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1. Introduction

One  of  the  most  extensively  used  methods  for  displaying  three-dimensional

objects  in  a  virtual  scene is  using  a polygon  mesh.  That  is  why the  study of

polygon meshes is a large part of computer graphics and related fields.

There are different ways to represent polygon meshes and each of them is used

for different applications and goals. In most cases, polygonal meshes define the

surfaces  of  a  solid  virtual  object,  and  therefore  do  not  explicitly  represent  it’s

volumetric structure.

Polygonal  meshes  can  be  constructed  from multiple  types  of  elements.  Such

meshes contain vertices which are three-dimensional  points  in a virtual  space,

edges which represent connection between two vertices, and faces which are a

closed set of connected edges. Faces usually contain three edges making them a

triangle face, but most model formats also support faces with four edges (called a

quad face). Some systems allow faces to have even more sides, but those are

often represented as multiple triangle or quad faces, since this is supported by

most rendering hardware. An example of a mesh that is constructed out of triangle

and quad faces can be seen in Figure 1.1 below.

Figure 1.1: Example of a polygon mesh representing a teapot
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Except for rendering such polygon meshes on screen, their  application usually

requires various operations to be made on the mesh structure. Operations include

boolean  logic  (often  called  Constructive  Solid  Geometry),  smoothing  (surface

subdivision), simplification (level of detail), and many others. One such operation

is  mesh  cutting.  This  operation  consists  of  cutting  a  polygon  mesh  into  two

separate parts using a plane and has various applications [1]. It can be used as a

visual aid to convey three-dimensional information that would otherwise be difficult

to  display (for  example  slicing  a  volumetric  graph or  showing  an interior  of  a

complex object), or in physics simulations for breaking objects into smaller parts. It

can be applied multiple times on the same object and can also be a part of other,

more complex operations.

This thesis describes the steps and algorithms required to apply the mesh cutting

operation on a virtual object and presents a program solution implementing the

described methods.

2



2. Mesh cutting algorithm

Cutting  a  mesh  requires  multiple  sub-operations.  The  first  step  is  to  define  a

polygon mesh and the plain along which the mesh will be cut. The second step is

to  actually  cut  the  faces  that  intersect  the  plane  and  split  the  mesh  into  two

separate parts. The third step consists of constructing an interior geometry that

was revealed by the cut.  The first  two steps will  be presented in detail  in this

chapter, while the third step will be discussed in the subsequent chapter.

When cutting a mesh, it is split into two parts, which means we have to remove the

original mesh from the scene and replace it with two new meshes that represent

each of the parts created by the cut. Since the cuts most often do not happen

along the edges of the mesh, it is highly likely that we need to create additional

geometry near the area that was cut, adding more triangles to the mesh. Once the

new geometry is constructed we have to split it into two separate meshes. This is

done by assigning each triangle a side it belongs to, depending on which side of

the plane it was on before the cut.

2.1. Mesh specification

While there are many ways to represent three-dimensional virtual objects in the

field of computer graphics, the most often used approach is to use polygons to

represent  the surfaces of  the object.  While some other  approaches,  e.g.  point

clouds,  make  it  easier  to  perform  operations  like  cutting,  widespread  use  of

polygon  meshes  in  various  applications  forces  us  to  come  up  with  ways  to

implement  these  operations  for  such  cases.  Therefore,  all  of  the  techniques

described in this thesis will assume we are working with polygon meshes. For this

purpose, we will assume that each mesh is defined by two elements – vertices and

triangle  faces.  Each  mesh  is  constructed  from  a  set  of  vertices  which  hold

information about the shape of the object. As per usual, each vertex holds three

vectors that store data.

3



One vector describes the position of the vertex in three-dimensional model space.

Another vector describes the three-dimensional direction of the surface normal at

that point. The last vector is a two-dimensional vector that holds the uv values

required for texture mapping which will be discussed later. For our purposes, one

vertex is, therefore, a set of eight floating point numbers. Of course, algorithms

described in this paper work on any type of vertex as long as it has at least the

position information, but the two other vectors are used to demonstrate how the

algorithm can be applied onto a mesh that also contains some non-positional data.

To define the surfaces of our mesh we also need faces.  These faces connect

vertices  and  form a  surface.  Since every polygon  face  can  be  separated  into

multiple triangle faces and triangle faces are simple to work with, we will assume

that every face on a mesh is a triangle. Triangle faces are simple to work with

because they are supported by most, if not all, graphics hardware. This approach

also guarantees that every face will be planar, which will prove useful for the task

at hand. Converting a mesh with multiple-sided polygon faces (usually quads) into

one  with  triangle  faces  is  possible  and  is  an  operation  supported  by  any 3D

modelling software. More details about this operation will be given in the section

describing polygon triangulation in the forth chapter.

For our purposes each face of a mesh will be a set of three vertices that make up

the tips of a triangle. Vertex data will be interpolated according to the barycentric

coordinate system defined by the triangle vertices in order to get the information

about the shape of an object at any point in 3D space.

When loading a model from file, vertices are stored and indexed, assuring that we

do not store the same vertex twice. That gives us a way to reuse the same vertex

for  multiple  faces  by  just  using  its  index  multiple  times,  saving  on  memory.

Therefore, in our application, faces are defined by three indices (integers). Those

indices point to the vertices that the face uses. Model structure is described in

more detail at the beginning of the forth chapter.
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To recap, each vertex is three vectors (8 floating point numbers), each face is

three indices (3 integers). This is all we need to define our polygon mesh – all

other elements of the mesh that we might need, such as edges, can be inferred

from this data.

2.2. Triangle Cutting

The process of cutting a single triangle with a plane is relatively simple. Before any

intersection is made, we have to define each triangle edge. That is accomplished

by acquiring the vertex data and connecting each of the three vertices together in

a triangle. Once the edges are constructed and we have the data about each

vertex, we proceed to intersect them with a cutting plane. We do that by using the

following formula:

d=
( p⃗−a⃗) n⃗

(b⃗−a⃗) n⃗
 
n⃗ −cutting planenormal
p⃗−point on acutting plane
a⃗ , b⃗−edge vertices

This formula not only tells us if the edge is intersected by a plane but also at what

point it is intersected at. This is extremely helpful because it allows us to easily

construct a new vertex at that exact point. We apply the formula to each edge of

the triangle.

Since the plane splits the space into two parts, a part below the plane and the part

above it, there are three possible outcomes for each of the triangles. Either the

entire triangle is above the plane, below the plane, or intersected by a plane. The

situation  in  which  the  triangle  isn’t  being  intersected  by  a  plane  are  resolved

trivially, by simply assigning the entire triangle to its appropriate side of the plane.

However,  if  the  triangle  is  intersected,  additional  steps will  be  required.  Every

intersected triangle always has one of its vertices on one side of the plane, while

the other two vertices are on the opposite side. Another way to say this is that,

assuming that the plane is infinite, every intersected triangle always has two edges

that are intersected, and one edge that is completely on one side of the plane.
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This means that we can only have two of the edges intersected, never just one or

all three. Once these two edges are found, we have to construct two new vertices

at the place the edges were intersected.

The intersection formula (2.1) gives us a value between 0 and 1 if the edge is

intersected. If the result is outside that range, the edge is not intersected by the

plane. A value closer to 0 gives us the intersection near one end of the edge, and

a value closer to 1 gives us the intersection near the other end. This means the

resulting  number  can  be  used  to  determine  at  which  part  of  the  edge  the

intersection occurred. This allows us to construct the new vertices using a simple

linear interpolation formula:

x = b t + a ( 1− t )

The position of the new vertices are interpolated according to the vertices at the

each end of the intersected edge. Other vertex data is filled in depending on the

purpose the algorithm is used for. In our case, normal vector and uv values are

also interpolated. In some other cases there might be other types of data that we

might want to copy from the closest vertex instead of interpolating, but we do not

have such data in our example.

After the new vertices are interpolated using (2.2) and added to the mesh, we

have to reconstruct the faces that we got from cutting the triangle. The original

triangle face is removed from the mesh and discarded, while three new are added.

Cutting a triangle always results in a smaller triangle and a quad. The quad is split

into two triangles; therefore, each intersected triangle gives us three new triangles.

These triangles are then split into two groups, one triangle on one side, and the

two triangles that make a quad on the other side of the plane.
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Triangle cutting operation is done for every triangle in the mesh. As each triangle is

evaluated, or as a new triangle is constructed, it is assigned to the appropriate

side of the mesh. Since we are using indexed vertices, this is done by having the

operation result in two arrays of vertex indices, one for each side of the cut. The

implementation details, as well as the benefits of this approach, will be discussed

in the fourth chapter.

What follows is an example of cutting a mesh consisting of three triangles.

Figure 2.1: Process of cutting a simple triangle mesh

The first step, as shown on the left side of figure 2.1, is finding the points where

the triangle edges intersect with the plane, which is represented as a dashed line.

Triangle ABE is not intersected with the plane, which means it belongs completely

to one side, while the other two triangles (BCD and BDE) have to be cut. The

middle step shows how new edges can be constructed for each triangle. Edges

XY and YZ are added as a result  of  cutting the triangles. Since we only want

triangle  faces  in  our  mesh,  we  have  to  convert  quads  BYXE and  CDYZ that

appeared into corresponding triangles. Lastly, shown on the right, is a separation

of two meshes that are made by the cut.
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3. Interior face construction

Just cutting the existing triangles isn’t enough in most applications. Since closed

polygon meshes have an implied volume, it is necessary to maintain the illusion of

that volume after the cut; otherwise the virtual object would appear hollow. This is

done by examining the polygon along which the mesh is cut and filling the gap with

new additional surfaces. As seen in Figure 3.1, the mesh without the interior face

appears hollow after a cut.

Figure 3.1: A mesh without (left) and a mesh with an interior face (right) after a cut

3.1. Polygon construction

Intersecting a triangle with a plane results in an edge. Our implementation of the

mesh cutting operation remembers all edges that appear and joins them up in one

or more closed loops by joining up the edges that share the same vertex. These

loops define planar polygons that  lay on the cutting plane.  Once we have the

polygons, we need to convert  them into triangles so we can display them and

cover up the gap that appears after the mesh is cut.
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3.2. Polygon triangulation

Decomposing  a  simple  polygon  into  a  set  of  triangles  is  a  classic  problem in

computer graphics, and many different solutions exist for it. We define a simple

polygon as an ordered sequence of planar vertices, where consecutive vertices

are  connected  by an  edge  and  an edge  connects  the  first  and last  vertex.  A

polygon is simple if the only place where edges intersect is at the vertices and

each vertex shares exactly two edges. In our examples the polygons we deal with

will in most cases be simple, unless the meshes are needlessly complex.

Figure 3.2: Simple and nonsimple polygons 

Figure 3.2 shows three polygons. The one on the left is a simple polygon. The

polygon in the middle is not simple because one of its vertices shares more than

two edges. The polygon on the right is also not simple because its edges intersect

at points that are not its vertices.

One solution for triangulation of a simple polygon could be to connect one of its

vertices  to  every  other  vertex  it  is  not  already connected  to,  thereby creating

triangles. The result of such a triangulation is shown in Figure 3.3.
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Figure 3.3: Naive triangulation

Unfortunately, this method only works for convex polygons. Since we can often get

polygons the vertices of  which are not  all  convex,  we cannot  use this method

reliably and need a better solution. The solution comes in the form of a so-called

ear clipping algorithm [2].

3.3. Ear clipping algorithm

Ear clipping is a recursive approach to the triangulation. It consists of finding an

ear of a polygon and removing it, until no more ears are left. An ear of a polygon is

a triangle that is formed by three consecutive vertices, for which the second one

(called the ear tip) is convex, and no other polygon vertices are contained in that

triangle. A polygon vertex is convex if its interior angle is smaller than 180 degrees.

A triangle consists of one ear and we can place the ear tip at any of its three

vertices.

It is proven that a polygon with four or more sides always has at least two non-

overlapping ears. The ear clipping algorithm suggests that we can triangulate any

simple  polygon by recursively removing its  ears.  If  we  can locate  an ear  in  a

polygon with  n ≥ 4 vertices and remove it, we are left with a polygon with  n – 1

vertices and can repeat the process. The removed ears become the triangles that

we replace the polygon with.
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The  ear  clipping  process  used  in  the  application  will  be  demonstrated  with  a

following example:

Figure 3.4: Removing the ear FAB from the polygon

The  left  side  of  Figure  3.4  shows  the  polygon  we  start  with.  This  polygon  is

searched for ears. Vertex A is convex and no other vertices are contained within its

triangle FAB. When considering a triangle for an ear, the triangle label is written

with the potential ear tip as the middle letter. For example, vertex A is the tip of an

ear designated as FAB. We have found the ear and we remove it.

Figure 3.5: Removing the ear FBC from the polygon

Figure 3.5 shows the next iteration. The ear FBC is found and removed, leaving us

with a quad.
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Figure 3.6: Removing the ear CDE from the polygon

The last iteration is shown in Figure 3.6. Vertex C cannot be an ear tip, because it

is not convex; therefore, triangle FCD is not an ear. We test the next vertex. Vertex

D is convex and no other vertices are contained within its triangle CDE. We have

found the last ear and are left with a polygon with three vertices, which is our last

triangle. The result of our triangulation is shown below in Figure 3.7.

Figure 3.7: Complete triangulation of a polygon.

The ear clipping algorithm is not the fastest way to triangulate a polygon, but is

simple  to  implement  in  code.  Since  our  application  does  not  require  the

triangulation  of  a  large  number  of  polygons  for  each  cut,  it  is  an  acceptable

compromise. We could speed up the algorithm by only considering reflex vertices

(ones  for  which  the  interior  angle  is  larger  than  180  degrees)  in  the  triangle

containment test, but that would require having additional arrays that would have

to be updated after every ear is removed, and would needlessly complicate the

algorithm. The application code is written in such a way that it allows for easy

replacement of the triangulation algorithm if the need for it arises in the future.
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Even though the ear clipping algorithm does solve our problem with triangulation,

some problems can still arise because we do not consider the possibility that our

polygons might have holes in them. It is possible to update the algorithm so that it

takes  into  account  multiple  polygons  and  treats  the  ones  that  are  completely

contained inside the others as holes. That would require keeping more information

about the polygons and constructing a polygon hierarchy, because each polygon

can have multiple holes and each of those holes can have multiple polygons with

multiple holes within them. These hierarchies can easily get out of hand. Another

fact that complicates this further is that, when cut, regular models can result in

interior  polygons for  which we cannot  tell  if  they are supposed to be holes or

normal polygons. Geometries can connect and overlap in unexpected ways and

there is nothing that would help the algorithm decide how to construct the interior

faces. The solution we propose is to keep the models clean and simple. If they

have to contain hollow elements, the vertices should be connected in a way that

guarantees that any cross-section of the model results in simple polygons without

any holes. 

3.4. Geometry construction

Once the interior polygon is constructed and triangulated, what is left is to create

the actual mesh geometry from it. This is done by first adding each vertex of a

polygon to the mesh. We cannot use the vertices already in the mesh since the

interior polygons will have different normal direction and uv values – this is why we

must  create  new ones.  The position of  the  new vertices is  determined by the

polygon  vertices.  Their  normals  are  made to  face perpendicular  to  the  cutting

plane; that way we get an appearance of a clean sharp cut. How we threat the uv

values of the new vertices depends on what we are trying to accomplish. We can

either try and unwrap the polygon along some predefined texture that defines the

look of the meshes’ interior or we can use three-dimensional volumetric textures.

More details on texturing will be presented in the following chapter.
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4. Implementation details

One of the goals of this thesis was to provide an implementation of the algorithms

described in this paper. As such, the example application was developed as part of

this thesis. The application was written in C++ and uses OpenGL for graphical

rendering.  Several  third-party  libraries  were  also  used.  GLFW  [3]  provides  a

window, OpenGL context and the ability to receive user input. Its code is Open

Source, multi-platform and licensed under the zlip/libpng license. Another library is

gl3w which is a public domain API that offers simple OpenGL core profile loading.

4.1. Mesh loading

There are many different formats for storing mesh data. Since mesh storing and

loading is not the focus of this paper, we opted for the OBJ format. Wavefront OBJ

file format is a geometry definition file that allows simple and open way to store

and load mesh data. It  is widely supported and easy to implement without the

need for additional third-party libraries. The most common elements of an OBJ file

are geometric vertices, texture coordinates, vertex normals and polygonal faces,

which is all  that we need to construct a mesh. Usually the model first lists the

vertices and their  position,  then texture coordinates,  and then follows with  the

vertex  normals.  The faces  are  then  defined by specifying  which  one of  these

values each polygon vertex contains using indexing. That means that each data

vector can be shared across the polygon vertices. Since OpenGL can only index

on per vertex basis, this data needs to be properly stored and aligned in memory

before being rendered on screen.

First, all vertex data is read into separate arrays and face indices are stored. Only

then do we proceed with actual indexing of vertices and joining each necessary

data vector together. With that we go from having an index for every data vector

(position, uv, normal) to having an index for every vertex instead.
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Indexing assures that each vertex is unique and is not listed twice in our data;

instead, it is reused by using its index. This saves up on memory, but it requires

two buffers, instead of one. We do not need just one buffer for the vertices, but we

also need one for the indices, as well. Splitting the model into two buffers actually

helps us even more, because when we cut an object, we can have each part of

the model share the same vertex buffer, but have a different index buffer. This

saves us from unnecessarily copying the data between parts during the cut, and

gives us better performance. In short, objects can share the starting mesh and its

vertex buffer, but each object has its own index buffer. Once they are cut, they still

share the same vertex buffer, but their index buffer changes, since they are now

indexing different vertices. New vertices created by the mesh cutting algorithm are

added to the vertex buffer shared by all  the objects with the same mesh; this

ensures that all parts have access to the same vertices if needed.

4.2. Textures

Along with its mesh, another important element of a virtual object is its texture.

Textures give more definition to the object’s surfaces and have a huge impact on

the object’s appearance. In the example application models are unwrapped as

usual in the 3D modelling tool and the texture coordinates are stored inside the

vertex parameters.

Problems arise when trying to texture the interior parts of the mesh that are made

visible  by the  cutting  operation.  We would  like  to  somehow define  the  interior

structure of the model. There are many ways this could be done and the best

approach depends on the intended application. If the cutting algorithm is used for

special  effects,  for  example,  in  video  games  or  simulations  where  complete

accuracy isn’t required, just defining an interior texture that is projected onto the

interior polygons could be enough. In other cases, where the application requires

more accurate representation of the interior structure, other methods should be

used, for example a three-dimensional volumetric texture.
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Projecting a two-dimensional interior texture onto an interior polygon is trivial, but

requires that we set up the uv values of the interior polygons vertices correctly. We

get the right uv values by projecting the three-dimensional vertices of the polygon

onto a two-dimensional cutting plane. The only thing we have to pay attention to is

the scaling of the texture, since we probably do not want smaller polygons to have

smaller  texture  detail.  In  our  implementation  we  use  negative  uv  values  to

designate that the triangle is using the interior texture, thereby avoiding the need

for additional vertex data or multiple draw calls.

The problem with  the two-dimensional  texture approach is  that,  except  for  the

texture image, we have no control over how the interior of the mesh will appear.

Every cross-section of the mesh will have the same texture. One of the solutions

for this is having multiple interior textures distributed along the mesh, and then

picking the one closest to the cutting plane. This would give more control over the

interior structure, while still maintaining the simplicity of two-dimensional textures.

If  the mesh has a skeleton for animations, a reasonable approach would be to

define  an interior  texture along each bone,  thereby giving  each limb a unique

interior structure.

There  are  situations  where  we  simply  cannot  get  the  desired  result  with  the

described  interior  texture  method.  For  example,  if  we  want  to  have  complex

interior structure or if we want to precisely align everything with the outer textures.

In these cases, it  would be best  to use three-dimensional  textures [4]  instead.

Three-dimensional  or  volumetric  textures  work  like  regular  two-dimensional

textures,  except  with  an  added  dimension.  Instead  of  two  texture  coordinate

values (u, v), they use three (u, v, w). Their biggest advantage is that they can

define a volume of colour data and are, therefore, ideal for defining the interior

structure of  objects.  This  flexibility,  however,  comes with  a cost  in  the form of

higher  memory  requirements,  which  is  why  they  are  usually  limited  to  lower

resolutions. Another downside of using volumetric textures is the fact that they are

difficult to create from an image or by a texture artist. As a result of this, they are

not as easily available as regular textures are.
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4.3. Virtual camera

To display a virtual  scene we need a camera.  In  the example application,  the

camera features two modes. Orbiting mode tethers the camera to the target object

and makes it orbit around, allowing the user to easily position the camera at the

desired angle and cut the mesh from any side. Flying mode releases the camera

from the target and allows the user to freely position it in space. The camera is

controlled via a combination of  mouse and keyboard.  Holding the right  mouse

button and moving the mouse changes the camera’s orientation orientation. Keys

W and S move the camera forwards and backwards. Additionally A and D keys are

used in flying mode to move the camera sideways. Camera modes are switched

using the F key.

4.4. Mesh Cutting

A scene is composed of virtual objects. Each object contains information about its

mesh, textures, and a collection of sub-objects called fragments. An object starts

out as having a single fragment that represents the entire mesh. Once the object is

cut,  its  fragment  is  split  and  replaced  with  two  fragments,  each  containing  a

different set of indices, representing each partition. Since objects can be cut more

than once, each additional cuts splits the affected fragments further, increasing the

number of fragments in the scene. An object contains a mesh, which means it has

a vertex buffer that all its fragments can share. Each fragment contains the index

buffer that indexes vertices from the vertex buffer. The structure of objects in the

scene and their sub-objects is shown in Figure 4.1.
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Figure 4.1: Structure of objects and fragments in a scene

When an object is cut, it delegates that operation to its fragments. Each fragment

processes  the  cut  and splits  accordingly.  The  cutting  operation  follows  certain

steps, which are presented in the pseudocode below.

1. For every object in scene

2. If affected by the cut

3. For every fragment of the object

4. If affected by the cut

5. For every triangle in fragment

6. Cut triangles

7. Split triangles into new fragments

8. Construct interior faces

9. Replace cut fragment with new ones
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In the example application, cutting is controlled by dragging and releasing the left

mouse button across the scene. A cutting surface is constructed according to the

direction  of  the  dragging  motion  and  the  position  of  the  camera.  To  better

demonstrate  the  mesh  cutting  operation,  several  special  effects  were

implemented. First, while the dragging is being performed, a line appears on the

screen, indicating where the cut will  be executed. Second, after the cut occurs,

affected  fragments  are  separated  with  a  basic  physics  simulation,  giving  the

impression of breaking up the object and allowing a better view of the object’s

interior.

Figure 4.2: Two cuts on a simple cube mesh

Figure 4.3: Final state after two cuts
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Two example cuts can be seen in Figure 4.2. The image on the left shows the

state of the object before the first cut is made. The image on the right shows the

state right before the second cut. The Figure 4.3 shows the state after both cuts.

One side effect of mesh cutting is that, with each cut, there are more and more

objects that have to be rendered on screen. And since we did not implement any

cleanup algorithms that  might  simplify  the  geometry  after  multiple  cuts,  object

geometries get more and more complex. This is not an issue with simple meshes

or small number of cuts, but is certainly something that might pose a problem for

big  complex meshes and a large number of  cutting operations.  The proposed

solution  would  be  to  cull  smaller  fragments  and  do  a  periodical  cleanup  of

fragment geometries.

 

4.5. Scene Rendering

When rendering the scene, we iterate over every object in it and tell it to render

itself on the screen. Each object renders itself by rendering each of its fragments.

Fragments have transformation information (position, orientation, scale) and the

vertex indices. Objects that the fragments belong to have the vertex data (actual

mesh) and they also have their assigned textures. The camera object contains all

the necessary information about the view.

Pressing  F3 on the keyboard while  the application is  running toggles between

wireframe and solid view modes, as shown in Figure 4.4.

Figure 4.4: Two supported view modes: solid mode (left), wireframe mode (left).
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5. Conclusion

Cutting a polygon mesh is a useful feature and is used for various applications,

from special  effects to scientific  visualisation. Cutting all  triangles in a mesh is

relatively easy, as shown in this paper, but this by itself does not give us proper

results for solid meshes. Therefore, other algorithms must be used to construct the

interior of objects. Which versions of algorithms to use, whether to sacrifice mesh

precision for faster cutting operation, and many other choices along the way are

determined by the purpose of the application, but clever memory management and

scene structure is always beneficial.

The methods described and implemented in this thesis work very well and cutting

can  be  done  in  real  time.  While  a  few  problems  were  noticed  during  the

development, the current implementation has proved to be sufficient for simpler

meshes. One of the problems is the fact that with each consecutive cut, the mesh

becomes  more  and  more  complex.  A more  complex  mesh  results  in  slower

execution  speed,  because it  contains  more  triangles  to  process.  Doing proper

mesh cleanup after each cut would solve the rapid mesh complexity increase, but

might  also  slow  down  cutting  operations.  Using  more  optimised  triangulation

methods would definitely help.

Except for the optimisation enhancements, another possible line of future work

would be too investigate how a mesh might be cut by different cutting shapes. This

thesis presents what could be a first step in developing a collection of tools to cut

meshes, not just with planes but with cubes, spheres and other 3D shapes. Doing

so would require the algorithms to  generate nonplanar  interior  surfaces, which

might prove challenging, but is definitely possible.
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THREE-DIMENSIONAL MESH CUTTING IN 

VIRTUAL SCENE

ABSTRACT

This paper describes the process of cutting a three-dimensional polygon mesh that

represents  a solid  object  in  a  virtual  scene.  Mesh cutting is  an operation that

separates  the  mesh  into  two  parts  along  a  plane  in  3D  space.  Triangulation

techniques  for  filling  the  holes  that  appear  during  the  cut  are  discussed  and

approaches  to  texturing  newly  revealed  surfaces  are  presented.  Scene

composition and memory layout  is covered and several  compromises between

cutting speed and visual precision and clarity are commented on. 

This paper also contains the implementation details of an example application that

was developed alongside. The application supports the cutting of multiple different

models within a virtual scene and presents just one of many uses for the mesh

cutting algorithm.

KEYWORDS:

computer graphics, polygon mesh, mesh cutting, triangulation, ear clipping



REZANJE TRODIMENZIONALNIH MODELA U 

VIRTUALNOJ SCENI

SAŽETAK

Ovaj  rad  opisuje  postupak  rezanja  trodimenzionalne  poligone  mreže  koja

predstavlja popunjeni objekt u virtualnoj sceni. Rezanje modela je operacija koja

dijeli  model  na  dva  dijela  pomoću  plohe  u  3D  prostoru.  Opisane  su  tehnike

triangulacije  za  popunjavanje  rupa koje  nastaju  tijekom reza  i  predstavljeni  su

pristupi  teksturiranja  novonastalih  površina.  Rad  sadrži  opis  strukture  virtualne

scene,  raspodijele  memorije  i  ukazuje  na  neke  kompromise  između  brzine

operacije rezanja i preciznog i čistog prikaza.

U ovom radu sadržani su i implementacijski detalji aplikacije koja je razvijena u

sklopu rada. Aplikacija podržava rezanje više različitih modela u virtualnoj sceni i

demonstrira jednu od mnogih primjena opisanih algoritama.
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računalna grafika, mreža poligona, rezanje modela, triangulacija, ear clipping


