
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 1594

Volumetric Atmospheric Effects Rendering

Dean Babić

Zagreb, June 2018

Acknowledgments

Firstly, I would like to thank my mentor, Prof. dr. sc. Željka Mihajlović for the time

she dedicated towards my education and the effort she put into my projects.

I would especially want to thank my girlfriend for her support and help with

proofreading my work.

Finally, I would like to thank my dear family and friends for their help, support and

good times during all these years throughout my education.

Contents

1. Introduction .. 1

1.1 Cloud rendering ... 1

1.2 Practical solution ... 2

1.3 Restrictions and references ... 2

2. Cloud physics .. 4

2.1 Types of clouds ... 4

2.2 Behavior .. 5

2.3 Lighting .. 5

2.3.1 Absorption... 6

2.3.2 Scattering.. 7

2.3.3 Extinction .. 8

2.3.4 Transmittance ... 8

2.3.5 Emission ... 8

2.3.6 Radiative transfer equation ... 9

3. Implementation .. 10

3.1 Modeling .. 10

3.1.1 Noise functions ... 10

3.1.2 Remap function ... 13

3.1.3 Cloud textures ... 14

3.1.4 Weather texture .. 17

3.1.5 Cloud shape definition .. 18

3.2 Lighting .. 20

3.2.1 Out-scattering ... 20

3.2.2 Directional scattering .. 21

3.2.3 In-scattering .. 22

3.3 Rendering .. 24

3.3.1 Ray marching .. 24

3.4 Tone mapping ... 26

4. Optimizations ... 28

4.1 Cone sampling .. 28

4.2 Subsampling ... 28

4.3 Horizon culling ... 28

4.4 Cheap sampling .. 28

4.5 Early exit ... 29

4.6 Temporal reprojection ... 29

5. Results ... 30

5.1 Hardware and Software ... 30

5.2 Resources ... 30

5.3 Performance .. 30

5.4 Visual results ... 33

6. Conclusion ... 35

Bibliography .. 36

1

1. Introduction

Realistic and impressive graphics is the goal of every game developer, to stay

ahead of the competition and to offer the gamer the best gameplay. But they can

push the graphics so far before computational power becomes an issue. With the

advancements in hardware capabilities, we can use techniques that were previously

only suited for offline rendering in real-time, but with some necessary optimizations

and approximations.

One of those techniques is rendering of realistic and convincing cloud scenes.

Realistic and convincing cloud scenes are not only the result of light scattering in

participating media but also the result of dynamic clouds that can evolve over time,

cast shadows and interact with its environment.

1.1 Cloud rendering

The area of cloud rendering is well researched in computer graphics. Many different

techniques for rendering realistic cloudscapes have been developed over the years,

but they are often not fast enough to be used in real-time applications. One common

solution is to use flat textures along with the skybox. This can produce very realistic

clouds but only if the observer is placed at the ground level and is not expected to

travel too far, such as first-person shooters and racing games. But in open-world

games, a skybox would give a static feel and the sense of travel would be lost. By

using 2D textures to render clouds we are losing the depth perception and the

clouds appear flat. Also, it is possible to use a sequence of images to animate 2D

billboards at least making clouds somewhat dynamic and interesting. But if we want

better and far more immersive results volumetric clouds are needed.

The cloud system in this thesis is inspired by a recent technique developed by

Andrew Schneider and Nathan Vos [4]. Their work showcased the ability to render

clouds faithfully, with the ability to control their size, shape, speed, and lighting under

2 milliseconds. Furthermore, they improved the technique further by reducing the

computational time, by introducing a better way to control the modeling, animating

and lighting of clouds and by implementing weather simulation for the cloud system

‘Nubis’ that was originally made for the game ‘Horizon Zero Dawn’ [5].

2

1.2 Practical solution

The goal of this thesis was to investigate and implement a technique for rendering

realistic clouds within Unity game engine in real-time. The rendering technique will

be based on the cloud system ‘Nubis’ and will be able to produce clouds that are

different in their shape, type, and density, while still being dynamic and evolve over

time. The clouds should be rendered into a spherical atmosphere which would allow

them to bend over the horizon. For the clouds to appear dynamic, we must render

them in real-time. Real-time means that we are aiming for a frame time of about 33

milliseconds, effectively giving us a render frequency of 30 frames per second. The

clouds are used to enhance the feeling of the scenery in the ‘Pometeno Brdo’ project

which visualizes the Končar wind farm.

1.3 Restrictions and references

The approach was to analyze and assess different techniques to render volumetric

clouds and to implement them in the Unity game engine with careful considerations

of the render times. The solution was evaluated both by the time it takes to render

and the number of resources required. In order to evaluate how realistic the clouds

are, real photographs are used for comparison.

Photographs of clouds are presented to show the kind of effects we are trying to

accomplish. Figure 1.1 shows how the sunlight scatters through the clouds, which

results in bright edges and dark bottoms.

Figure 1.1 A photograph showing clouds with flat bottoms and rounded, whispy tops.

3

Figure 1.2 We can see how the light attenuates as it travels through the cloud

Figure 1.3 A photograph showing forward scattering in the direction of the sun

Figure 1.4 Packed round shapes like cauliflower, billows

4

2. Cloud physics

Water vapor is invisible to the human eye, and it is not until water condensates in

the air, that clouds appear. Clouds are formed when the humid air rises and expands

as it reaches lower atmospheric pressure. This is because when the air expands,

the temperature falls, and the water vapor in the humid air condenses. The

formation and structure of clouds are very dynamic and are mainly the result of

vertical motions. The convection plays a big part in the features of the clouds.

Another aspect that contributes to the features of the clouds is the droplet size

distribution. The droplet size distribution affects the Mie scattering, which accurately

describes how the photons scatter inside the water droplets for different angles of

approach [9].

2.1 Types of clouds

Clouds can appear in many different shapes and variations. Most cloud types are

named after a combination of its attributes.

Figure 2.1 Cloud types and names

The attribute Cumulus is used for clouds that have a puffy appearance. Clouds that

have the attribute Stratus appear as long flat layers. The attribute Cirrus is used to

describe whispy stretched clouds that exist high in the atmosphere. The last

common attribute is Nimbus which is used for clouds with precipitation.

5

Clouds below 1.5 km retained their names like Stratus and Cumulus, etc., clouds

above 1.5 km but below 4 km in altitude earned the prefix ‘Alto’, giving us names

like Altocumulus and Altostratus. Clouds above 4 km, in the top of the cloud zone,

earned the prefix Cirro.

Warm water vapor creates Cumulus clouds and pushes them upwards into the

atmosphere. This updraft is part of what is known as a convection current. When

this current pushes the Cumulus clouds all the way to the Cirro layer we can often

see a classic anvil shape. This happens because the warm water vapor hits the cold

Cirro layer and is not able to continue rising but rather cools down, condenses and

starts to fall.

2.2 Behavior

When modeling clouds it is important to follow their physical behavior for them to be

realistic. Temperature and pressure are key components of how clouds form and

behave. As water vapor rises with heat into the atmosphere, where it is colder, the

water condensates and forms into clouds. Air temperature decreases over altitude

and since saturation vapor pressure strongly decreases with temperature, dense

clouds are generally found at lower altitudes. Rain clouds appear darker than others

which is the result of larger droplet sizes. This is because larger droplets absorb

more and scatter less light.

Wind is another force that drives clouds and is caused by differences in pressure at

different parts of the atmosphere. Clouds can, therefore, have different wind

directions at different altitudes. Since our focus is low altitude clouds close to the

viewer, we assume that all these clouds move in the same wind direction.

2.3 Lighting

This section covers light behavior when traveling through participating media [2].

Participating media is a volume where refraction, density and/or albedo (ratio of

reflected over incoming light) changes locally. Real world clouds do not have a

surface that reflects the light, instead light travels through them. Photons interact

with water droplets, that may absorb or scatter them, which causes a change in

radiance.

6

Consider a single particle, molecule, dust, a water droplet, etc. as shown in Figure

2.2. Photons are going to interact with it and bounce off its ‘surface’. In the case of

clouds, imagine a single microscopic water droplet, the droplet will either refract or

reflect the rays of light, but almost none of them will be absorbed; therefore, clouds

are so bright, i.e. their albedo is nearly 100%.

Figure 2.2 Light refracting off an atom

But when the medium is filled with a large density of such particles then it is possible

that the light might get absorbed.

There are four different ways radiance may change in participating media, these

four different ways are described in Figure 2.3. It can be due to absorption, in-

scattering, out-scattering or emission.

Figure 2.3 Four ways light can interact with participating media

2.3.1 Absorption

Absorption coefficient 𝜎𝑎 is the probability that a photon is absorbed when traveling

through participating media. When a photon is absorbed, it causes a change in

radiance. Reduced radiance due to absorption at position 𝑥 when a light ray of

radiance 𝐿 travels along 𝜔⃗⃗ is given by equation (2.1).

7

 𝑒−𝜎𝑎(𝑥)𝑑𝑡𝐿(𝑥, 𝜔⃗⃗) (2.1)

Rain clouds are generally darker because they absorb more light. This is because

rain clouds have a higher presence of larger water droplets, which are more

effective at absorbing light.

2.3.2 Scattering

Radiance may increase due to in-scattering or decrease due to out-scattering. The

coefficient 𝜎𝑠 is the probability that a photon will scatter when traveling through

participating media. Increased radiance due to in-scattering is shown in equation

(2.2). In this equation 𝑃(𝑥, 𝜔⃗⃗) is a phase function, which determines the out-scatter

direction from the light direction 𝜔⃗⃗ .

𝐿𝑖(𝑥, 𝜔⃗⃗) = ∫ 𝑃(𝑥, 𝜔⃗⃗)𝐿(𝑥, 𝜔⃗⃗)𝑑𝜔⃗⃗

𝛺4𝜋

 (2.2)

Many different phase functions exist and are suitable for different types of

participating media. The phase function can scatter light uniformly in all directions

as the isotropic or scatter light differently for every direction. For larger particles like

pollutants, aerosols, dust and water droplets we must use Mie scattering. Mie

scattering theory is very difficult to comprehend, the variety and complexity of

shapes and behaviors of various components of the atmosphere usually makes

phase function very difficult to work with.

For example, here is what an average statistical phase function of a cloud would

look like:

Figure 2.4 Mie scattering of a cloud

8

Clouds are generally white because they scatter light independently of the

wavelength as opposed to atmospheric scattering which scatters blue wavelengths

more than others.

2.3.3 Extinction

Extinction coefficient 𝜎𝑡 is the probability that photon traveling through a

participating media interacts with it. The probability that a photon interacts and

therefore causes a reduction in radiance is the sum of the probabilities for photon

either being absorbed or out-scattered as described in Equation (2.3)

 𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 (2.3)

2.3.4 Transmittance

Transmittance 𝑇𝑟 is the number of photons that travel unobstructed between two

points along a straight line. The transmittance can be calculated by using Beer–

Lambert’s law as described in Equation (2.4).

 𝑇𝑟(𝑥0, 𝑥1) = 𝑒
−∫ 𝜎𝑡(𝑥)𝑑𝑥

𝑥1
𝑥0 (2.4)

Figure 2.5 Intensity decrease through the cloud

So, any radiance ∆𝑥 at distance entering the cloud will see its intensity decrease:

 𝑒−𝜎t∆𝑥𝐿(𝑥 + ∆𝑥𝜔⃗⃗ , 𝜔⃗⃗) (2.5)

2.3.5 Emission

Emission is the process of increased radiance due to other forms of energy that

have transformed into light. Increased radiance caused by an emission at a point 𝑥

along a ray 𝜔⃗⃗ is denoted by 𝐿𝑒(𝑥, 𝜔⃗⃗). Clouds do not emit light unless a light source

is placed within, e.g. lightning, plane.

9

2.3.6 Radiative transfer equation

By combining the equations of the four ways that light can interact with participating

media, it is possible to derive the radiative transfer equation through the law of

conservation of energy. The radiative transfer equation is shown in Equation (2.6)

and describes the radiance at position 𝑥 along a ray with the direction 𝜔⃗⃗ within a

participating medium.

𝐿(𝑥, 𝜔⃗⃗) = 𝑇𝑟(𝑥 , 𝑥𝑠)𝐿(𝑥𝑠, −𝜔⃗⃗) + ∫𝑇𝑟(𝑥 , 𝑥𝑡)𝐿𝑒(𝑥𝑡, −𝜔⃗⃗)𝑑𝑡

𝑠

0

+ ∫𝑇𝑟(𝑥 , 𝑥𝑡)𝜎𝑠𝑥𝑡𝐿𝑖(𝑥𝑡, −𝜔⃗⃗)𝑑𝑡

𝑠

0

(2.6)

10

3. Implementation

This section shows how to create volumetric clouds within Unity game engine. It

also covers resources required, how they are generated and used. First, we will

discuss how to generate cloud textures by utilizing noise functions. After that, we

need to see how to properly handle lighting of the cloudscapes. Finally, we need to

generate shader code to render the whole scene.

3.1 Modeling

The best way for us to approximate the shape and form of a cloud is through

procedural generation. The typical way of rendering procedural clouds, or anything

procedural for that matter, is to use noise functions, whether it be 2D clouds or

volumetric 3D clouds.

3.1.1 Noise functions

This section covers the different noises that are used to create the cloud shapes

and how these are generated. A combination of both Perlin and Worley noises are

used to create clouds shapes. We pre-generate these noises in two different three-

dimensional textures on the CPU and then use them in the shader.

3.1.1.1 Perlin noise

In 1985, Ken Perlin presented a technique for generating natural appearing noise,

commonly known as Perlin noise [10]. Perlin noise is lattice-based and is generated

by assigning a random gradient vector to each intersection of the lattice (Figure 3.1).

When the value of the noise is read at a specific coordinate, the lattice cell wherein

the coordinate lies is determined by rounding coordinates to the nearest cell. By

utilizing modulo operation on all three axes we can determine where coordinate lies

inside of the cell. Next, we need to calculate eight vectors from the given point to

the surrounding eight points on the cell called distance vectors. Afterward, we take

the dot product between two vectors, gradient and distance vector, which gives us

influence values of each gradient vector. So now we need to interpolate between

these eight values using the fade function because linear interpolation looks

unnatural (3.1). Fade function for the improved Perlin noise implementation is:

11

 6𝑡5 − 15𝑡4 + 10𝑡3 (3.1)

Figure 3.2 shows what the resulting noise texture might look like. The texture may

appear random, yet it has some structure making it suitable as a base texture of the

clouds. By assigning the gradient vectors to the lattice in a repeating pattern, a

wrapping texture can be attained.

Figure 3.1 Perlin noise vector lattice

Figure 3.2 Perlin noise

3.1.1.2 Worley noise

Also known as Cellular noise or Voronoi noise, is a point-based noise as opposed

to the lattice-based Perlin noise [11]. We use this noise type to create both whispy

and billowing shaped clouds. The idea is to take random feature points in space and

then for every point in the space assign the value which corresponds to the range

to the closest feature point (Figure 3.3).

Figure 3.3 Worley noise feature points

12

But this approach is very slow especially so in three dimensions. Therefore, the

naïve approach needs to be optimized as described in the steps below.

1. Subdivide a cuboid into equally sized cells.

2. For each cell, randomly place a feature point inside it. There must be only

one feature point per cell.

3. For each point inside the cuboid, we apply color by measuring the Euclidian

distance to the closest feature point and use that distance as a color.

The distance to the closest feature point is found by evaluating the feature point

inside the current and surrounding 26 cells. By wrapping the edges, the texture will

be tileable in all three dimensions.

This gives a result with ball-like features around each feature point which better

imitates the look of a cloud. A cross-section of our 3D Worley noise is presented in

Figure 3.4.

Figure 3.4 Worley noise

This algorithm can generate different octaves of Worley noise by changing the cell

size. An octave is half or double of the current frequency and appears at intervals

of 2n. For example, generating Worley noise with four octaves and a cell size of two

as starting frequency makes the following three octaves to be four, eight and

sixteen.

3.1.1.3 Fractional Brownian motion

The noise textures described above form the foundation for our cloud textures. The

next step of our noise generation is called fractional Brownian motion, often

abbreviated as fBm, which when applied to noise textures renders results that look

like smoke or clouds. The fBm noise is constructed by layering a noise texture of

13

different sampling frequencies (octaves) on top of each other. By changing the

frequency in powers of 2, the wrapping effect can be preserved.

Figure 3.5 (a) Perlin noise with 5 octaves of fBm, (b) Cellular noise with 5 octaves of fBm

Compared to Figure 3.2 and Figure 3.4, we can see that the underlying structure is

the same, but the overall noise texture has much finer details.

3.1.1.4 Perlin-Worley noise

Created by Andrew Schneider for use in ‘Nubis’ cloud system [4]. The noise is

comprised of Perlin and inverted Worley noise layered on top of each other like the

standard fBm approach. Worley noise is great for simulating tightly packed billow

shapes as seen in Figure 1.4, but it lacks connectedness of the Perlin noise.

Inverted Worley noise is used as an offset to dilate Perlin noise, this way they

preserved qualities of both methods.

Figure 3.6 From left to right: Perlin, Inverted Worley, and Perlin-Worley

3.1.2 Remap function

Remap function is a function that is used ubiquitously in modeling and lighting of

these clouds, reason being the fact it can prevent the loss of information as opposed

to texture multiplying. The remap function simply takes a value, that lies inside one

range [original_min, original_max] and maps it to another range [new_min,

new_max], and is calculated like this:

14

Algorithm 1 Remap function

1: float remap(float value, float original_min, float original_max, float new_min,
2: float new_max)
3: {
4: return new_min + (((value - original_min) / (original_max - original_min))
5: * (new_max - new_min));
6: }

3.1.3 Cloud textures

The noise generation algorithms presented above can be quite costly and the

resulting textures are therefore precalculated and stored on the hard drive. To

generate clouds as they are in ‘Nubis’ cloud system we need three textures. Two

three-dimensional textures and one two-dimensional texture. It is always good to

keep the resolution of the textures low in order to improve performance.

The first three-dimensional texture is used to create the base shape of the clouds.

It has four channels, one with Perlin-Worley noise and three with different octaves

of Worley noise. The resolution of this texture is 1283.

Figure 3.7 From left to right: Perlin-Worley, and three Worley noises at increasing frequencies

To combine these four channels, we use remap function because it prevents loss

of too much density at the core of the base cloud shape.

If we use the below graph as an example, where the red line represents the base

density of the cloud and the green line represents the high-frequency noise used to

erode our cloud at the edges. If we performed a remap operation on the base

density using the high-frequency noise as the new minimum value then we would

not lose any density in the center of the cloud, which is exactly what we want.

Figure 3.8 Base density in red, high-frequency noise in green

15

Figure 3.9 3D cloud base shape texture in-game

Figure 3.10 Clouds with just the base shape texture

The second three-dimensional texture is used for adding details to the base cloud

shape and has three channels with different octaves of Worley noise. The resolution

of this texture is 323.

Figure 3.11 Three Worley noise textures at increasing frequencies

16

Figure 3.12 3D cloud detail texture in-game

Figure 3.13 Clouds after the detail texture has been added

To erode the edges of the clouds we need to use remap function again. We take a

point inside of a cloud and simply check if the point lies at the edge of a cloud.

The third texture is used to add a sense of turbulence and has three channels with

different frequencies of curl noise. Curl noise is nondivergent and is used to simulate

fluid motion. The resolution of this texture is 1282.

Figure 3.14 Three Curl noise textures at increasing frequencies

17

Figure 3.15 Resulting curl noise

3.1.4 Weather texture

Clouds are controlled by a repeating two-dimensional texture with three channels

called the weather texture. This texture is repeated over the entire scene and is also

scaled to avoid noticeable patterns of cloud presence and shapes. We can

manipulate the scene with the simulation that progresses during gameplay.

Figure 3.16 Weather texture

The red channel in this texture controls the coverage which is also used as the

density of the clouds. The green channel controls the height of the clouds. A value

of 0 will make the cloud have a height of 0 and therefore not be visible. If the height

value is 1 this cloud will have maximum height value. The blue channel controls the

type of cloud we want; where a value of 0 represents Stratus clouds, the value of 1

represents Cumulus clouds and value of 0.5 represents Stratocumulus clouds.

This texture controls the shape and type of the volumetric clouds in the scene.

Volumetric clouds being ones between 1500 and 4000 meters, which means that

Cirro clouds are not included. Cirro clouds are very distant and pretty flat on their

own, so it is not necessary to render them volumetrically but instead, we can use

textures.

18

3.1.5 Cloud shape definition

Instead of a single height gradient to change the noise signal over altitude, we can

use three mathematical presets that represent the major cloud types (Figure 3.17).

These values are stored in the weather texture and can be dynamically altered.

Figure 3.17 Height gradients for the different types of clouds

All clouds are modeled using the same approach and the density is independent of

where in the atmosphere they appear. First, we create a basic cloud shape by

sampling our first 3D texture. Then specific height gradient is applied. This height

gradient lowers density at both the top and the bottom of the cloud as shown in

Figure 3.17. Next, we multiply the result by the coverage value from the weather

texture. The coverage value determines the density of the clouds. Thereafter, a

height gradient is applied which lowers density at the bottom. The height gradient is

implemented as a linear increase over altitude. The final density before any lighting

calculation is done must be within the range (0, 1]. Densities that are zero or less

after the erosion can be discarded since they will not contribute to any cloud shape.

Densities larger than one are clamped to one to make lighting more balanced.

Algorithm 2 Cloud modeling

1: base_cloud *= density_height_gradient;
2: float cloud_coverage = weather_data.r;
3: float base_cloud_with_coverage = remap(base_cloud, cloud_coverage, 1, 0, 0);
4: base_cloud_with_coverage *= cloud_coverage;

Defining a cloud shape only from one texture is not enough to get detailed clouds.

Therefore, the smaller detail texture is used to erode clouds at the edges. The

erosion is performed by subtracting noise from the 3D detail texture by using the

remap function. The strength of erosion is implemented as a threshold value which

only erodes densities lower than this value. We also distort this second noise texture

by the 2D curl noise to simulate the swirly distortions from atmospheric turbulence.

19

Figure 3.18 Rendering only Stratus clouds

Figure 3.19 Rendering only Cumulus clouds

Figure 3.20 Rendering only Cumulonimbus clouds

20

3.2 Lighting

Cloud lighting is a very well researched area in computer graphics. The best results

tend to come from a high number of samples. But for real-time applications that is

not possible due to hardware limitations. Three approximation techniques are

required to faithfully illuminate cloudscapes.

3.2.1 Out-scattering

When light enters a cloud, the majority of the light rays spend their time refracting

off water droplets and ice inside of the cloud before exiting cloud formation. By the

time the light ray finally exits the cloud, it could have been out-scattered, absorbed

by the cloud or combined with other light rays in what is called in-scattering as

described in Section 2.3.

The attenuation of the light as it passes through the cloud can be faithfully

approximated by using Beer-Lambert’s law

 𝑇(𝑑) = 𝑒−𝜎𝑡𝑑, (3.2)

where 𝑇 is transmitted light, 𝜎𝑡 is material dependent variable and 𝑑 is the length

the light travels through the material.

Beer’s law states that we can determine the amount of light reaching a point based

on the optical thickness of the medium that it travels through.

If we substitute energy for transmittance and depth in the cloud for thickness, we

can see that energy exponentially decreases over depth. This forms the foundation

of our lighting model.

Figure 3.21 Beer's law curve

21

Figure 3.22 Only Beer-Lambert's law of illumination

3.2.2 Directional scattering

Directional scattering is the luminous property of the cloud. This is responsible for

cloud lighting effects such as silver lining, fogbow, and glory. Due to the

computational power limitations, we are not able to use Mie scattering phase

function, which accurately describes the angular distribution of scattered light.

A common way of approximating the Mie scattering is to use the much simpler

Henyey-Greenstein phase function. In 1941, the Henyey-Greenstein model was

developed to help astronomers with light calculations at galactic scales, but today it

is used to reliably reproduce Anisotropy in cloud lighting. The Henyey-Greenstein

phase function is well suited for describing the angular distribution of scattered light

in clouds as it offers a very high forward-scattering peak. The Henyey-Greenstein

phase function is given as:

𝐻𝐺(𝜃) =

1 − 𝑔2

4𝜋(1 + 𝑔2 − 2𝑔 𝑐𝑜𝑠𝜃)3/2
 (3.3)

where 𝐻𝐺 is the magnitude of the scattered light, for a certain angle 𝜃, and 𝑔 ∈

 [−1, 1] is a parameter which determines the concentration of the scattering; a

negative 𝑔 gives backward scattering [8].

22

Figure 3.23 Henyey-Greenstein scattering phase function for g = 0.9

To calculate the cosine of an angle 𝜃 we need a dot product of a normalized light

vector and normalized view vector.

Figure 3.24 Beer-Lambert’s law with Henyey-Greenstein phase function

3.2.3 In-scattering

This produces the dark edges and bases on the clouds. The dark edges on the

clouds as shown in Figure 1.4 is something that is not as well documented with

solutions, so Andrew Schneider and his team had to tackle the problem.

In-scattering is when a light ray that has scattered in a cloud is combined with others

on its way to the eye, essentially brightening the region of the cloud you are looking

at. In order for this to occur, an area must have a lot of rays scattering into it, which

only occurs where there is cloud material. This means that the deeper in the cloud

we are, the more scattering contributors there are, and the cloud is brighter.

Consequently, the amount of in-scattering on the edges of the clouds is lower, which

23

makes them appear dark. Also, since there are no strong scattering sources below

clouds, the bottoms of them will have fewer occurrences of in-scattering as well.

The reason we do not see this effect automatically is that our transmittance function

is an approximation and does not take it into account. Therefore, we must

approximate the in-scattering by using the following function:

 𝑆(𝑑) = 1 − 𝑒−𝑐𝑑 (3.4)

where 𝑆 is the intensity of the scattered light, 𝑐 is a variable that determines how

fast the scattering effect builds up in the cloud, and 𝑑 is the length the light travels

through the cloud. This function together with Beer-Lambert’s law constitutes our

light function called Beer’s-Powder approximation method.

Figure 3.25 Beer's-Powder approximation method

We can see how a light ray, that passes through a cloud, first starts to scatter but

as the cloud attenuates the light, the brightness falls off.

Figure 3.26 Difference in cloud appearance when utilizing different methods

24

Figure 3.26 shows how different lighting methods affect the cloud appearance. If

uniform lighting is applied, we can discern from the shape that what we see is a

cloud, but the cloud lacks all its features. When only Beer’s law is used, we can see

cloud features but the dark edges on the top of the cloud are missing. Powder effect

enhances areas where there is very little cloud material, but incorrectly highlights

the bottom of the cloud. Beer’s-Powder effect both highlights the dark edges and

correctly simulates transmittance in the cloud.

3.3 Rendering

To render clouds realistically, we would need to trace each photon radiating from

the sun, follow their paths as they scatter through the clouds and register those few

photons that end up in the camera. This is of course computationally very intensive,

and we do not want to trace all photons that never end up in the viewer’s

perspective. Therefore, our cloud rendering algorithm is using a ray marching

technique, which means that we reversely trace a ray from the camera into the

scene instead.

3.3.1 Ray marching

Ray marching is the volumetric rendering technique that we use to render volumetric

objects in our scene, volumetric objects in our case being clouds. When we use this

technique, the scene is rendered by iterating through every pixel on the screen, and

for each pixel, we march along a ray in the direction of the view vector, at each

sample point along that ray we evaluate density and lighting. More sample points

yield better results but are in turn more expensive.

Figure 3.27 Ray marching

25

The rays that are cast from the camera advance by a constant step and evaluate

density samples along the ray. The clouds are procedurally generated and stored

in 3D textures that are placed in the scene. When we evaluate a point along the ray

and determine it has a non-zero density value we know we are inside a cloud. Now,

to give this point in the cloud some color we can light it by shooting a ray towards

our single light source, the sun, and use the resulting energy information to color

that point. This means that we are only considering the first order of scattering.

In our ray marching algorithm, we can set a maximum number of steps before

algorithm stops and moves to the next pixel, this way we can stop the algorithm

from continuing indefinitely in one direction. We can limit the number of steps we

need to take along the ray further by setting the bounds in our algorithm. As shown

in Figure 3.28 we can set lower atmosphere layer at a distance of 1500 meters, and

upper atmosphere layer at a distance of 4000 meters. This way we only need to

march between those two points along the ray.

Figure 3.28 Atmosphere layers

Instead of sampling cloud density and illumination along the second ray towards the

sun for each sample point of our first ray, we can use Cone sampling (Figure 3.29).

Cone sampling is a more efficient way of determining the light energy that will be

received by that point. Cone sampling involves taking some number of samples

from inside the volume of a cone that is aligned with our light source. We take six

samples using Cone sampling and make sure to have at least one placed relatively

far. This far-away sample is a way of taking into account if the cloud and hence point

we are trying to light are occluded by another cloud in the distance. Using these six

26

samples from within the cone we get a density value which is used to attenuate the

light energy reaching the point we are trying to color.

Algorithm 3 Cone sampling

1: float SampleCloudDensityAlongCone(p, ray_direction)
2: {
3: float density_along_cone = 0.0;
4: for(int i=0; i<=6; i++)
5: {
6: // add the current step offset to the sample position
7: p += light_step + (cone_spread_multiplier * noise_kernel[i] *
8: float(i));
9: // sample cloud density the expensive way
10: int mip_offset = int(i * 0.5);
11: density_along_cone += SampleCloudDensity(p, weather_data,
12: mip_level + mip_offset, false);
13: }
14: return density_along_cone;
15: }

Figure 3.29 Cone sampling along the ray

3.4 Tone mapping

Tone mapping is a technique used to map one color space into another to

approximate the appearance of high dynamic range images because displays and

monitors have more limited dynamic ranges. Usually, the color channels in the

framebuffers are stored as 8-bit values, ranging from 0 to 1. This means that the

color channels can only assume 256 different values. This is all right for most

applications, but the nature of the clouds and sun gives us very bright areas on the

screen. This can lead to parts of the screen losing important color information as

the colors get rounded to the nearest of the 256 values. A way around this problem

is to use high dynamic range (HDR) lighting. Instead of binding textures with 8-bit

values for each color channel, a floating-point value is used. HDR lighting also

27

allows us to assign color values above 1 to the framebuffer. Before the final

framebuffer is rendered to the screen, the values need to be transformed back to

the range [0, 1]. The Uncharted 2 tone mapping technique was implemented

because it is very good and has become quite popular.

Algorithm 4 Uncharted 2 tone mapping

1: float3 ToneMapping(float3 x)
2: {
3: const float A = 0.15;
4: const float B = 0.50;
5: const float C = 0.10;
6: const float D = 0.20;
7: const float E = 0.02;
8: const float F = 0.30;
9: return ((x*(A*x + C * B) + D * E) / (x*(A*x + B) + D * F)) - E / F;
10: }

Figure 3.30 Rendered scene without tone mapping

In Figure 3.30 we can see how a non-HDR compliant monitor reacts to an HDR

image; colors are rendered incorrectly, and we lose important cloud details.

28

4. Optimizations

In order to achieve real-time performance for this cloud rendering technique, several

optimizations techniques have been implemented. Without these optimization

techniques, our render times would be greater than 100 milliseconds, basically

rendering our approach to the volumetric rendering of clouds useless.

4.1 Cone sampling

As described in Section 3.3.1, instead of using second ray march to determine the

illumination of the point inside of the cloud we can use Cone sampling. Cone

sampling is a more efficient way of determining the light energy that will be received

by that point because we randomly choose several points in the general direction of

the sun and approximate the lighting based on that.

4.2 Subsampling

Subsampling is a technique of decreasing the render targets resolution by the power

of two. It can greatly reduce render time of a scene, and thus easily provide real-

time performance. By further lowering resolution we could gain even greater

performance boost but at the cost of a blurrier result.

4.3 Horizon culling

Because we cannot see clouds below the horizon line, we can exclude these clouds

from rendering. Also due to the tiling nature of our base shape texture, when the

cloud sphere drops below the horizon it starts to tile noticeably.

4.4 Cheap sampling

If we are not inside of the cloud we do not need to apply high detail noise, sample

illumination, or for that matter apply any effect until we find ourselves inside of a

cloud. Also, when we are doing Cheap sampling we also increase our step size

while ray marching. Sampler does cheap work unless it samples density that is

different than zero, in which case it starts using all the rendering techniques

mentioned before while also decreasing step size. If the sampler does not sample

29

any density greater than zero for ten consecutive steps it again performs Cheap

sampling.

4.5 Early exit

When we sample points along the ray we accumulate density value, i.e. increment

alpha value. When the alpha value reaches 1 we do not need to keep sampling, so

we stop the ray marching early.

4.6 Temporal reprojection

Temporal reprojection is a technique that uses pixels from the previous frame to

color the pixels in the current frame. This is done by projecting the old frame onto

the current frame. We calculate how much the camera has moved between two

frames.

This technique is implemented as follows:

1. We store our previous frame in a texture.

2. We store the old camera information.

3. For a given pixel in the current frame, ray cast using the ray created by the

current camera and the current pixels uv coordinates.

4. The ray cast will intersect with the sphere representing the inner layer of the

atmosphere. The point of intersection gives us a world space position.

5. This world space position is then converted all the way back into uv

coordinates using the old camera's view and projection matrices.

6. This uv coordinate if in the range from [0,1] can be used to sample the pixel

in the old frame that will be used to fill in the pixel in the current frame.

Using this reprojection technique we can get away with only ray marching for 1/16th

of the pixels in the current frame. The other 15 of the 16 pixels are filled in using

reprojection.

This technique is the main reason the volumetric clouds were able to become a

reality for the real-time applications. It improved the shader speed by as much as

ten times making it feasible for use in game development.

30

5. Results

In this section, we will focus on the performance and visual aspect of this rendering

technique which requires few precalculated resources. The performance aspect is

measured in an empty scene containing only the terrain collider. Additional objects

and scripts in the ‘Pometeno Brdo’ scene makes rendering even more challenging

and pushes our rendering times higher. The visual aspect is focused on the clouds

placed in the ‘Pometeno Brdo’ scene.

5.1 Hardware and Software

All results are captured on a Windows 10 machine with an Intel Core 2 Quad Q9550

CPU running at 2.88 GHz, 8 GB of DDR2 RAM and a Nvidia GTX 1050 Ti 4GB card

running at 1800 MHz. The resolution of the application was set at 1920 x 1080.

All the measurements were captured in the Unity profiler window which includes the

ability to monitor CPU, GPU, and RAM usages together with the ability to specifically

say which piece of the code is the bottleneck.

5.2 Resources

The implementation of this cloud rendering technique requires few precalculated

resources that are needed to achieve real-time performance.

Texture Dimensions Format Size

Cloud shape 128 x 128 x 128 RGBA32 8192 KB

Cloud detail 32 x 32 x 32 RGB24 96 KB

Curl noise 128 x 128 RGB24 48 KB

Weather 512 x 512 RGBA32 1024 KB

Figure 5.1 Required resources

The total size of all these files is 9360 KB, i.e. 9.1 MB.

5.3 Performance

Most computations are performed in the pixel shader on the GPU, therefore the

whole scene is GPU intensive. Although CPU is not utilized as much, it can still

31

present a problem. Older CPUs, like the Core 2 Quad series, which were released

back in 2008, cannot compare with modern day CPUs in regards with instructions

per clock (IPC) and memory latency, all of which can affect the performance of a

GPU in a way.

Figure 5.2 Run-time performance as a function of subsampling

Subsampling is a technique where we decrease render target resolution, and with

the decreased resolution, it is natural to expect that the render time decreases.

Figure 5.3 Run-time performance as a function of atmospheric distance

Short atmospheric distance means that the horizon is closer to the observer, which

in turn means that our rendering algorithm more often finishes before it reaches the

second layer of the atmosphere, therefore, performance is better at closer

distances.

32

Figure 5.4 Run-time performance as a function of reprojection scale

At the base settings with lots of optimizations in place, we can see that reprojection

can only benefit render time so far after which it loses on the effectiveness and starts

to add perceived motion blur.

Figure 5.5 Run-time performance as a function of cloud coverage

When coverage is high, almost the entire sky is covered by the clouds and when

coverage is set to low only a small part of the screen has clouds in it. As expected

a low coverage is much faster mostly due to the early exit.

33

5.4 Visual results

Photographs are taken during gameplay. The scene is comprised of volumetric

clouds, dynamic lighting, and wind generators.

Figure 5.6 Yellow sunset

Figure 5.7 Interaction of smoke with a wind generator

34

Figure 5.8 Dusklight interacting with the Cumulus clouds

Figure 5.9 Stratocumulus clouds casting a shadow onto the terrain

35

6. Conclusion

The cloud rendering technique presented in this thesis can produce lots of

volumetric clouds under fully dynamic lighting conditions. The technique achieved

real-time performance, meaning the render time is under 33 milliseconds i.e.

framerate of 30 frames per second, giving us smooth and responsive gameplay. To

achieve such fast render time, we had to implement few optimizations and use

approximations. This shows how powerful and versatile commercial game engines

are, to have the ability to implement cutting-edge techniques while also maintaining

visual fidelity. Furthermore, many other people in the industry are beginning to

incorporate this technique into their rendering engines, both at game and animation

studios.

One optimization that seems very promising is to pre-compute shadows. Since we

assume that the direction to the sun is parallel, shadows could be pre-calculated

and stored in a look-up table. This look-up table would only need to be updated

when the sun has moved. Since we take four additional samples towards the sun

for every sample this would greatly reduce the number of samples.

The implementation of the phase function also posed an interesting question: is it

worth three times larger performance impact to read the texture with the realistic

phase function, or are we satisfied with it being approximated and calculated in the

fragment shader?

Although it can impact application’s performance, volumetric cloud rendering brings

great benefits to the table, such as easily configurable weather, easily configurable

clouds, better realism and immersive surroundings. All these attributes are useful to

the game designers who are trying to induce emotions in gamers.

36

Bibliography

[1] M. Ikits, J. Kniss, A. Lefohn and C. Hansen. GPU Gems: Volume rendering

techniques.

https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch39.html,

2004. [Accessed: 25/04/2018]

[2] Patapom. Real-Time Volumetric Rendering.

http://patapom.com/topics/Revision2013/Revision%202013%20-%20Real-

time%20Volumetric%20Rendering%20Course%20Notes.pdf, 2013.

[Accessed: 17/06/2018].

[3] Í. Quílez, Raymarching distance fields,

http://www.iquilezles.org/www/articles/raymarchingdf/raymarchingdf.htm,

2008. [Accessed 18/05/2018].

[4] A. Schneider and N. Vos. The Real-Time Volumetric Cloudscapes of Horizon

Zero Dawn. https://www.guerrilla-games.com/read/the-real-time-volumetric-

cloudscapes-of-horizon-zero-dawn, 2015. [Accessed 10/06/2018].

[5] A. Schneider. Nubis: Authoring Real-Time Volumetric Cloudscapes with the

Decima Engine. https://www.guerrilla-games.com/read/nubis-authoring-real-

time-volumetric-cloudscapes-with-the-decima-engine, 2017. [Accessed:

12/06/2018]

[6] M. J. Harris and A. Lastra. Real-Time Cloud Rendering. Eurographics 2001,

2002.

[7] R. Olajos. Real-Time Rendering of Volumetric Clouds. Master’s thesis. Lund

University, 2016.

[8] A. Sachan and M. Seshadri. Meteoros. Final project. University of

Pennsylvania, 2017.

[9] D. W. Hahn. Light Scattering Theory.

http://plaza.ufl.edu/dwhahn/Rayleigh%20and%20Mie%20Light%20Scatterin

g.pdf, 2009. [Accessed: 12/04/2018]

[10] K. Perlin. An image synthesizer. SIGGRAPH Computer Graphics: Volume 19

Issue 3, 1985.

[11] S. Worley. A cellular texture basis function. SIGGRAPH ’96, 1996.

https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch39.html
http://patapom.com/topics/Revision2013/Revision%202013%20-%20Real-time%20Volumetric%20Rendering%20Course%20Notes.pdf
http://patapom.com/topics/Revision2013/Revision%202013%20-%20Real-time%20Volumetric%20Rendering%20Course%20Notes.pdf
http://www.iquilezles.org/www/articles/raymarchingdf/raymarchingdf.htm
https://www.guerrilla-games.com/read/the-real-time-volumetric-cloudscapes-of-horizon-zero-dawn
https://www.guerrilla-games.com/read/the-real-time-volumetric-cloudscapes-of-horizon-zero-dawn
https://www.guerrilla-games.com/read/nubis-authoring-real-time-volumetric-cloudscapes-with-the-decima-engine
https://www.guerrilla-games.com/read/nubis-authoring-real-time-volumetric-cloudscapes-with-the-decima-engine
http://plaza.ufl.edu/dwhahn/Rayleigh%20and%20Mie%20Light%20Scattering.pdf
http://plaza.ufl.edu/dwhahn/Rayleigh%20and%20Mie%20Light%20Scattering.pdf

Volumetric Atmospheric Effects Rendering

Abstract

In search of a better and more realistic game environment, graphic designers

together with game developers have implemented a new way to render

cloudscapes. The standard way of rendering clouds consists of skyboxes with flat

textures that follow the player in the scene, and it works well in 3D scenes where

the camera is expected to be far away from the clouds. But in open world games

where the position of the camera cannot be assumed, skyboxes give a static

impression and flat textures can give artifacts.

Volumetric clouds are dynamic and look realistic but can also be easily manipulated

which is something game designers require. Rendering volumetric clouds is a

compute-intensive process which makes it difficult to use in real-time applications.

This thesis presents a way of rendering volumetric clouds in Unity by using

precalculated 3D cloud textures and real-time shader calculations.

Keywords: ray marching, volumetric clouds, volumetric shading, real-time

rendering

Volumetrijske tehnike u ostvarivanju prikaza atmosferskih učinaka

Sažetak

U potrazi za boljom i vizualno ljepšom scenom u igrama, grafički dizajneri u suradnji

sa programerima za igre su implementirali nov način kako iscrtati oblake. Uobičajen

način iscrtavanja oblaka se sastoji od pozadine sa plosnatim teksturama koje prate

igrača u sceni, taj pristup funkcionira dobro u 3D scenama gdje se očekuje da će

kamera biti daleko od oblaka. Ali u igrama otvorenog tipa gdje se pozicija kamere

ne može pretpostaviti, pozadina može dati statički dojam, a plosnate teksture mogu

dati artefakte.

Volumetrijski oblaci su dinamički i izgledaju realistično te se također mogu lako

manipulirati što je privlačno dizajnerima igara. Iscrtavanje volumetrijskih oblaka je

računski intenzivan proces što otežava njihovu primjenu kod aplikacija u stvarnom

vremenu.

Ovaj rad prikazuje način iscrtavanja volumetrijskih oblaka u Unity razvojnoj okolini

koristeći unaprijed izračunate 3D teksture oblaka i sjenčanje u stvarnom vremenu.

Ključne riječi: sjenčanje pretragom zrake, volumetrijski oblaci, volumetrijsko

sjenčanje, iscrtavanje u stvarnom vremenu

