
UNIVERSITY OF ZAGREB 

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING 

 

 

 

 

 

 

 

 

MASTER THESIS No. 1594 

 

Volumetric Atmospheric Effects Rendering 

 

Dean Babić 

 

 

 

 

 

 

 

 

 

 

 

Zagreb, June 2018



 



 



 

Acknowledgments 

Firstly, I would like to thank my mentor, Prof. dr. sc. Željka Mihajlović for the time 

she dedicated towards my education and the effort she put into my projects. 

I would especially want to thank my girlfriend for her support and help with 

proofreading my work. 

Finally, I would like to thank my dear family and friends for their help, support and 

good times during all these years throughout my education. 



Contents 

1. Introduction ...................................................................................................... 1 

1.1 Cloud rendering ......................................................................................... 1 

1.2 Practical solution ....................................................................................... 2 

1.3 Restrictions and references ....................................................................... 2 

2. Cloud physics .................................................................................................. 4 

2.1 Types of clouds ......................................................................................... 4 

2.2 Behavior .................................................................................................... 5 

2.3 Lighting ...................................................................................................... 5 

2.3.1 Absorption........................................................................................... 6 

2.3.2 Scattering............................................................................................ 7 

2.3.3 Extinction ............................................................................................ 8 

2.3.4 Transmittance ..................................................................................... 8 

2.3.5 Emission ............................................................................................. 8 

2.3.6 Radiative transfer equation ................................................................. 9 

3. Implementation .............................................................................................. 10 

3.1 Modeling .................................................................................................. 10 

3.1.1 Noise functions ................................................................................. 10 

3.1.2 Remap function ................................................................................. 13 

3.1.3 Cloud textures ................................................................................... 14 

3.1.4 Weather texture ................................................................................ 17 

3.1.5 Cloud shape definition ...................................................................... 18 

3.2 Lighting .................................................................................................... 20 

3.2.1 Out-scattering ................................................................................... 20 

3.2.2 Directional scattering ........................................................................ 21 

3.2.3 In-scattering ...................................................................................... 22 



3.3 Rendering ................................................................................................ 24 

3.3.1 Ray marching .................................................................................... 24 

3.4 Tone mapping ......................................................................................... 26 

4. Optimizations ................................................................................................. 28 

4.1 Cone sampling ........................................................................................ 28 

4.2 Subsampling ........................................................................................... 28 

4.3 Horizon culling ......................................................................................... 28 

4.4 Cheap sampling ...................................................................................... 28 

4.5 Early exit ................................................................................................. 29 

4.6 Temporal reprojection ............................................................................. 29 

5. Results ........................................................................................................... 30 

5.1 Hardware and Software ........................................................................... 30 

5.2 Resources ............................................................................................... 30 

5.3 Performance ............................................................................................ 30 

5.4 Visual results ........................................................................................... 33 

6. Conclusion ..................................................................................................... 35 

Bibliography .......................................................................................................... 36 

 

 



1 
 

1.  Introduction 

Realistic and impressive graphics is the goal of every game developer, to stay 

ahead of the competition and to offer the gamer the best gameplay.  But they can 

push the graphics so far before computational power becomes an issue. With the 

advancements in hardware capabilities, we can use techniques that were previously 

only suited for offline rendering in real-time, but with some necessary optimizations 

and approximations. 

One of those techniques is rendering of realistic and convincing cloud scenes. 

Realistic and convincing cloud scenes are not only the result of light scattering in 

participating media but also the result of dynamic clouds that can evolve over time, 

cast shadows and interact with its environment.  

1.1 Cloud rendering 

The area of cloud rendering is well researched in computer graphics. Many different 

techniques for rendering realistic cloudscapes have been developed over the years, 

but they are often not fast enough to be used in real-time applications. One common 

solution is to use flat textures along with the skybox. This can produce very realistic 

clouds but only if the observer is placed at the ground level and is not expected to 

travel too far, such as first-person shooters and racing games. But in open-world 

games, a skybox would give a static feel and the sense of travel would be lost. By 

using 2D textures to render clouds we are losing the depth perception and the 

clouds appear flat. Also, it is possible to use a sequence of images to animate 2D 

billboards at least making clouds somewhat dynamic and interesting. But if we want 

better and far more immersive results volumetric clouds are needed. 

The cloud system in this thesis is inspired by a recent technique developed by 

Andrew Schneider and Nathan Vos [4]. Their work showcased the ability to render 

clouds faithfully, with the ability to control their size, shape, speed, and lighting under 

2 milliseconds. Furthermore, they improved the technique further by reducing the 

computational time, by introducing a better way to control the modeling, animating 

and lighting of clouds and by implementing weather simulation for the cloud system 

‘Nubis’ that was originally made for the game ‘Horizon Zero Dawn’ [5]. 
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1.2 Practical solution 

The goal of this thesis was to investigate and implement a technique for rendering 

realistic clouds within Unity game engine in real-time. The rendering technique will 

be based on the cloud system ‘Nubis’ and will be able to produce clouds that are 

different in their shape, type, and density, while still being dynamic and evolve over 

time. The clouds should be rendered into a spherical atmosphere which would allow 

them to bend over the horizon. For the clouds to appear dynamic, we must render 

them in real-time. Real-time means that we are aiming for a frame time of about 33 

milliseconds, effectively giving us a render frequency of 30 frames per second. The 

clouds are used to enhance the feeling of the scenery in the ‘Pometeno Brdo’ project 

which visualizes the Končar wind farm. 

1.3 Restrictions and references 

The approach was to analyze and assess different techniques to render volumetric 

clouds and to implement them in the Unity game engine with careful considerations 

of the render times. The solution was evaluated both by the time it takes to render 

and the number of resources required. In order to evaluate how realistic the clouds 

are, real photographs are used for comparison. 

Photographs of clouds are presented to show the kind of effects we are trying to 

accomplish. Figure 1.1 shows how the sunlight scatters through the clouds, which 

results in bright edges and dark bottoms. 

 

Figure 1.1 A photograph showing clouds with flat bottoms and rounded, whispy tops. 
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Figure 1.2 We can see how the light attenuates as it travels through the cloud 

 

Figure 1.3 A photograph showing forward scattering in the direction of the sun 

 

Figure 1.4 Packed round shapes like cauliflower, billows  



4 
 

2.  Cloud physics 

Water vapor is invisible to the human eye, and it is not until water condensates in 

the air, that clouds appear. Clouds are formed when the humid air rises and expands 

as it reaches lower atmospheric pressure. This is because when the air expands, 

the temperature falls, and the water vapor in the humid air condenses. The 

formation and structure of clouds are very dynamic and are mainly the result of 

vertical motions. The convection plays a big part in the features of the clouds. 

Another aspect that contributes to the features of the clouds is the droplet size 

distribution. The droplet size distribution affects the Mie scattering, which accurately 

describes how the photons scatter inside the water droplets for different angles of 

approach [9].  

2.1 Types of clouds 

Clouds can appear in many different shapes and variations. Most cloud types are 

named after a combination of its attributes. 

 

Figure 2.1 Cloud types and names 

The attribute Cumulus is used for clouds that have a puffy appearance. Clouds that 

have the attribute Stratus appear as long flat layers. The attribute Cirrus is used to 

describe whispy stretched clouds that exist high in the atmosphere. The last 

common attribute is Nimbus which is used for clouds with precipitation.  
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Clouds below 1.5 km retained their names like Stratus and Cumulus, etc., clouds 

above 1.5 km but below 4 km in altitude earned the prefix ‘Alto’, giving us names 

like Altocumulus and Altostratus. Clouds above 4 km, in the top of the cloud zone, 

earned the prefix Cirro. 

Warm water vapor creates Cumulus clouds and pushes them upwards into the 

atmosphere. This updraft is part of what is known as a convection current. When 

this current pushes the Cumulus clouds all the way to the Cirro layer we can often 

see a classic anvil shape. This happens because the warm water vapor hits the cold 

Cirro layer and is not able to continue rising but rather cools down, condenses and 

starts to fall. 

2.2 Behavior 

When modeling clouds it is important to follow their physical behavior for them to be 

realistic. Temperature and pressure are key components of how clouds form and 

behave. As water vapor rises with heat into the atmosphere, where it is colder, the 

water condensates and forms into clouds. Air temperature decreases over altitude 

and since saturation vapor pressure strongly decreases with temperature, dense 

clouds are generally found at lower altitudes. Rain clouds appear darker than others 

which is the result of larger droplet sizes. This is because larger droplets absorb 

more and scatter less light. 

Wind is another force that drives clouds and is caused by differences in pressure at 

different parts of the atmosphere. Clouds can, therefore, have different wind 

directions at different altitudes. Since our focus is low altitude clouds close to the 

viewer, we assume that all these clouds move in the same wind direction. 

2.3 Lighting 

This section covers light behavior when traveling through participating media [2]. 

Participating media is a volume where refraction, density and/or albedo (ratio of 

reflected over incoming light) changes locally. Real world clouds do not have a 

surface that reflects the light, instead light travels through them. Photons interact 

with water droplets, that may absorb or scatter them, which causes a change in 

radiance.  
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Consider a single particle, molecule, dust, a water droplet, etc. as shown in Figure 

2.2. Photons are going to interact with it and bounce off its ‘surface’. In the case of 

clouds, imagine a single microscopic water droplet, the droplet will either refract or 

reflect the rays of light, but almost none of them will be absorbed; therefore, clouds 

are so bright, i.e. their albedo is nearly 100%. 

 

Figure 2.2 Light refracting off an atom 

But when the medium is filled with a large density of such particles then it is possible 

that the light might get absorbed. 

There are four different ways radiance may change in participating media, these 

four different ways are described in Figure 2.3. It can be due to absorption, in-

scattering, out-scattering or emission. 

 

Figure 2.3 Four ways light can interact with participating media 

2.3.1  Absorption 

Absorption coefficient 𝜎𝑎 is the probability that a photon is absorbed when traveling 

through participating media. When a photon is absorbed, it causes a change in 

radiance. Reduced radiance due to absorption at position 𝑥 when a light ray of 

radiance 𝐿 travels along 𝜔⃗⃗  is given by equation (2.1). 
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 𝑒−𝜎𝑎(𝑥)𝑑𝑡𝐿(𝑥, 𝜔⃗⃗  ) (2.1) 

Rain clouds are generally darker because they absorb more light. This is because 

rain clouds have a higher presence of larger water droplets, which are more 

effective at absorbing light. 

2.3.2  Scattering 

Radiance may increase due to in-scattering or decrease due to out-scattering. The 

coefficient 𝜎𝑠 is the probability that a photon will scatter when traveling through 

participating media. Increased radiance due to in-scattering is shown in equation 

(2.2). In this equation 𝑃(𝑥, 𝜔⃗⃗ ) is a phase function, which determines the out-scatter 

direction from the light direction 𝜔⃗⃗ .  

 
𝐿𝑖(𝑥, 𝜔⃗⃗ ) = ∫ 𝑃(𝑥, 𝜔⃗⃗ )𝐿(𝑥, 𝜔⃗⃗ )𝑑𝜔⃗⃗ 

𝛺4𝜋

 (2.2) 

Many different phase functions exist and are suitable for different types of 

participating media. The phase function can scatter light uniformly in all directions 

as the isotropic or scatter light differently for every direction. For larger particles like 

pollutants, aerosols, dust and water droplets we must use Mie scattering. Mie 

scattering theory is very difficult to comprehend, the variety and complexity of 

shapes and behaviors of various components of the atmosphere usually makes 

phase function very difficult to work with.  

For example, here is what an average statistical phase function of a cloud would 

look like: 

 

Figure 2.4 Mie scattering of a cloud 
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Clouds are generally white because they scatter light independently of the 

wavelength as opposed to atmospheric scattering which scatters blue wavelengths 

more than others. 

2.3.3  Extinction 

Extinction coefficient 𝜎𝑡 is the probability that photon traveling through a 

participating media interacts with it. The probability that a photon interacts and 

therefore causes a reduction in radiance is the sum of the probabilities for photon 

either being absorbed or out-scattered as described in Equation (2.3) 

 𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 (2.3) 

2.3.4  Transmittance 

Transmittance 𝑇𝑟 is the number of photons that travel unobstructed between two 

points along a straight line. The transmittance can be calculated by using Beer–

Lambert’s law as described in Equation (2.4). 

 𝑇𝑟(𝑥0, 𝑥1) =  𝑒
−∫ 𝜎𝑡(𝑥)𝑑𝑥

𝑥1
𝑥0  (2.4) 

 

Figure 2.5 Intensity decrease through the cloud 

So, any radiance ∆𝑥 at distance entering the cloud will see its intensity decrease: 

 𝑒−𝜎t∆𝑥𝐿(𝑥 + ∆𝑥𝜔⃗⃗ , 𝜔⃗⃗ ) (2.5) 

2.3.5  Emission 

Emission is the process of increased radiance due to other forms of energy that 

have transformed into light. Increased radiance caused by an emission at a point 𝑥 

along a ray 𝜔⃗⃗  is denoted by 𝐿𝑒(𝑥, 𝜔⃗⃗  ). Clouds do not emit light unless a light source 

is placed within, e.g. lightning, plane. 
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2.3.6  Radiative transfer equation 

By combining the equations of the four ways that light can interact with participating 

media, it is possible to derive the radiative transfer equation through the law of 

conservation of energy. The radiative transfer equation is shown in Equation (2.6) 

and describes the radiance at position 𝑥 along a ray with the direction 𝜔⃗⃗  within a 

participating medium. 

  

 

𝐿(𝑥, 𝜔⃗⃗  ) = 𝑇𝑟(𝑥 , 𝑥𝑠)𝐿(𝑥𝑠, −𝜔⃗⃗  ) + ∫𝑇𝑟(𝑥 , 𝑥𝑡)𝐿𝑒(𝑥𝑡, −𝜔⃗⃗  )𝑑𝑡

𝑠

0

+ ∫𝑇𝑟(𝑥 , 𝑥𝑡)𝜎𝑠𝑥𝑡𝐿𝑖(𝑥𝑡, −𝜔⃗⃗  )𝑑𝑡

𝑠

0

 

(2.6) 
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3.  Implementation 

This section shows how to create volumetric clouds within Unity game engine. It 

also covers resources required, how they are generated and used. First, we will 

discuss how to generate cloud textures by utilizing noise functions. After that, we 

need to see how to properly handle lighting of the cloudscapes. Finally, we need to 

generate shader code to render the whole scene. 

3.1 Modeling 

The best way for us to approximate the shape and form of a cloud is through 

procedural generation. The typical way of rendering procedural clouds, or anything 

procedural for that matter, is to use noise functions, whether it be 2D clouds or 

volumetric 3D clouds.  

3.1.1  Noise functions 

This section covers the different noises that are used to create the cloud shapes 

and how these are generated. A combination of both Perlin and Worley noises are 

used to create clouds shapes. We pre-generate these noises in two different three-

dimensional textures on the CPU and then use them in the shader. 

3.1.1.1  Perlin noise 

In 1985, Ken Perlin presented a technique for generating natural appearing noise, 

commonly known as Perlin noise [10]. Perlin noise is lattice-based and is generated 

by assigning a random gradient vector to each intersection of the lattice (Figure 3.1). 

When the value of the noise is read at a specific coordinate, the lattice cell wherein 

the coordinate lies is determined by rounding coordinates to the nearest cell. By 

utilizing modulo operation on all three axes we can determine where coordinate lies 

inside of the cell. Next, we need to calculate eight vectors from the given point to 

the surrounding eight points on the cell called distance vectors. Afterward, we take 

the dot product between two vectors, gradient and distance vector, which gives us 

influence values of each gradient vector. So now we need to interpolate between 

these eight values using the fade function because linear interpolation looks 

unnatural (3.1). Fade function for the improved Perlin noise implementation is: 
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 6𝑡5 −  15𝑡4 + 10𝑡3 (3.1) 

Figure 3.2 shows what the resulting noise texture might look like. The texture may 

appear random, yet it has some structure making it suitable as a base texture of the 

clouds. By assigning the gradient vectors to the lattice in a repeating pattern, a 

wrapping texture can be attained. 

 

Figure 3.1 Perlin noise vector lattice 

 

Figure 3.2 Perlin noise 

3.1.1.2  Worley noise 

Also known as Cellular noise or Voronoi noise, is a point-based noise as opposed 

to the lattice-based Perlin noise [11]. We use this noise type to create both whispy 

and billowing shaped clouds. The idea is to take random feature points in space and 

then for every point in the space assign the value which corresponds to the range 

to the closest feature point (Figure 3.3).  

 

Figure 3.3 Worley noise feature points 
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But this approach is very slow especially so in three dimensions. Therefore, the 

naïve approach needs to be optimized as described in the steps below. 

1. Subdivide a cuboid into equally sized cells. 

2. For each cell, randomly place a feature point inside it. There must be only 

one feature point per cell. 

3. For each point inside the cuboid, we apply color by measuring the Euclidian 

distance to the closest feature point and use that distance as a color.  

The distance to the closest feature point is found by evaluating the feature point 

inside the current and surrounding 26 cells. By wrapping the edges, the texture will 

be tileable in all three dimensions. 

This gives a result with ball-like features around each feature point which better 

imitates the look of a cloud. A cross-section of our 3D Worley noise is presented in 

Figure 3.4. 

 

Figure 3.4 Worley noise 

This algorithm can generate different octaves of Worley noise by changing the cell 

size. An octave is half or double of the current frequency and appears at intervals 

of 2n. For example, generating Worley noise with four octaves and a cell size of two 

as starting frequency makes the following three octaves to be four, eight and 

sixteen. 

3.1.1.3  Fractional Brownian motion 

The noise textures described above form the foundation for our cloud textures. The 

next step of our noise generation is called fractional Brownian motion, often 

abbreviated as fBm, which when applied to noise textures renders results that look 

like smoke or clouds. The fBm noise is constructed by layering a noise texture of 
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different sampling frequencies (octaves) on top of each other. By changing the 

frequency in powers of 2, the wrapping effect can be preserved. 

 

Figure 3.5 (a) Perlin noise with 5 octaves of fBm, (b) Cellular noise with 5 octaves of fBm 

Compared to Figure 3.2 and Figure 3.4, we can see that the underlying structure is 

the same, but the overall noise texture has much finer details. 

3.1.1.4  Perlin-Worley noise 

Created by Andrew Schneider for use in ‘Nubis’ cloud system [4]. The noise is 

comprised of Perlin and inverted Worley noise layered on top of each other like the 

standard fBm approach. Worley noise is great for simulating tightly packed billow 

shapes as seen in Figure 1.4, but it lacks connectedness of the Perlin noise. 

Inverted Worley noise is used as an offset to dilate Perlin noise, this way they 

preserved qualities of both methods. 

   

Figure 3.6 From left to right: Perlin, Inverted Worley, and Perlin-Worley 

3.1.2  Remap function 

Remap function is a function that is used ubiquitously in modeling and lighting of 

these clouds, reason being the fact it can prevent the loss of information as opposed 

to texture multiplying. The remap function simply takes a value, that lies inside one 

range [original_min, original_max] and maps it to another range [new_min, 

new_max], and is calculated like this: 
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Algorithm 1 Remap function 

1: float remap(float value, float original_min, float original_max, float new_min, 
2:  float new_max) 
3: { 
4: return new_min + (((value - original_min) / (original_max - original_min)) 
5:   * (new_max - new_min)); 
6: }  

3.1.3  Cloud textures 

The noise generation algorithms presented above can be quite costly and the 

resulting textures are therefore precalculated and stored on the hard drive. To 

generate clouds as they are in ‘Nubis’ cloud system we need three textures. Two 

three-dimensional textures and one two-dimensional texture. It is always good to 

keep the resolution of the textures low in order to improve performance. 

The first three-dimensional texture is used to create the base shape of the clouds. 

It has four channels, one with Perlin-Worley noise and three with different octaves 

of Worley noise. The resolution of this texture is 1283.  

 

Figure 3.7 From left to right: Perlin-Worley, and three Worley noises at increasing frequencies 

To combine these four channels, we use remap function because it prevents loss 

of too much density at the core of the base cloud shape.  

If we use the below graph as an example, where the red line represents the base 

density of the cloud and the green line represents the high-frequency noise used to 

erode our cloud at the edges. If we performed a remap operation on the base 

density using the high-frequency noise as the new minimum value then we would 

not lose any density in the center of the cloud, which is exactly what we want. 

 

Figure 3.8 Base density in red, high-frequency noise in green 
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Figure 3.9 3D cloud base shape texture in-game 

 

Figure 3.10 Clouds with just the base shape texture 

The second three-dimensional texture is used for adding details to the base cloud 

shape and has three channels with different octaves of Worley noise. The resolution 

of this texture is 323. 

    

Figure 3.11 Three Worley noise textures at increasing frequencies 



16 
 

 

Figure 3.12 3D cloud detail texture in-game 

 

Figure 3.13 Clouds after the detail texture has been added 

To erode the edges of the clouds we need to use remap function again. We take a 

point inside of a cloud and simply check if the point lies at the edge of a cloud. 

The third texture is used to add a sense of turbulence and has three channels with 

different frequencies of curl noise. Curl noise is nondivergent and is used to simulate 

fluid motion. The resolution of this texture is 1282. 

   

Figure 3.14 Three Curl noise textures at increasing frequencies 
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Figure 3.15 Resulting curl noise 

3.1.4  Weather texture 

Clouds are controlled by a repeating two-dimensional texture with three channels 

called the weather texture. This texture is repeated over the entire scene and is also 

scaled to avoid noticeable patterns of cloud presence and shapes. We can 

manipulate the scene with the simulation that progresses during gameplay. 

 

Figure 3.16 Weather texture 

The red channel in this texture controls the coverage which is also used as the 

density of the clouds. The green channel controls the height of the clouds. A value 

of 0 will make the cloud have a height of 0 and therefore not be visible. If the height 

value is 1 this cloud will have maximum height value. The blue channel controls the 

type of cloud we want; where a value of 0 represents Stratus clouds, the value of 1 

represents Cumulus clouds and value of 0.5 represents Stratocumulus clouds. 

This texture controls the shape and type of the volumetric clouds in the scene. 

Volumetric clouds being ones between 1500 and 4000 meters, which means that 

Cirro clouds are not included. Cirro clouds are very distant and pretty flat on their 

own, so it is not necessary to render them volumetrically but instead, we can use 

textures. 
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3.1.5  Cloud shape definition 

Instead of a single height gradient to change the noise signal over altitude, we can 

use three mathematical presets that represent the major cloud types (Figure 3.17). 

These values are stored in the weather texture and can be dynamically altered.  

 

Figure 3.17 Height gradients for the different types of clouds 

All clouds are modeled using the same approach and the density is independent of 

where in the atmosphere they appear. First, we create a basic cloud shape by 

sampling our first 3D texture. Then specific height gradient is applied. This height 

gradient lowers density at both the top and the bottom of the cloud as shown in 

Figure 3.17. Next, we multiply the result by the coverage value from the weather 

texture. The coverage value determines the density of the clouds. Thereafter, a 

height gradient is applied which lowers density at the bottom. The height gradient is 

implemented as a linear increase over altitude. The final density before any lighting 

calculation is done must be within the range (0, 1]. Densities that are zero or less 

after the erosion can be discarded since they will not contribute to any cloud shape. 

Densities larger than one are clamped to one to make lighting more balanced. 

Algorithm 2 Cloud modeling 

1: base_cloud *= density_height_gradient; 
2: float cloud_coverage = weather_data.r; 
3: float base_cloud_with_coverage = remap(base_cloud, cloud_coverage, 1, 0, 0); 
4: base_cloud_with_coverage *= cloud_coverage;  

Defining a cloud shape only from one texture is not enough to get detailed clouds. 

Therefore, the smaller detail texture is used to erode clouds at the edges. The 

erosion is performed by subtracting noise from the 3D detail texture by using the 

remap function. The strength of erosion is implemented as a threshold value which 

only erodes densities lower than this value. We also distort this second noise texture 

by the 2D curl noise to simulate the swirly distortions from atmospheric turbulence. 
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Figure 3.18 Rendering only Stratus clouds 

 

Figure 3.19 Rendering only Cumulus clouds 

 

Figure 3.20 Rendering only Cumulonimbus clouds 
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3.2 Lighting 

Cloud lighting is a very well researched area in computer graphics. The best results 

tend to come from a high number of samples. But for real-time applications that is 

not possible due to hardware limitations. Three approximation techniques are 

required to faithfully illuminate cloudscapes. 

3.2.1  Out-scattering 

When light enters a cloud, the majority of the light rays spend their time refracting 

off water droplets and ice inside of the cloud before exiting cloud formation. By the 

time the light ray finally exits the cloud, it could have been out-scattered, absorbed 

by the cloud or combined with other light rays in what is called in-scattering as 

described in Section 2.3. 

The attenuation of the light as it passes through the cloud can be faithfully 

approximated by using Beer-Lambert’s law 

 𝑇(𝑑) = 𝑒−𝜎𝑡𝑑, (3.2) 

where 𝑇 is transmitted light, 𝜎𝑡 is material dependent variable and 𝑑 is the length 

the light travels through the material. 

Beer’s law states that we can determine the amount of light reaching a point based 

on the optical thickness of the medium that it travels through.  

If we substitute energy for transmittance and depth in the cloud for thickness, we 

can see that energy exponentially decreases over depth. This forms the foundation 

of our lighting model. 

 

Figure 3.21 Beer's law curve 
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Figure 3.22 Only Beer-Lambert's law of illumination 

3.2.2  Directional scattering 

Directional scattering is the luminous property of the cloud. This is responsible for 

cloud lighting effects such as silver lining, fogbow, and glory. Due to the 

computational power limitations, we are not able to use Mie scattering phase 

function, which accurately describes the angular distribution of scattered light.  

A common way of approximating the Mie scattering is to use the much simpler 

Henyey-Greenstein phase function. In 1941, the Henyey-Greenstein model was 

developed to help astronomers with light calculations at galactic scales, but today it 

is used to reliably reproduce Anisotropy in cloud lighting. The Henyey-Greenstein 

phase function is well suited for describing the angular distribution of scattered light 

in clouds as it offers a very high forward-scattering peak. The Henyey-Greenstein 

phase function is given as: 

 
𝐻𝐺(𝜃) =

1 − 𝑔2

4𝜋(1 + 𝑔2  −  2𝑔 𝑐𝑜𝑠𝜃)3/2
 (3.3) 

where 𝐻𝐺 is the magnitude of the scattered light, for a certain angle 𝜃, and 𝑔 ∈

 [−1, 1] is a parameter which determines the concentration of the scattering; a 

negative 𝑔 gives backward scattering [8]. 
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Figure 3.23 Henyey-Greenstein scattering phase function for g = 0.9 

To calculate the cosine of an angle 𝜃 we need a dot product of a normalized light 

vector and normalized view vector.  

 

Figure 3.24 Beer-Lambert’s law with Henyey-Greenstein phase function 

3.2.3  In-scattering 

This produces the dark edges and bases on the clouds. The dark edges on the 

clouds as shown in Figure 1.4 is something that is not as well documented with 

solutions, so Andrew Schneider and his team had to tackle the problem. 

In-scattering is when a light ray that has scattered in a cloud is combined with others 

on its way to the eye, essentially brightening the region of the cloud you are looking 

at. In order for this to occur, an area must have a lot of rays scattering into it, which 

only occurs where there is cloud material. This means that the deeper in the cloud 

we are, the more scattering contributors there are, and the cloud is brighter. 

Consequently, the amount of in-scattering on the edges of the clouds is lower, which 
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makes them appear dark. Also, since there are no strong scattering sources below 

clouds, the bottoms of them will have fewer occurrences of in-scattering as well. 

The reason we do not see this effect automatically is that our transmittance function 

is an approximation and does not take it into account. Therefore, we must 

approximate the in-scattering by using the following function: 

 𝑆(𝑑) = 1 − 𝑒−𝑐𝑑 (3.4) 

where 𝑆 is the intensity of the scattered light, 𝑐 is a variable that determines how 

fast the scattering effect builds up in the cloud, and 𝑑 is the length the light travels 

through the cloud. This function together with Beer-Lambert’s law constitutes our 

light function called Beer’s-Powder approximation method. 

 

Figure 3.25 Beer's-Powder approximation method 

We can see how a light ray, that passes through a cloud, first starts to scatter but 

as the cloud attenuates the light, the brightness falls off. 

 

Figure 3.26 Difference in cloud appearance when utilizing different methods 
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Figure 3.26 shows how different lighting methods affect the cloud appearance. If 

uniform lighting is applied, we can discern from the shape that what we see is a 

cloud, but the cloud lacks all its features. When only Beer’s law is used, we can see 

cloud features but the dark edges on the top of the cloud are missing. Powder effect 

enhances areas where there is very little cloud material, but incorrectly highlights 

the bottom of the cloud. Beer’s-Powder effect both highlights the dark edges and 

correctly simulates transmittance in the cloud. 

3.3 Rendering 

To render clouds realistically, we would need to trace each photon radiating from 

the sun, follow their paths as they scatter through the clouds and register those few 

photons that end up in the camera. This is of course computationally very intensive, 

and we do not want to trace all photons that never end up in the viewer’s 

perspective. Therefore, our cloud rendering algorithm is using a ray marching 

technique, which means that we reversely trace a ray from the camera into the 

scene instead.  

3.3.1  Ray marching 

Ray marching is the volumetric rendering technique that we use to render volumetric 

objects in our scene, volumetric objects in our case being clouds. When we use this 

technique, the scene is rendered by iterating through every pixel on the screen, and 

for each pixel, we march along a ray in the direction of the view vector, at each 

sample point along that ray we evaluate density and lighting. More sample points 

yield better results but are in turn more expensive.  

 

Figure 3.27 Ray marching 
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The rays that are cast from the camera advance by a constant step and evaluate 

density samples along the ray. The clouds are procedurally generated and stored 

in 3D textures that are placed in the scene. When we evaluate a point along the ray 

and determine it has a non-zero density value we know we are inside a cloud. Now, 

to give this point in the cloud some color we can light it by shooting a ray towards 

our single light source, the sun, and use the resulting energy information to color 

that point. This means that we are only considering the first order of scattering.  

In our ray marching algorithm, we can set a maximum number of steps before 

algorithm stops and moves to the next pixel, this way we can stop the algorithm 

from continuing indefinitely in one direction. We can limit the number of steps we 

need to take along the ray further by setting the bounds in our algorithm. As shown 

in Figure 3.28 we can set lower atmosphere layer at a distance of 1500 meters, and 

upper atmosphere layer at a distance of 4000 meters. This way we only need to 

march between those two points along the ray.  

 

Figure 3.28 Atmosphere layers 

Instead of sampling cloud density and illumination along the second ray towards the 

sun for each sample point of our first ray, we can use Cone sampling (Figure 3.29). 

Cone sampling is a more efficient way of determining the light energy that will be 

received by that point. Cone sampling involves taking some number of samples 

from inside the volume of a cone that is aligned with our light source. We take six 

samples using Cone sampling and make sure to have at least one placed relatively 

far. This far-away sample is a way of taking into account if the cloud and hence point 

we are trying to light are occluded by another cloud in the distance. Using these six 
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samples from within the cone we get a density value which is used to attenuate the 

light energy reaching the point we are trying to color. 

Algorithm 3 Cone sampling 

1: float SampleCloudDensityAlongCone(p, ray_direction) 
2: {  
3:  float density_along_cone = 0.0; 
4:  for(int i=0; i<=6; i++) 
5: {  
6:   // add the current step offset to the sample position 
7:   p += light_step + (cone_spread_multiplier * noise_kernel[i] * 
8:    float(i)); 
9:  // sample cloud density the expensive way 
10:   int mip_offset = int(i * 0.5); 
11:  density_along_cone += SampleCloudDensity(p, weather_data,  
12:    mip_level + mip_offset, false); 
13: } 
14:  return density_along_cone; 
15: }  

 

Figure 3.29 Cone sampling along the ray 

3.4 Tone mapping 

Tone mapping is a technique used to map one color space into another to 

approximate the appearance of high dynamic range images because displays and 

monitors have more limited dynamic ranges. Usually, the color channels in the 

framebuffers are stored as 8-bit values, ranging from 0 to 1. This means that the 

color channels can only assume 256 different values. This is all right for most 

applications, but the nature of the clouds and sun gives us very bright areas on the 

screen. This can lead to parts of the screen losing important color information as 

the colors get rounded to the nearest of the 256 values. A way around this problem 

is to use high dynamic range (HDR) lighting. Instead of binding textures with 8-bit 

values for each color channel, a floating-point value is used. HDR lighting also 
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allows us to assign color values above 1 to the framebuffer. Before the final 

framebuffer is rendered to the screen, the values need to be transformed back to 

the range [0, 1]. The Uncharted 2 tone mapping technique was implemented 

because it is very good and has become quite popular. 

Algorithm 4 Uncharted 2 tone mapping 

1: float3 ToneMapping(float3 x) 
2: { 
3:  const float A = 0.15; 
4:  const float B = 0.50; 
5:  const float C = 0.10; 
6:  const float D = 0.20; 
7:  const float E = 0.02; 
8:  const float F = 0.30; 
9:  return ((x*(A*x + C * B) + D * E) / (x*(A*x + B) + D * F)) - E / F; 
10: }  

 

Figure 3.30 Rendered scene without tone mapping 

In Figure 3.30 we can see how a non-HDR compliant monitor reacts to an HDR 

image; colors are rendered incorrectly, and we lose important cloud details. 
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4.  Optimizations 

In order to achieve real-time performance for this cloud rendering technique, several 

optimizations techniques have been implemented. Without these optimization 

techniques, our render times would be greater than 100 milliseconds, basically 

rendering our approach to the volumetric rendering of clouds useless.  

4.1 Cone sampling 

As described in Section 3.3.1, instead of using second ray march to determine the 

illumination of the point inside of the cloud we can use Cone sampling. Cone 

sampling is a more efficient way of determining the light energy that will be received 

by that point because we randomly choose several points in the general direction of 

the sun and approximate the lighting based on that. 

4.2 Subsampling 

Subsampling is a technique of decreasing the render targets resolution by the power 

of two. It can greatly reduce render time of a scene, and thus easily provide real-

time performance. By further lowering resolution we could gain even greater 

performance boost but at the cost of a blurrier result. 

4.3 Horizon culling 

Because we cannot see clouds below the horizon line, we can exclude these clouds 

from rendering. Also due to the tiling nature of our base shape texture, when the 

cloud sphere drops below the horizon it starts to tile noticeably. 

4.4 Cheap sampling 

If we are not inside of the cloud we do not need to apply high detail noise, sample 

illumination, or for that matter apply any effect until we find ourselves inside of a 

cloud. Also, when we are doing Cheap sampling we also increase our step size 

while ray marching. Sampler does cheap work unless it samples density that is 

different than zero, in which case it starts using all the rendering techniques 

mentioned before while also decreasing step size. If the sampler does not sample 
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any density greater than zero for ten consecutive steps it again performs Cheap 

sampling. 

4.5 Early exit 

When we sample points along the ray we accumulate density value, i.e. increment 

alpha value. When the alpha value reaches 1 we do not need to keep sampling, so 

we stop the ray marching early. 

4.6 Temporal reprojection 

Temporal reprojection is a technique that uses pixels from the previous frame to 

color the pixels in the current frame. This is done by projecting the old frame onto 

the current frame. We calculate how much the camera has moved between two 

frames.  

This technique is implemented as follows: 

1. We store our previous frame in a texture. 

2. We store the old camera information. 

3. For a given pixel in the current frame, ray cast using the ray created by the 

current camera and the current pixels uv coordinates. 

4. The ray cast will intersect with the sphere representing the inner layer of the 

atmosphere. The point of intersection gives us a world space position. 

5. This world space position is then converted all the way back into uv 

coordinates using the old camera's view and projection matrices. 

6. This uv coordinate if in the range from [0,1] can be used to sample the pixel 

in the old frame that will be used to fill in the pixel in the current frame. 

Using this reprojection technique we can get away with only ray marching for 1/16th 

of the pixels in the current frame. The other 15 of the 16 pixels are filled in using 

reprojection. 

This technique is the main reason the volumetric clouds were able to become a 

reality for the real-time applications. It improved the shader speed by as much as 

ten times making it feasible for use in game development. 
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5. Results 

In this section, we will focus on the performance and visual aspect of this rendering 

technique which requires few precalculated resources. The performance aspect is 

measured in an empty scene containing only the terrain collider. Additional objects 

and scripts in the ‘Pometeno Brdo’ scene makes rendering even more challenging 

and pushes our rendering times higher. The visual aspect is focused on the clouds 

placed in the ‘Pometeno Brdo’ scene.  

5.1 Hardware and Software 

All results are captured on a Windows 10 machine with an Intel Core 2 Quad Q9550 

CPU running at 2.88 GHz, 8 GB of DDR2 RAM and a Nvidia GTX 1050 Ti 4GB card 

running at 1800 MHz. The resolution of the application was set at 1920 x 1080. 

All the measurements were captured in the Unity profiler window which includes the 

ability to monitor CPU, GPU, and RAM usages together with the ability to specifically 

say which piece of the code is the bottleneck. 

5.2 Resources 

The implementation of this cloud rendering technique requires few precalculated 

resources that are needed to achieve real-time performance. 

Texture Dimensions Format Size 

Cloud shape 128 x 128 x 128 RGBA32 8192 KB 

Cloud detail 32 x 32 x 32 RGB24 96 KB 

Curl noise 128 x 128 RGB24 48 KB 

Weather 512 x 512 RGBA32 1024 KB 

Figure 5.1 Required resources 

The total size of all these files is 9360 KB, i.e. 9.1 MB. 

5.3 Performance 

Most computations are performed in the pixel shader on the GPU, therefore the 

whole scene is GPU intensive. Although CPU is not utilized as much, it can still 
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present a problem. Older CPUs, like the Core 2 Quad series, which were released 

back in 2008, cannot compare with modern day CPUs in regards with instructions 

per clock (IPC) and memory latency, all of which can affect the performance of a 

GPU in a way. 

 

Figure 5.2 Run-time performance as a function of subsampling 

Subsampling is a technique where we decrease render target resolution, and with 

the decreased resolution, it is natural to expect that the render time decreases. 

 

Figure 5.3 Run-time performance as a function of atmospheric distance 

Short atmospheric distance means that the horizon is closer to the observer, which 

in turn means that our rendering algorithm more often finishes before it reaches the 

second layer of the atmosphere, therefore, performance is better at closer 

distances. 
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Figure 5.4 Run-time performance as a function of reprojection scale 

At the base settings with lots of optimizations in place, we can see that reprojection 

can only benefit render time so far after which it loses on the effectiveness and starts 

to add perceived motion blur.  

 

Figure 5.5 Run-time performance as a function of cloud coverage 

When coverage is high, almost the entire sky is covered by the clouds and when 

coverage is set to low only a small part of the screen has clouds in it. As expected 

a low coverage is much faster mostly due to the early exit. 
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5.4 Visual results 

Photographs are taken during gameplay. The scene is comprised of volumetric 

clouds, dynamic lighting, and wind generators. 

 

Figure 5.6 Yellow sunset 

 

Figure 5.7 Interaction of smoke with a wind generator 
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Figure 5.8 Dusklight interacting with the Cumulus clouds 

 

Figure 5.9 Stratocumulus clouds casting a shadow onto the terrain 
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6. Conclusion 

The cloud rendering technique presented in this thesis can produce lots of 

volumetric clouds under fully dynamic lighting conditions. The technique achieved 

real-time performance, meaning the render time is under 33 milliseconds i.e. 

framerate of 30 frames per second, giving us smooth and responsive gameplay. To 

achieve such fast render time, we had to implement few optimizations and use 

approximations. This shows how powerful and versatile commercial game engines 

are, to have the ability to implement cutting-edge techniques while also maintaining 

visual fidelity. Furthermore, many other people in the industry are beginning to 

incorporate this technique into their rendering engines, both at game and animation 

studios. 

One optimization that seems very promising is to pre-compute shadows. Since we 

assume that the direction to the sun is parallel, shadows could be pre-calculated 

and stored in a look-up table. This look-up table would only need to be updated 

when the sun has moved. Since we take four additional samples towards the sun 

for every sample this would greatly reduce the number of samples. 

The implementation of the phase function also posed an interesting question: is it 

worth three times larger performance impact to read the texture with the realistic 

phase function, or are we satisfied with it being approximated and calculated in the 

fragment shader? 

Although it can impact application’s performance, volumetric cloud rendering brings 

great benefits to the table, such as easily configurable weather, easily configurable 

clouds, better realism and immersive surroundings. All these attributes are useful to 

the game designers who are trying to induce emotions in gamers. 
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Volumetric Atmospheric Effects Rendering 

 

Abstract 

 

In search of a better and more realistic game environment, graphic designers 

together with game developers have implemented a new way to render 

cloudscapes. The standard way of rendering clouds consists of skyboxes with flat 

textures that follow the player in the scene, and it works well in 3D scenes where 

the camera is expected to be far away from the clouds. But in open world games 

where the position of the camera cannot be assumed, skyboxes give a static 

impression and flat textures can give artifacts. 

Volumetric clouds are dynamic and look realistic but can also be easily manipulated 

which is something game designers require. Rendering volumetric clouds is a 

compute-intensive process which makes it difficult to use in real-time applications. 

This thesis presents a way of rendering volumetric clouds in Unity by using 

precalculated 3D cloud textures and real-time shader calculations. 

 

Keywords: ray marching, volumetric clouds, volumetric shading, real-time 

rendering 

  



 

Volumetrijske tehnike u ostvarivanju prikaza atmosferskih učinaka 

 

Sažetak 

 

U potrazi za boljom i vizualno ljepšom scenom u igrama, grafički dizajneri u suradnji 

sa programerima za igre su implementirali nov način kako iscrtati oblake. Uobičajen 

način iscrtavanja oblaka se sastoji od pozadine sa plosnatim teksturama koje prate 

igrača u sceni, taj pristup funkcionira dobro u 3D scenama gdje se očekuje da će 

kamera biti daleko od oblaka. Ali u igrama otvorenog tipa gdje se pozicija kamere 

ne može pretpostaviti, pozadina može dati statički dojam, a plosnate teksture mogu 

dati artefakte. 

Volumetrijski oblaci su dinamički i izgledaju realistično te se također mogu lako 

manipulirati što je privlačno dizajnerima igara. Iscrtavanje volumetrijskih oblaka je 

računski intenzivan proces što otežava njihovu primjenu kod aplikacija u stvarnom 

vremenu. 

Ovaj rad prikazuje način iscrtavanja volumetrijskih oblaka u Unity razvojnoj okolini 

koristeći unaprijed izračunate 3D teksture oblaka i sjenčanje u stvarnom vremenu. 

 

Ključne riječi: sjenčanje pretragom zrake, volumetrijski oblaci, volumetrijsko 

sjenčanje, iscrtavanje u stvarnom vremenu 


