
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS No. 1851

Interactive Visualization of
Electrographic Flow using WebGL

David Emanuel Lukšić

Zagreb, June 2019



The work presented here would not be possible without the great help

I have received while writing this thesis. I would like to thank the team at Ablacon for

patiently explaining every detail there is about anatomy, AFib, catheters, ECG signals

etc. and providing funds for exciting visits to hospitals and hardware needed. Also, I

would like to say special thank you to my mentor Željka Mihajlović for being very open

and supportive of our collaboration with the industry and for always providing useful

hints and much needed help for pushing the work forward.

iii



iv



v



CONTENTS

1. Introduction 1

2. Implementation Overview 3
2.1. Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Jupyter Notebook Setup . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3. Using the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Methods 9
3.1. Quiver Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Streamline Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3. Particles Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4. Line Integral Convolution . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Extending to 3D 17
4.1. Projecting Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2. Surface interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Evaluation 21
5.1. Correctness Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2. Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. Conclusion 26

Bibliography 27

Appendices 28

A. Parameters 29

B. Types of Field Lines 31

vi



1. Introduction

Atrial Fibrilation (AF or AFib) is a common heart arrhythmia, estimated to impact 20.9

million men and 12.6 million women worldwide, having higher prevalence in devel-

oped countries. By 2030, 14-17 million AF patients are anticipated in European Union

alone. This amounts to approximately 3% of adults aged 20 years or older. (Paulus

et al., 2016). Historically, AF was treated using anti-arrhythmic drugs. Many different

treatments are used for AF today. For this thesis, we focus on catheter ablation. More

specifically, ablation guided by electrographic flow (EGF) mapping.

Electrographic flow mapping is a recent technique used to map electrical activity

inside the human heart. A basket catheter (figure 1.1) is introduced through the groin,

up along the inferior vena cava (IVC) into the right atrium (RA). To map the left atrium

(LA), a small 1 mm diameter hole is made in the septum wall using a needle, through

which the basket is introduced into the LA.

Once the basket is in place, each of the 64 electrodes on the basket (8 splines,

each has 8 electrodes) samples local electrical activity at 1 kHz. This activity is a 24

bit value representing relative voltage difference (±150 mV) to the ground electrode,

which is usually located on the left leg or lower abdomen. We can think of this data

as series of images where rows represent splines A through H, and columns represent

electrodes 1 through 8:
A1 A2 A3 ... A8

B1 B2 B3 ... B8

C1 C2 C3 ... C8
...

...
... . . . ...

H1 H2 H3 ... H8

(1.1)

These 8x8 images are then analyzed and turned into dense 200x200 flow (vector) fields

using an optical flow algorithm. For more information about this step, see Bellmann

et al. (2018).

Finally, the resulting flow field, also called Electrographic Flow, needs to be vi-

sualized in an intuitive way. The visualization must allow the medical staff and re-

1



searchers to easily recognize sources, rotors and sinks and relate them to electrode

locations. Additional difficulty arises from the fact that, in it’s ideal shape, the bas-

ket closely resembles a sphere. When unwrapping the sphere, poles get significantly

distorted. Therefore, a 3D representation is needed to visualize the proportions cor-

rectly. Ultimately, we allow for specifying 3D locations of individual electrodes. This

makes the visualization method much more representative of reality. It’s important to

note that, for this problem, we only need to consider time-invariant flow. This greatly

simplifies our analysis and implementation.

Figure 1.1: Basket catheter and its handle (output pins). Winding direction is clockwise,

looking from distal (1) to proximal (8).

2



2. Implementation Overview

2.1. Used Technologies

2.1.1. WebGL and ThreeJS

One of the main implementation requirements was for the visualization to run in the

browser, more specifically Google Chrome. This requirement directly implies that

WebGL (Web Graphics Library) must be used. WebGL, is a low level JavaScript API

that closely resembles OpenGL’s API. It allows developers to run almost arbitrary

commands on the client’s GPU in order to render 3D graphics, but also some light

form of general purpose graphics programming (GPGPU) can be performed as well by

using textures and pixel shaders.

To simplify working with WebGL’s low level API, a number of open source projects

were founded. Most notable ones are ThreeJS (mrdoob et al.) and BabylonJS. I chose

ThreeJS as, at the time of writing this thesis, it had more examples and support.

2.1.2. TypeScript

JavaScript is not a strongly typed language. This makes it hard to follow which objects

have what data associated to them. This is especially true for medium to large graphics

programs since they heavily rely on state. To help with this, Microsoft developed

TypeScript. TypeScript is a language, superset of JavaScript, that aims to decorate

JavaScript with types. It is also a transpiled language, which means that there is a

transpiling step which takes TypeScript source code and turns it into plain (human—

readable) JavaScript.

In the following example you can see TypeScript code and the JavaScript equivalent

which is also valid TypeScript code:

3



Listing 2.1: TypeScript example

/ / T y p e S c r i p t

f u n c t i o n example ( a : number , b : Vec to r3 ) : Vec to r3 {

r e t u r n b . a d d S c a l a r ( a )

}

/ / p l a i n J a v a S c r i p t

f u n c t i o n example ( a , b ) {

r e t u r n b . a d d S c a l a r ( a )

}

The main difference between these two code examples is that in the former, we know

exactly the types that are coming into and out of the function. The editor can help us in

this case and provides helpful hints about what is available for parameter b: Vector3.

2.1.3. Python and Bokeh Plotting Library

For many years now, Python has been the leading language for professional data sci-

entists. It has a multitude of libraries for managing and visualizing data. Most no-

table libraries for interactive plotting on the Web are Bokeh and Plotly’s Dash. Both

frameworks are a great choice, but the context in which this visualization is used re-

quires Bokeh bindings. Bokeh comes with dozens of different plot types, layouting

API and data streaming capabilities. One of the most important features is extending

Bokeh through custom models1, allowing for integration with existing third—party

libraries like ThreeJS. The developed library can also be used without Bokeh (using

plain JavaScript / TypeScript).

2.1.4. Dat.GUI Library

One of the most important features is ability to change visualization parameters with-

out having to re-render the whole plot. Using dat.GUI2 JavaScript library simplifies

this process significantly.

1https://bokeh.pydata.org/en/latest/docs/user_guide/extensions_

gallery/wrapping.html
2https://github.com/dataarts/dat.gui

4



2.2. Jupyter Notebook Setup

User of the developed flow visualization library needs to have Python version 3.5+

installed. Then, Bokeh and Jupyter need to be installed using the following commands:

pip install bokeh

pip install jupyter

Note: some features are available only through the JavaScript/TypeScript interface,

like specifying 3D electrode positions.

In the provided code samples, notebook_example.zip contains fully func-

tional Jupyter notebook sample. To run it, simply run jupyter notebook . in

the extracted folder.

2.3. Using the Library

Finally we can look at how easy it is to use the library. Everything the user needs is

contained in the following classes:

– Particle2DModel

– Particle3DModel

– LIC2DModel

– LIC3DModel

In the flow_test_noise.ipynb a usage example is given with the most im-

portant part of the code being:

Listing 2.2: Python usage example

from f l o w v i s import P a r t i c l e 3 D M o d e l

. . .

model = P a r t i c l e 3 D M o d e l (

. . .

w id th =700 , h e i g h t =700 ,

s o u r c e = f l o w _ f i e l d _ s o u r c e ,

f low = ’ f l o w s ’ ,

co lor_map = ’ I n f e r n o 8 ’

. . .

)

5



Figure 2.1: Example notebook result, Particle3DModel, noise data

For more parameters, see appendix A.

Figure 2.1 shows the resulting visualization. On the top, a slider is shown. A slider

is used when there are multiple flow maps to be shown, so the user can flip through

them without having to re-render. On the right, a dat.GUI parameter interface is

shown where the user can play with different values in real time. This has been very

important when searching for optimal values, since only a small subset of combinations

produces good results. Figure 2.2 shows fully expanded parameter GUI. Systems

contains all systems which can be enabled/disabled and Render Components con-

tains all components related to rendering which can be enabled/disabled.

6



Figure 2.2: All parameters available in parameter GUI.

7



Figure 2.3: Line Integral Convolution, 2D (left) and 3D (right), noise data.

Figure 2.4: Particles, 2D (left) and 3D (right), noise data.

8



3. Methods

3.1. Quiver Plot

The most trivial way to visualize a given flow field is to draw arrows representing

individual vectors the flow field is comprised of. We call this a quiver plot. It is

a widely recognized visualization method and implemented in every major plotting

library. As such, it is not the focus of this thesis, but it is interesting to note some

properties. Here we show how different parameters influence legibility of the quiver

plot:

Figure 3.1: Matplotlib’s quiver plot with arrows anchored using their midpoint (left) and tail

(right). Midpoint anchor usually gives a better impression of the field since it doesn’t shift the

image.

9



Figure 3.2: Matplotlib’s quiver plot with long (left) and short (right) arrows. A great deal of

issues stems from choosing the arrow length. If there is great variability in flow magnitude,

some sort of compression must be used. Otherwise, short arrows are too short and long arrows

conflict with each other.

Figure 3.3: Matplotlib’s quiver plot with thick (left) and thin (right) arrows. Thinner arrows

are usually better for representing dense fields.

3.2. Streamline Plot

Another popular way to display flow fields, already implemented in major plotting

libraries is a streamline plot. To understand the streamline plot, we first need to define

what a streamline is: a family of curves that are instantaneously tangent to a given flow

field. Or, explained more visually, the paths of "massless" particles traveling through

a given flow field frozen in time. If the flow field was indeed time-varying, then we

would have to consider other curves, listed in appendix B.

We can derive a visualization method directly from this description. First, we de-

10



fine a set of starting points. Then, each point ~x is advected along the flow field ~u(~x) by

a small dt leaving a trail:
d~x

dt
= ~u(~x) (3.1)

When two trails get too close to each other, we can terminate one, so that the density

stays relatively constant. Trail density is especially a problem, and it is usually solved

by trying out a large number of different starting conditions until some scoring function

is satisfied.

Since we are interested only in relatively short streamlines and the flow field is not

changing rapidly, good results can be achieved using simple Euler’s integration. For

even better approximation in more dynamic fields and longer streamlines, we can use

more complex integration methods like the Midpoint method or Runge–Kutta 4.

Figure 3.4: Matplotlib’s streamline plot. Basic (left) and varying thickness and color (right).

To show magnitude, a streamline plot can use thickness and color.

11



3.3. Particles Plot

The streamline plot suffers from the same issue as the quiver plot: information density.

Ideally, we would like to show lots of short streamlines and animate them, so that areas

that were potentially missed in one configuration, become visible in another.

A "particle" plot, is exactly that: thousands of particles moving along the flow field

on a canvas, leaving a trail that slowly disappears. Since the particles tend to end up

in sinks or valleys, a mechanism to reset the particles is proposed, keeping density in

check. For our use case, we also needed a way to make some parts of the flow field

more or less populated, depending on a probability mask. For example, particles tend

to "run away" from sources, so setting high spawn probability around them is desirable.

A single particle is represented by 3 numbers: x (horizontal coordinate), y (vertical

coordinate) and t "life" of the particle starting at 1. Particles themselves are stored in

particle target 1 (size N × 1 where N is number of particles) as texels (see

figure 3.5). On each frame, two consecutive advection passes are used. They execute

following algorithm on each particle (in a shader):

vec2 pos = particle pos;

float life = particle life;

vec2 flow = flow vector at pos;

float prob = probability of particle appearing at pos;

if (life <= 0.0) {

if (life < 0.0 || random() > prob) {

pos = random vec2;

life = 0.0;

} else {

life = 1.0;

}

} else {

// midpoint method

flow = flow vector at half step forward;

pos = full step forward;

life -= (1.0 + length(flow.xy) * speedPenalty) * killRate;

}

Particle rendering pass takes particle target 1 as input and renders each

particle onto the pattern target. Users can customize how particles are rendered

12



Figure 3.5: Steps in the particle algorithm, 3D version differs only in the flow field projection

step.

by changing the size of particles, opacity curve’s attack and decay edges and blend

mode. Opacity curve has turned out to be really important for reducing the pop–in

effect when resetting particles. If a particle appears with full brightness, it doesn’t

look smooth. To mitigate this issue, a simple linear attack and decay curve is used:

Figure 3.6: Particle opacity attack/decay curve. Life goes from 1.0 to 0.0.

13



3.4. Line Integral Convolution

Another technique, introduced by Cabral and Leedom (1993), describes an ingenious

way of displaying flow fields using noise. Starting with an image of noise (figure 3.8

left), a special kind of convolution is used to smear the noise in the direction of flow.

For each pixel, a streamline is calculated. Each location on the streamline is then

averaged to generate a new color for that pixel (figure 3.8 middle). Finally, the smear

pattern is colored to show magnitude. Although computationally heavy, it is ideal for

implementation on a graphics card (using a shader) and a real—time implementation

in WebGL is presented.

For noise generation, a 3D simplex noise algorithm by McEwan et al. (2012) is

used. It takes a 3D position in space and returns a smoothly changing pseudo—

random value depending on where the 3D point lies on the simplex (tetrahedron) grid.

Smoothly changing noise is important because it prevents aliasing when the noise gets

smeared.

A line integral (also called a path integral, or a curve integral) is an integral of a

scalar field along a given curve. In our case, the scalar field is the noise texture, and

the curve is a streamline. For each pixel, a streamline is calculated, both forwards and

backwards (by advecting in negative flow direction). The noise texture is then sampled

along the streamline and averaged. We can do the averaging in a few ways. Usually,

we want pixels closer to the original point to have more weight. For this purpose, a

kernel function is used:

f(x) = sin(π(kx+ t))2cos(
π

2
x)2 (3.2)

where x is the position along the curve, interval [−1, 1]. It is composed of two func-

tions:

f1(x) = sin(π(kx+ t))2 (3.3)

f2(x) = cos(
π

2
x)2 (3.4)

Function f1 is used to create the animation of flow, because it shifts weight along the

curve through time. Function f2 is used as a modulator to emphasize samples closer to

the original point.

The algorithm itself is implemented as a series of render passes for which 3 render

targets are needed: flow projection target, noise target and pattern target. On figure 3.9

algorithm is visually laid out. The first steps are projecting flow and rendering noise.

In 2D case this amounts to simply rendering the flow field texture itself. Then, a "LIC

14



Figure 3.7: a) f1, b) f2, c) f (red)

d)–g) time t from 0 to 0.5

g)–i) parameter k (1.0, 1.5, 2.0).

Figure 3.8: Simplex noise (left), convolution operation using a radial flow field (middle),

colored pattern (right).

pass" is performed to generate the pattern. Finally, a "color pass" is performed to mix

pattern and pseudocolor (color—mapping magnitude) of the projected flow field.

15



Figure 3.9: Steps in the LIC algorithm, 2D (up) and 3D (down) versions.

16



4. Extending to 3D

4.1. Projecting Flow

The original problem statement requires us to render the flow field as if it was wrapped

around the basket in 3D. We can do this by uv mapping the flow field as a texture

and projecting the flow vectors from the local space (uv) to screen space using a pixel

shader. The projected flow is then used to render ordinary 2D version of flow visual-

ization.

Figure 4.1: Quad (A4,A5,H4,H5) and it’s vertices. Vectors û, v̂ and n̂ are red, green and blue

respectively.

Local space vectors (tangent û, bitangent v̂ and normal n̂) are calculated for each

triangle, e.g. looking at image 4.1, for triangle A5H5A4:

~u =
−−−→
A5H5 (4.1)

~v =
−−−→
A5A4 (4.2)

~n = û× v̂ (4.3)

Then, in each vertex we sum and normalize neighboring triangles’ û, v̂ and n̂ so that

each vertex has a normalized sum of all three vectors for all 6 neighboring triangles.

17



In flowProjectShader, û and v̂ are used to transform the original 2D flow

vector (x, y) to the 3D representation of the flow vector in local object space ~f . It is

then transformed to the screen space using the projection matrix P and model view

matrix M . Keep in mind that this is a direction transformation, therefore the homoge-

neous coordinate must be 0:

~f = xû+ yv̂

~fs = PM


fx

fy

fz

0


(4.4)

Figure 4.2: Projected flow on a linearly interpolated basket catheter. Red/green channels are

projected fsx,fsy components respectively.

18



4.2. Surface interpolation

In image 4.2 it can be seen that the basket’s surface is linearly interpolated. This creates

some aliasing artifacts and generally doesn’t look pleasing to the eye. Although there

is no information on what the surface should look like in between the electrodes, it is

reasonable to assume at least a smooth surface, meaning it should exhibit at least C1

continuity.

This constraint can be satisfied in an infinite number of ways. For simplicity, a

combination of centripetal Catmull-Rom curves (implemented by ThreeJS, mrdoob et

al.) is used to interpolate basket’s surface.

Catmull-Rom curve, first described by Catmull and Rom (1974), is defined by

4 control points P0, P1, P2, P3 and produces a parametric curve going through (also

called an interpolating spline) P1, P2. They can be safely chained while keeping C1

continuity by overlapping first and last two points of each segment. It is important

to use centripetal version of Catmull-Rom curve to ensure that no cusps or loops are

formed.

Figure 4.3: Catmull-Rom curve through 4 points, open and closed version. Green lines repre-

sent tangents constructed by the difference of two neighboring points.

Interpolation is done in three stages (figure 4.4). Firstly, the basket’s splines are

subdivided using Catmull-Rom curves. Secondly, "rings" are constructed across splines,

through the newly interpolated points using closed Catmull-Rom curves. Finally, the

top and bottom’s common cap vertices are manually averaged and set to the same value

to avoid rasterization mismatch due to small interpolation differences.

19



Figure 4.4: Basket surface interpolation by 1) interpolating splines, 2) interpolating across

splines as closed loops and 3) averaging the cap’s common vertex to avoid rasterization mis-

match.

Figure 4.5: Particle plot on a distorted basket geometry, using surface interpolation by

Catmull-Rom. Subdivisions: 4 between splines, 2 along splines.

20



5. Evaluation

5.1. Correctness Testing

One of the most important stages in developing Software as a Medical Device (SaMD)

is testing. We must make sure that software that we write behaves correctly, espe-

cially in known circumstances. Since flow visualization is primarily used to visualize

locations of sources/rotors/sinks, we need to test this functionality thoroughly. One

problem in particular that is tricky to get right: correct mapping of flow. To get this

right, we have to correctly set up 4 degrees of freedom: uv-mapping of the flow field

(2 degrees) and mapping of individual vector components (2 degrees). Because of dif-

ferent projections in 2D (vertical inverse) and 3D (rotated by 90◦), these mappings are

also different for these two cases.

To test only this (unit test), 4 different flow fields are created with a source at

different location: B2, B7, G2, E7 (figure 5.1). If any of the mappings was wrong we

would either see sources in wrong locations (wrong uv-mapping), or not see a source

but a saddles point/rotor/sink (wrong vector component mapping).

Even if unit tests pass, that doesn’t mean the software will behave correctly when

combined with existing pipeline, or that we even used it correctly. Therefore, an end

to end test is needed to test integration with the existing pipeline. For this purpose,

a simple "mock" data generator is created. The idea is to generate a source/rotor at a

known location, and test whether we see it reflected in the visualizer.

The generator takes 64 electrode locations and samples a 3D rotating wave defined

as:

W (~e, t) = φ(α~e · ŷ + β atan2(~e · ẑ, ~e · x̂)) (5.1)

Where ~e is electrode location, φ is the activation function (saw tooth used), x̂, ŷ, ẑ are

basis vectors for the rotating wave and α, β are divergence and rotation magnitude re-

spectively. Figure 5.2 shows an example dataset with a pure rotor with axis of rotation

(0, 1, 1) and the corresponding visualization.

21



Figure 5.1: Test cases. In order from left to right: original Matplotlib plots (ground truth), 2D

particle plot and 3D particle plot. A probability mask is used to concentrate particles only in

the source. Colorbars are simply showing flow magnitude.

22



Figure 5.2: Pure rotation test data and the resulting visualization.

23



5.2. Performance Testing

When testing for performance, it is important to note the environment in which the

software will run. Usually, plenty of GPU power will be available on hospital deployed

laptops which usually have discrete GPUs on board. But this software is also going

to be used by doctors/scientists with potentially less powerful GPUs. Therefore, we

should optimize for performance as much as possible while aiming for at least 30

frames per second (FPS), but 60 FPS should be easily reachable given the scale of the

problem.

Both particle and LIC visualization methods utilize hardware acceleration through

WebGL, mostly through heavy shader use. The geometry complexity itself is very

minimal (<10k triangles), so pixel shaders, fill rate and latency are expected bottle-

necks.

The methods are compared on a mid-range laptop of the following configuration:

Intel Core i7-8550U quad core CPU, Nvidia MX150 2GB GPU, 16GB RAM, running

Ubuntu 19.04. In WebGL, performance can be tracked in a few ways (on Google

Chrome):

1. Enabling "FPS meter" (figure 5.3) shows FPS and memory usage. The visual-

izations take only a few dozen MB at most.

2. In dev tools, "Profiling" tab can record all JavaScript callbacks and how long

they take, also known as flame graph (figure 5.4).

3. Entering about:tracing in URL box and recording rendering activity. This

method provides more advanced insights and timeline about individual calls

made to the GPU.

Particle plot turned out to be a clear winner at solid stutter–free 60 FPS even at

high resolutions and thousands of particles (1024x1024, 16k particles). LIC plot, on

the other hand, works well for smaller resolutions (50+ FPS at 400x400, 30+ FPS at

700x700), but scales badly because of large amount of work needed per pixel (calcu-

lating a whole streamline segment). Particle plot is also a favorite, because of better

perceived visual fidelity and intuitiveness (tested with target audience consisting of

medical staff).

24



Figure 5.3: Google Chrome’s "FPS meter". It also shows memory usage.

Figure 5.4: Google Chrome’s "Performance" tab, flame graph. The large column is flow

visualization, the other two (dark purple and green) blocks are HTML updating. This could be

further optimized.

25



6. Conclusion

The problem of visualizing flow fields is well–known in computer graphics. In this

thesis I have summarized most important methods: quiver plot, streamline plot, parti-

cle plot and line integral convolution. Implementations of the particle plot and LIC plot

are presented, specialized for displaying Electrographic flow around a basket catheter.

Both 2D and 3D approaches of each method are implemented. For 3D approach, meth-

ods for projecting flow and interpolating the surface are proposed, which work well

for a reasonably distorted basket. Finally, the methods are tested for correctness using

mocked data showing expected results.

Figure 6.1: Photo from a visit to

a hospital in Hamburg, experiencing

first hand what is important in an EP

lab during a procedure.

Particle plot came out as the preferred method

by the end users (medical staff) because of its in-

tuitiveness and better visual fidelity. It is also

a better choice from performance perspective,

since calculating convolutions in real–time re-

quires powerful hardware, especially for large res-

olutions.

The resulting flow visualization library is a

fast, compact Python library, based on extending

Bokeh. It is easy to use from a Jupyter notebook,

but has limited application in other fields because

of its specialization. Further improvements could

be made, for example: optimizing HTML per-

formance, allowing specifying 3D electrode loca-

tions from Python, additional tools like 3D anno-

tations, orientation indicator etc.

26



BIBLIOGRAPHY

Barbara Bellmann, Tina Lin, Peter Ruppersberg, Marit Zettwitz, Selma Guttmann,

Verena Tscholl, Patrick Nagel, Mattias Roser, Ulf Landmesser, and Andreas Rillig.

Identification of active atrial fibrillation sources and their discrimination from pas-

sive rotors using electrographical flow mapping. Clinical Research in Cardiology,

107(11):1021–1032, 2018.

Brian Cabral and Leith Casey Leedom. Imaging vector fields using line integral con-

volution. Technical report, Lawrence Livermore National Lab., CA (United States),

1993.

Edwin Catmull and Raphael Rom. A class of local interpolating splines. U Computer

aided geometric design, stranice 317–326. Elsevier, 1974.

Ian McEwan, David Sheets, Mark Richardson, and Stefan Gustavson. Efficient com-

putational noise in glsl. Journal of Graphics Tools, 16(2):85–94, 2012.

mrdoob et al. Threejs. https://threejs.org/docs/. Accessed: 2019-06-21.

Paulus, Stefano Benussi, Kirchhof, Dipak Kotecha, Anders Ahlsson, Dan Atar, Bar-

bara Casadei, Manuel Castella, Hans-Christoph Diener, Hein Heidbuchel, Jeroen

Hendriks, et al. 2016 esc guidelines for the management of atrial fibrillation devel-

oped in collaboration with eacts. European journal of cardio-thoracic surgery, 50

(5):e1–e88, 2016.

27



Appendices

28



A. Parameters

1. Common parameters to all visualizer models are:

– show_param_gui Set to true to show parameter GUI.

– param_gui_closed Set to true to close parameter GUI on load.

– param_gui_location String: "right", "bottom" or "auto".

– normalize Set to true to normalize the flow field before render.

– time_scale Usually 1/60 s, specifies the "speed" of the animation

without influencing the look too much.

– sourceData source of type ColumnDataSource containing the flow

field data.

– flow Target column name where flow field data is found in the source.

– use_pseudo_color Set to true to color the flow field using custom

color instead of magnitude.

– color_map Name of any Bokeh color palette used for foreground.

– color_map_low Low cutoff for color palette.

– color_map_high High cutoff for color palette.

– bg_color_mapName of any Bokeh color palette used for background.

– atrium "LA" or "RA". If specified "LA", the basket will rotate by 90◦

around z axis to mimic the orientation in real life.

– slider Data source can contain multiple flow maps, and a slider can be

used to flip through them.

– animation_delta_time If specified >0, it will flip through the flow

maps using the given delta time.

2. Common "particle plot" parameters:

– particle_count Number of particles

– image_half_life Time it takes for trails to lose 50% brightness.

29



– step_size Size of the "step" a particle takes on unit magnitude flow

in one second.

– kill_rate Rate at which particles’ life gets reduced.

– speed_penalty Additional kill rate increase for particles in fast—

moving flow.

– attack_edge Numeric value in [0, 1] range representing when parti-

cles achieve highest brightness.

– release_edge Numeric value in [0, 1] range representing when parti-

cles’ brightness starts to fall back to 0.

– particle_size Size of the particles in pixels.

3. Common LIC plot parameters:

– noise_scale Scale of the simplex noise. Higher values means smaller

noise specks.

– noise_thr_low Threshold for noise output to be 0.

– noise_thr_high Threshold for the noise output to be 1.

– step_size Step size done by midpoint method.

– kernel_coef Number of periods in animation kernel.

30



B. Types of Field Lines

Streamlines are a family of curves that are instantaneously tangent to the velocity vec-

tor of the flow field.

Streaklines are the locations of points of all the fluid particles that have passed con-

tinuously through a particular spatial point in the past.

Pathlines are the trajectories that individual fluid particles follow. These can be thought

of as "recording" the path of a fluid element in the flow over a certain period.

Timelines are the lines formed by an ordered set of fluid particles that were marked in

the past, creating a line or a curve that gets displaced in time as the particles move.

In a time-invariant (steady) flow, streamlines, streaklines and pathlines coincide. Defi-

nitions slightly modified from Wikipedia1.

1https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_

pathlines

31



Interactive Visualization of Electrographic Flow using WebGL

Sažetak

Elektrografsko mapiranje toka je nova tehnologija koja se koristi pri ablaciji srca.

Vizualizacija dobivenog toka je važan dio operacije. U ovom radu prezentirane su

dvije različite metode vizualizacije: konvolucija linijskim integralom i korištenjem

čestica. Obje metode su nadograd̄ene tako da mogu vizualizirati 3D reprezentaciju toka

omotanog oko košarastog katetera. Konačno, vizualizacije su testirane korištenjem

generiranih podataka, te je napravljena usporedba prema brzini izvod̄enja i intuitivnosti

krajnjim korisnicima.

Ključne riječi: vizualizacija toka, srce, kateter, webgl, typescript, interpolacija povr-

sine, cestice, linijski integral, konvolucija, EGF

Title

Abstract

Electrographic flow mapping (EGF) is a technique used for aiding catheter ablation

when treating atrial fibrillation. Visualizing the resulting flow map is crucial part of the

process. Two different visualization methods are proposed: line integral convolution

(LIC) plot and particles plot. Both methods are extended to display 3D representation

of the flow map wrapped around the basket catheter. Finally, the representations are

tested for correctness using mocked data and evaluated on performance and intuitive-

ness with target audience (medical staff).

Keywords: flow visualization, heart, basket catheter, webgl, typescript, surface inter-

polation, particles, line integral, convolution, EGF


