent nodes from the previous layer.

Algorithm 1 Forward pass used to calculate the transition costs
1: function CALCULATECOSTS

2: for layer in graph do
3: for node in prevLayer do
4: simulate finger state changes for the current note tick;

5: for node in currentLayer do
6: calculate new transition finger states;

7: filter the impossible finger states;

8: calculate the transition costs for the remaining finger states;

9: if newFingerStates.count is not 0 then
10: add the finger state with the lowest cost to the current node;

11: save the parent node and parent state;

Algorithm 2 Backward pass for reconstructing the optimal path
1: function RECONSTRUCTOPTIMALPATH(node, state)

2: if node is NULL then
3: return;

4: else
5: p← node.parent;

6: s← p.states[state.parentIndex];

7: RECONSTRUCTOPTIMALPATH(p, s);

8: result.add(node);

19

When the costs in the final layer are calculated, a backward pass is performed to

reconstruct the optimal sequence of fretting positions. The nodes in the final layer

contain finger states with the accumulated costs of the best paths through the graph.

The backward pass starts from the node in the last layer that contains the finger state

with the lowest cost. Since the parent state for each node is stored during the forward

pass, the path is easily reconstructed by simply backtracking over the parent references.

4.1.4. Cleaning up the calculated sequence

The calculated fretting sequence may contain redundant finger movements, so those

can be cleaned up to reduce clutter in the animations. The redundant movements are

mostly caused by the rule that encourages fingers to stay together, which causes fin-

gers to unnecessarily move closer to each other under certain conditions. The cleanup

function looks for cases where the same finger plays the same note twice in a row.

The finger should not move in-between playing those two notes unless absolutely nec-

essary. The only situation where the finger might have to move would be if it was

blocking another finger from pressing its assigned note.

The cleanup is performed individually for each finger by recursively going through

all the nodes and keeping track of the positions that the finger is pressing. If the

same position is found twice consecutively, the recursion will pass through the nodes

between the two consecutive finger presses and modify the finger states to make sure

the finger stays at the same fret if possible. If the finger does have to move because it

would block another finger, the finger states are not altered.

The final fretting sequence is then used to generate timeline actions for animating

the strings, as well as the plucking and fretting mechanisms. The timeline is described

in detail in the following chapter.

20

5. Action timeline

The action timeline is a system used for controlling all animations and sounds for the

visualization. The timeline contains a list of actions that need to be executed, and each

action is assigned a start time in ticks. Ticks are time units whose length is determined

by the tempo of the parsed MIDI song.

The timeline is implemented as a list of abstract action objects, with a single func-

tion for getting all actions on a given tick. The timeline actions can perform various

tasks, but they all provide a uniform interface for execution, so the main application

controller can simply fetch all actions for a tick and then execute them all sequentially.

The timeline mechanism is designed to be generic, so the same system can be used

for controlling various types of instruments at the same time. Each instrument has its

own timeline and requires a set of actions to be calculated for a given set of notes.

Furthermore, the system is not only limited to instrument actions, but can also be used

to control any environment changes and camera movement with an additional timeline

and a corresponding set of actions.

5.1. Actions for a bass guitar

Every instrument requires a custom set of actions that are specific to that instrument or

family of instruments. For example, a string instrument requires actions that move fret

and pick fingers, press fretting pins onto strings, bend the strings, play string vibration

animations, play the note sounds, etc. Although string instruments come in various

shapes and sizes, the actions mostly remain the same as long as they are played in

the same manner (i.e. plucking the strings as opposed to using a bow). The specifics

of each string instrument include the string count, fret count, and the tuning which

determines the note positions on the fretboard.

In the following sections, the actions are described in terms of the five-string bass

guitar. The operations initiated by the actions, such as playing the animations or

sounds, are performed by a set of controllers. Each controller performs operations

21

that affect a specific area of the bass model, and the actions are split into categories

based on the controller they use to initiate those operations: pick actions, fretting fin-

ger actions, string actions, and audio actions.

Category Action Description

Pick finger

prepare moves the pick to the target string

play plucks the target string

rest returns the pick to the resting position

Fretting finger

prepare prepares the finger for movement

move moves the finger to the target fret

press presses a pin down onto a string

release releases the pressed pin

rest returns the finger to the resting position

String

press bends the string on the target fret

releaese releases the bent string

play starts the vibration animation

Audio
play plays the sound sample for the given note

stop stops the sound playback

Table 5.1: The timeline actions required for the bass guitar.

5.1.1. Pick actions

Controlling the pick fingers is performed using three actions that trigger different types

of animations. The first action prepares the finger for plucking the string by moving it

from its current position towards the target string, the second action is used for plucking

the target string, and the final action moves the finger from its current position back to

the resting pose.

The actions are generated by simulating the song execution using temporary helper

timelines which keep track of finger positions and availability as they pluck strings.

Every finger has its own timeline, and initially the timelines are empty which indicates

that the fingers are in the resting pose. As each note is processed, the content of the

timelines is used to determine which finger is available for plucking the note.

For a finger to be available, it cannot already be playing a note. If the pick is on

a different string than the one that needs to be plucked, it also needs to have enough

22

Algorithm 3 Generating pick actions
1: function GENERATEPICKACTIONS(note, position)

2: for finger in pickF ingers do
3: lastP layT ick ← finger.getLastPlayTick();

4: if finger.canPlayNote() then
5: if finger.canRestBeforePlaying() then
6: generate rest action;

7: if finger.currentString is not targetString then
8: generate prepare action for the target string;

9: generate the play action;

10: return;

11: // No finger was found, so the animation needs to be scaled

12: finger ← the finger with the oldest lastP layT ick;

13: calculate the required prepare animation scaling;

14: generate prepare action with the scaled animation;

15: generate play action;

time to perform the preparation animation before the string needs to be picked. The

time required is determined by the length of the preparation animation, which depends

on the current and target positions of the finger. Different transitions have different

animation durations, e.g. transitioning to the neighboring string requires a shorter

animation than transitioning from the first string to the last. The animation duration

is given in seconds, so it must be transformed into ticks so that the start tick of the

required preparation animation can be calculated.

In the situation that no pick has a large enough window for the preparation ani-

mation, the pick that was least recently used is chosen. The preparation animation is

then scaled to fit the available window. The animation scaling is not very noticeable in

practice, since those situations occur quite rarely and only in faster songs where notes

are played more frequently.

Once a pick is found that can fit the entire animation, it can be assigned to playing

the note. This is done by scheduling the pick play action that will be executed when

the note is played. The play action starts the plucking animation of the pick finger.

If the finger was not already in the correct position, the additional preparation action

needs to be scheduled. After the actions are generated, the helper timeline for the used

finger is updated to keep track of the current finger state.

23

The third possible action that can be scheduled for the pick fingers is the action that

returns the finger to its resting position. This is performed when the finger is idle for a

long time in-between two consecutive plucking actions. Also, all fingers are returned

to the resting position after they play their last notes in the song.

5.1.2. Fretting finger actions

The fretting fingers are not controlled using animations, but by altering the shape key

values and translating the fingers along the local Y-axis to slide them along the neck.

Five actions are used for finger preparation, finger movement, pressing and releasing

the pins, and returning the finger to the resting position.

The preparation and resting actions are only used to slide the fingers to the fretboard

at the start of the song and return them to rest at the end, so only one of each is added

for every fretting finger. The remaining actions are generated for each note in the song,

based on the optimal fretting sequence calculated earlier.

For each node in the calculated sequence, the fingers need to be moved to their

respective positions specified in the finger state of the node. Since the sequence nodes

each represent a note that is played, the movements need to be performed earlier so

that the fingers are in place when a string needs to be pressed by a pin.

The actions responsible for moving the fingers are first added for every finger.

These actions merely translate the finger along the length of the neck to the position

indicated by the target fret. Because the frets are imported as separate models, the

finger positions in object space are determined by looking up the position of the fret

model with the target index.

Algorithm 4 Generating fretting finger actions
1: function GENERATEFRETTINGFINGERACTIONS(note, position, state)

2: for finger in frettingF ingers do
3: targetFret← state.fingerStates[finger].fret;

4: if finger.isResting() then
5: generate the prepare action;

6: if finger.currentFret is not targetFret then
7: generate move action to the target fret;

8: if targetFret is position.fret then
9: generate press action;

10: generate release action;

24

Next, the pin actions are added for the finger that presses a string. The pin press

and release actions are performed by modifying the shape key values for the affected

pin. As described in section 2.1.1, the shape keys contain information about vertex

displacements which press the pins towards the fretboard. The pin press action inter-

polates the shape key value from 0.0 to 1.0, gradually pressing the target pin towards

the string, and the release action performs the interpolation in the opposite direction.

Since the string needs to be already pressed down before the note is played, the pin

press action is scheduled to start slightly before the note start tick. On the other hand,

the pin release action is scheduled to be executed at the note end tick.

5.1.3. String actions

The strings have animations for vibration and shape keys for bending, which makes

them similar to both fretting fingers and picks. Just like the fretting finger actions,

string actions are based on the calculated fretting sequence. The nodes in the sequence

determine which string will be plucked for each note and to which fret the string needs

to be bent. Three different actions are used for pressing strings, releasing them, and

starting the vibration animation.

The first string action triggers the vibration animation. The animation should be

properly aligned with the plucking animations of the finger picks, so that the string

starts vibrating only after it is plucked. The animation lasts until the note finishes

playing, and if the same string is plucked while it is still vibrating, the animation is

simply restarted.

Pressing a string requires two steps, and each step modifies one shape key. The

first shape key displaces the vertices along the length of the string so that the start of

the vibrating section of the string aligns with the target fret. Then the second shape

key can be used to gradually bend the string towards the fretboard. The two vertex

displacements are blended, which results in the string being bent at the target fret. The

release action does the opposite. The bending shape key value is gradually reduced to

Algorithm 5 Generating string actions
1: function GENERATESTRINGACTIONS(note, position)

2: string ← position.string

3: generate press action;

4: generate play action;

5: generate release action;

25

simulate the fretting pin releasing the string. After the string is straight again, the fret

shape key is deactivated, returning the string vertices back to their original positions.

Since the press and release animations are not instant, it is worth noting that a string

can be pressed again on a different fret before it finishes fully releasing the fret that was

played previously. These situations are expected and all problems are automatically

avoided because of the way shape keys are controlled using floating point values. In

this situation, the new fret shape key would be increasing at the same rate at which the

old fret shape key is decreasing. That would make the string vertices just slide over

from the old fret to the new one. This behavior opens the possibility for the song to

contain sliding notes, which start at one fret and end at another.

5.1.4. Audio actions

The audio actions are responsible for playing the sounds of the notes. Two actions

are required for starting and stopping the audio. Each string has its own audio source,

which allows multiple strings to be played at the same time, forming chords. Only one

note can be played on a single string at any time.

The audio sources use sound samples to produce the notes that are played. Each

string uses a sound sample which corresponds to the note played at the 12th fret of that

string. The remaining notes on each string are produced by modulating the frequency

of the sample. The correct frequency of each note is first calculated in relation to a pre-

determined baseline note. The most commonly used baseline is A4 with the frequency

of 440.0Hz. The frequency for note X is given by

fX = 440.0× 2d/12 (5.1)

where d indicates the note distance between the target note X and the baseline A4. For

example, the note C5 is three half-steps above A4, so d = 3 would give a resulting

frequency of 523.3Hz. Likewise, the lower octave C4 is nine half-steps below A4

which gives d = −9 and the frequency of 261.6Hz as a result.

The calculated value fX is used to modulate the frequency of the sound samples

for the strings. A pitch multiplier value is calculated as the ratio between the target

frequency and the frequency of the sound sample. It is then given to the audio source

while playing the sound sample to increase or decrease its frequency.

Since the sound sample needs to be long enough to play notes with high sustain,

the stop action is required to terminate sound playback when a string is released. The

side effects of manually stopping the playback are crackling noises because the audio

26

signal is abruptly cut. To fix this issue, the volume of the sound is gradually lowered

just before the sound is stopped. That prevents the signal from cutting, removing the

crackling noises.

5.2. Executing the actions

The actions are executed by the main application controller. The controller implements

a timer system which periodically produces tick events. As mentioned previously, the

ticks are time units whose length is determined by the tempo of the MIDI file. Each

tick produces a callback to an event function that executes timeline actions.

Every time the tick function is called, it first polls all available timelines to find

the actions that are scheduled to be executed at the current tick. Since the timeline ac-

tions are sorted, the polling is trivial to perform and executes in constant time because

each timeline remembers the index of its last executed action. The actions are then

sequentially executed, performing their scheduled operations.

27

6. Results

The application was implemented using Unreal Engine 4 [3], a 3D graphics engine

that is primarily designed for game development, but can also be used for developing

various interactive 2D or 3D visualizations.

When the application is started, it first displays a startup menu that provides the

user with a list of songs available for playing, as shown in Figure 6.1. The song list is

generated by detecting MIDI files located in the content folder of the application.

Figure 6.1: The startup menu of the application. Displays a list of songs that can be played.

Once the user selects a song to be played, the MIDI parser loads the selected file

and extracts the song track data. A sample of the console output while parsing the

song is displayed in Figure 6.2. The notes for every track are forwarded to the corre-

sponding systems for generating timeline actions based on the instrument information

given by the MIDI track. The only supported instrument in the current implementation

is the bass guitar, so tracks for all other instruments are ignored in this step. The bass

guitar model is placed into the environment scene of a small concert hall where the

visualization takes place. The environment is shown in Figure 6.3.

28

Figure 6.2: The console output while parsing the MIDI file. The header is parsed first to get

the values for the track count and time division. Then the track chunk for the bass guitar is

parsed to get the tempo and all the notes. From left to right, the numbers for the notes indicate:

(1) the start tick, (2) end tick, (3) note pitch identifier, and (4) note velocity.

Figure 6.3: The concert hall environment with the bass guitar.

29

During the song playback, the user has access to four different camera views to

choose from – overviews of the entire model from both sides and two views that focus

on the pick fingers and fretting fingers. After the visualization is completed, the scene

fades out and the startup menu is displayed again.

Figure 6.4: The four available camera angles for displaying the song playback.

30

7. Conclusion

The implemented visualization presents a good starting point for a more feature-rich

interactive application. The action timeline system and the MIDI parser, together with

the powerful graphical capabilities of the Unreal Engine, form a robust and extensible

framework for visualizations of self-playing musical instruments. With those core

systems in place, the framework can be easily extended with new features.

One of the obvious upgrades would be the addition of new instrument models.

These could be other string instruments, such as a guitar or an ukulele, as well as other

types of instruments that are played in an entirely different manner, such as pianos

or drums. Apart from creating the 3D models of those instruments, new action types

would need to be added to the timeline to perform the required animations.

Another potential feature would be to add a graphical representation of the notes

that are played, either in form of tablature or real musical sheets. This would be the

first step towards educational use cases for the visualization, as it would allow the user

to see exactly which notes are played in real time. The educational aspect would be

even more reinforced by introducing realistic models for the picking and fretting hands,

together with an improved fretting sequence optimization algorithm. Combining this

with the graphical representation of the notes would produce a great tool for learning

new techniques, practicing various fingering patterns and learning to play new songs.

31

BIBLIOGRAPHY

[1] Blender API documentation, Blender Foundation. https://docs.

blender.org/api/2.78c/, 2017. [accessed June 10th 2017].

[2] FL Studio, Image Line Software. http://www.image-line.com/

flstudio/, 2017. [accessed June 10th 2017].

[3] Unreal Engine 4 Documentation, Epic Games. https://www.

unrealengine.com/what-is-unreal-engine-4, 2017. [accessed

June 12th 2017].

[4] R. B. Dannenberg, B. Brown, G. Zeglin, and R. Lupish. A robotic bagpipe player.

Proceedings of the International Conference on New Interfaces for Musical Ex-

pression, 2005.

[5] N. Emura, M. Miura, N. Hama, and M. Yanagida. A system giving the optimal

chord-form sequence for playing a guitar. Acoustical Science and Technology, 27

(2), 2006.

[6] L. Kunić and Ž. Mihajlović. Generating virtual guitar strings using scripts. Pro-

ceedings of MIPRO, DC VIS, 2017.

[7] D. Radicioni and V. Lombardo. Guitar fingering for music performance. Inter-

national Computer Music Conference, 2005.

[8] A. Radisavljevic and P. Driessen. Path difference learning for guitar fingering

problem. International Computer Music Conference, 2004.

[9] F. A. Saunders. The mechanical action of violins. Journal of Acoustic Society of

America, 1937.

[10] E. Singer, K. Larke, and D. Bianciardi. Lemur guitarbot: Midi robotic string

instrument. Proceedings of the International Conference on New Interfaces for

Musical Expression, 2003.

32

[11] Standard MIDI-File Format Spec 1.1. The International MIDI Association, 1999.

[12] D. R. Tuohy. Creating tablature and arranging music for guitar with genetic

algorithms and artificial neural networks. University of Georgia, 2006.

33

Modeliranje i simulacija 3D glazbenog instrumenta

Sažetak

Rad opisuje aplikaciju za vizualizaciju realistične samosvirajuće 3D bas gitare. Gi-

tara je izrad̄ena i animirana upotrebom alata Blender, a zatim prenesena u Unreal En-

gine u kojemu je implementirana aplikacija. Ulazni podaci o notama za vizualizaciju

dobiveni su iz MIDI datoteka.

Animacijama i zvukovima upravlja se putem vremenske linije s akcijama, pri čemu

svaka akcija obavlja odred̄enu operaciju u zadanom trenutku. Sustav je dizajniran tako

da bude lako nadogradiv, kako bi omogućio dodavanje različitih vrsta akcija, od akcija

koje upravljaju glazbenim instrumentima do akcija koje mijenjaju okruženje ili pomiču

kameru. Akcije za bas gitaru služe za upravljanje mehanizmima lijeve i desne ruke, za

animiranje žica i za puštanje uzoraka zvukova kod sviranja nota.

Cilj projekta bio je napraviti nadogradivi aplikacijski okvir za vizualizaciju samosvi-

rajućih glazbenih instrumenata koji bi se kasnije mogao upotrijebiti u zabavne ili

edukacijske svrhe.

Ključne riječi: Glazbeni instrumenti, 3D vizualizacija, MIDI, Blender, Unreal En-

gine.

Modeling and simulation of a 3D musical instrument

Abstract

This thesis describes an application that visualizes a realistic self-playing 3D bass

guitar. The guitar was modeled and animated using Blender, and then exported into

Unreal Engine where the application was implemented. The input for the visualization

are MIDI files, which are parsed to extract the note data.

All animations and sounds are controlled using an action timeline system, where

each action performs a specific operation at a given point in time. The system is de-

signed to be extensible so that various types of actions can be supported, from various

instrument actions to controlling the environment and moving the camera. The actions

for the bass guitar include controlling the pick fingers, the fretting mechanism, the

strings, and playing sound samples for the notes that are played.

The goal of the project is to provide an extensible framework for visualizing self-

playing musical instruments, that could later be used for entertainment and educational

purposes.

Keywords: Musical instruments, 3D visualization, MIDI, Blender, Unreal Engine.

