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1. Introduction

Volumetric rendering is a collection of very important techniques in the field of com-

puter graphics, they are a powerful tool for data visualization, offering an easy and

intuitive way to understand data since they create visual data representation and with

images, we can often see more than with raw data. In this thesis we are going to take

a closer look at some important visualization techniques that are used on the trans-

formation path from two-dimensional stack of images to achieving its faithful copy in

three dimensions. The one that is of special interest is direct volume rendering and

it will be the focus of this thesis. Volume rendering is most notably used in medical

imaging, for constructing three-dimensional models to help medical staff and to more

accurately see inside of the body, the data this type of visualization uses are medical

images obtained from procedures like CT or MRI imaging. But volume rendering is

finding more and more uses in other industries such as those that produce 3D data sets

for analysis, e.g., physics for fluids, disaster preparedness simulations and more.

In this work we are applying volume rendering and other techniques to ultrasonic

beam simulation. The ultrasonic beam is used for non-destructive material testing of

metal parts for nuclear power plants and tools for inspection. The main part and focus

of this simulation was the visualization of the ultrasonic detector beam. The final 3D

model was recreated from a series of 2D cross-sections using ray marching technique

and marching cubes algorithm. The steps and all used techniques will be described in

the thesis.

The practical problem to which the covered techniques were applied to in this thesis

was done as a part of INETEC Institute’s project. The main goal was visualizing defect

detection on a certain trajectory to make real life probe positioning quicker and more

efficient. The ultrasonic probes, models and probe data used in the implementation

were all provided by INETEC and collected using their instruments. The goal was to

simulate how a probe would move and detect defects as it would if it was moved the

same way in reality and with that reduce time of scanning for defects.
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2. Ultrasonic probes and sound

pressure

Ultrasonic probes are used for investigating internal structure of a target object. De-

pending on the position of a defect, with a regard to the volume and position of the

probe itself, the ultrasonic probe will either be or not be able to detect the defect below

the volume’s surface. The detection sensitivity of a probe can be closely represented

by the strength of the sound pressure field it generated in the specimen. The sensitivity

field visualized as a heat map can be seen on the figure 2.1. As the rainbow colormap

was used, the dark blue color represents lower sound pressure field values and thus

lower detection sensitivity while the dark red represents highest values meaning high

sensitivity. The series of this kind of images, generated with different settings, in this

case - multiple UT probe angles and different focal depths, will be used for the visual-

ization.

Figure 2.1: Representation of pressure field below the probe at a 45 degree angle
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The sound pressure field can be computed using an implicit formula of the type:

Figure 2.2: Formula for calculating pressure field

The formula 2.2 is complex and therefore using it to calculate the pressure field

multiple times for each setting would take some time. That is why visualization from

images is a good option, there is no need for complex formula calculations to get good

results. One downside of this approach is that it needs pre-generated images.

2.1. Ultrasonic sensors

Ultrasonic inspection is a collection of methods in which beams of ultrasonic waves

are emitted into material for detection and properties of subsurface anomalies, flaws

and structures of a said material. This way of detection offers a highly reliable and

non-destructive way to discover internal structure. Ultrasonic sensor is an instrument

that uses ultrasonic waves for flaw detection and inspection.

The sensors of this type work by emitting sound waves at frequencies in the high-

frequency ultrasonic range, greater than 20 kHz, this range is higher than the normally

audible range of human hearing. Ultrasonic sensors transmit ultrasonic waves toward

a target and if there is an obstacle or an object on the way, sound wave will bounce

back to the receiver. The distance of obstacle is then calculated by measured time

the reflected waves took to return to the receiving sensor taking into consideration the

speed of sound inside targeted object.

2.1.1. Working principle

To better understand how sensors like these work functional units they typically consist

of will be described in detail in continuation. Pulser is an electronic device that can

generate electrical pulse of high voltage. The transmitting transducer generates a beam

that emits ultrasonic waves when triggered by bursts of voltage generated by pulser.

Transducer contains important element that converts electrical energy into acoustical
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one and vice versa. The generated energy once introduced into the materials propagates

in the form of waves. Transducers can be one single element but phased arrays with

multiple elements are more common nowadays.

A couplant is a material, usually liquid, that facilitates transmission of ultrasonic

waves between the transducer and test surface. Couplant is necessary because of the

large acoustic impedance mismatch between air and solids, this is the consequence of

the speed of sound being varied in different materials, so when a sound wave strikes

the border between the two, some of the wave reflects while some is transmitted into

the second medium. The couplant helps in displacing the air and getting more sound

energy into the test specimen, with more energy a more usable ultrasonic signal can be

obtained.[10]

A receiver is tasked with accepting the output of ultrasonic waves. In most systems,

transducer and receiver functions are integrated into single unit and ultrasonic element

then alternates between emitting and receiving signals. Receiver and transducer can

also be separated, in that case they are placed side-by-side as close together as possible,

because when the receiver is close to the transmitter, sound travels in a straighter line

on its way from the transmitter to the detected object and back to the receiver, yielding

smaller errors in the final measurements, but errors are still going to be bigger than

in same unit integration sensors. The reflected wave signal is transformed into an

electrical signal by the transducer and is recorded on a display device for analysis.

Figure 2.3: UT sensor working principle [7]

Besides these integral parts its some additional parts to highlight are display and

an electronic clock. A display or some indicator is there to characterize and record

the output from the test piece. The display device nowadays is most commonly a

computer screen, which is an integral part of many units; a full copy of data is typically
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recorded and kept for subsequent analysis. An electronic clock serves as a primary time

reference point for the entire system. In many cases the pulser, receiver, display, and

clock are combined into a single integrated unit.[2]

The mechanical waves travel through the material and interact with interfaces be-

tween different material and discontinuities, including flaws and other anomalies. Re-

sponse signals are detected and then displayed and analyzed giving information used

to define the presence, location, and characteristics of flaws.

Ultrasonic data can be collected and displayed in a range of formats but the three

most common ones are known as A-scan, B-scan, C-scan and S-scan presentations as

seen on image 2.4. Each mode provides a different view of looking at the material

region being inspected.

Figure 2.4: S-scan above and A-scan below

2.1.2. Real life applications

Ultrasonic inspection is one of the most widely used families of methods employed for

nondestructive testing. The use of non-destructive techniques is necessary for the anal-

ysis of internal properties of structures without causing damage to the materials. In the

last decade, ultrasonic techniques have shown to be very promising for non-destructive

inspection offering advantages over other methods thanks to the ultrasound being safe

and not damaging to the object being tested, great accuracy and high sensitivity for
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detection of extremely small flaws are only some of the extra benefits. As such it

finds its application in many fields, the most familiar usage is in prenatal medicine

for medical screening of fetuses during pregnancy. Besides that, ultrasonic inspection

is also widely used for quality control and material inspection in all major industries;

including electrical and electronic component manufacturing, production of metallic

and composite materials, and fabrication of structures such as airframes, engines, ma-

chinery and many others.[2] Accompanied by the rapid development of information

processing technology, new fields of application, including factory automation equip-

ment and car electronics, are increasing and should continue to do so.

Figure 2.5: Example of UT scanning of a metal block with the INETEC’s UT probe
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3. Visualization techniques

Visualization is the process of representing data graphically and making the represen-

tations available for interaction in order to gain better insight into the data. Displaying

data in visual form provides clear and easily understandable representation of data.

Computer graphics is constantly updating mechanisms for creating, manipulating, and

interacting with these representations.

The main problem in visualizing volume data is displaying three-dimensional data

as a two-dimensional image while not losing too much and not losing valuable infor-

mation. To effectively visualize volumes, it is important to be able to present them

from different viewpoints and to shade them in a manner which brings out surfaces

and subtle variations in density or opacity.[5]

Slicing, volume rendering and surface rendering represent the most important tech-

niques applied for three-dimensional visualization. Slice is a 2D plane extracted from

the 3D data volume and displayed as a 2D image, it shows detailed information about

the selected plane being displayed. The slice may be either parallel to one of the

axes of the volume or at an arbitrary orientation. Unfortunately, it is difficult to see

the three-dimensional structure of the interior of volume by viewing individual slices.

That is why the focus will be on other two techniques as they work better for needed

requirements.

3.1. Surface rendering

Surface rendering method involves, in simplified terms, constructing polygonal sur-

faces in the dataset and rendering these surfaces. Surface-based methods work best

with solid, nontransparent objects.

Surface rendering consists of constructing polygonal surfaces in the dataset and

rendering these surfaces, while asserting an assumption that original volume can be

faithfully represented as a collection of polygonal surfaces.
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Surface rendering algorithms have a necessary preprocessing step, also called im-

age segmentation, which involves determining a surface by extracting features from

volume data, more precisely - every pixel in an image is assigned a label such that

pixels with the same label share certain visual characteristics such as color, intensity,

or texture. The pixels are a part of one isosurface, which is the set of locations in the

data where the scalar field equals same value. The geometric primitives are then fit to

the data to form a 3D surface based on extracted values in the data. These primitives,

polygon meshes or contours, can in the end be rendered for display using conventional

geometric rendering techniques. [18]

In typical datasets from medical or scientific applications, the isosurface forms a

connected surface, such as the boundary between skin and bone in a CT dataset. In

the dataset present in the thesis, the isosurface will be detection ray density based on a

density value selected through the application.

The process of determining surface is not perfect, as it must be determined whether

the surface passes through every voxel volume element, this issue is especially appar-

ent for datasets surrounding objects that are very small, blend into their surrounding

or describe poorly defined features. A frequent problem that can occur is calculated

surface containing voxels that don’t really belong to the original object we are trying

to visualize or skipping the ones that do.[9]

If the volume is reduced to just surfaces it cannot faithfully display subtle surfaces

and phenomena that occur at the transitions between materials and local variations in

volumetric properties, such as light absorption or emission. That is why surface-based

methods work best with solid, nontransparent objects. When surfaces are transparent

or semi-transparent, geometric rendering techniques may not be the best choice, that

is where the volume rendering comes in.

3.2. Volume rendering

Volume rendering is a collection of techniques used in computer graphics and scientific

visualization to create a 2D projection from a discretely sampled 3D dataset. The most

known use case would be medical dataset consisting of a stack of MRI or CT 2D

image scans. Some other possibilities are physical simulations such as fluid dynamics

or particle systems.

Volume visualization is a powerful technique for the representation, manipulation,

and rendering of volume data. Unlike traditional graphics techniques, which represent

3D objects as geometric surfaces and edges approximated by polygons and lines, vol-
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umetric datasets are 3D entities that can also contain data and information, not only

on the surface, but also inside them, which is where surface rendering techniques fall

short. Volume visualization techniques provide the mechanisms that make it possible

to reveal and explore the inner or hard to see structures of volumetric data and allow

visual insight into transparent and complex datasets.

A Volume is a regular 3D grid of voxels. A voxel or volume element is the 3D

equivalent of the 2D pixel that represents fundamental volume element - cubic cell.

Each voxel is characterized by its position in the 3D space, and can have a color,

opacity, density or some other data value associated with it. Volume scalar field is a

collection of values associated with each point in volume.

Volume rendering algorithms are also called direct rendering methods because they

render every voxel in the volume raster directly, without explicit conversion to geo-

metric primitives. They usually include an illumination model which supports semi-

transparent voxels, this allows rendering where every voxel in the volume contributes

to the final rendered 2D image. [1] This method is applicable to medical, seismic,

atmospheric, and other scientific data e.g.from computational fluid dynamics simula-

tions or measured tomographic technology sources. It is also applicable in cases when

geometric surfaces for dataset are unavailable or too cost-ineffective to generate.

Volume rendering algorithms can be grouped into four categories: ray casting,

resampling or shear-warp, texture slicing and splatting. [14]

3.3. Surface rendering vs. Volume rendering

Surface rendering methods produce hard surfaces at distinct field values. Volume vi-

sualization methods achieve soft surfaces by blending the contributions from multiple

surfaces, integrating the contribution from the entire volume. Another advantage when

using volume rendering is no need to determine surfaces in advance which removes

need for a segmentation and polygon model representation.

Many visual effects are volumetric in nature. Fluids, clouds, fire, smoke, fog, and

dust are difficult to model with geometric primitives. Volumetric models are better

suited for creating such effects.

The main disadvantage of the volume rendering approach was a long computation

time and a high-hardware requirement but due to a modern graphic card development

achievements it is now possible to run the visualization in real time even with less

powerful options.
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4. Volumetric Ray Marching

Volumetric ray marching, or also known as volume ray casting, is the most commonly

used technique for achieving image-based volume rendering. This method’s main prin-

ciple of operation is defining rays that represent light from a camera view.

The ray casting part of the name comes from similarity with traditional ray casting

in that they only consider primary rays, the generated rays coming from the camera

viewpoint, without spawning secondary one. But be sure not to confuse them as ray

casting interacts only with surface data and stops as soon as it encounters an intersec-

tion between ray and surface in the scene while volume ray casting does not stop the

computation at the surface level but passed through the object sampling it along the

way. Ray casting assumes that the light only interacts with surfaces of objects. For the

most scenes, this is a perfectly adequate assumption. To determine the light coming

from a certain direction, one ray will simply be cast in a scene to find the first intersec-

tion and compute the luminance (power emitted by the light source) at the intersected

surface.

Ray marching handles the other cases, where light interacts with objects not only

at the surface of the object. This includes all materials where light goes through the

object. Examples would include smoke, marble and skin. When light hits one of

these surfaces, a fraction of the light is reflected (ray casting only deals with this case)

and a fraction is scattered into the object. Ray marching is a technique to compute

the scattered light. Image projection is performed by simulating the absorption of

light along the ray path to the eye and calculating light intensity when arriving to the

camera. The usefulness of this technique lies in the fact that no provided mesh data

about objects in scene is needed, as it does not calculate intersections in the scene.

Volumetric ray marching employs simplified Emission-Absorption Optical Model,

taking into consideration, as per its name, emission and absorption while ignoring light

scattering as it is too computationally complex while not affecting quality too much.

This means it only deals with primary rays, unlike some more common graphic render-

ing methods no secondary rays like reflection or refraction, or shadow are considered.
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The Emission-Absorption Optical Model places two assumptions:

± Emission - the volume is assumed to consist of particles that emit light.

± Absorption - The volume is assumed to consist of black particles that absorb

light. Meaning portion of light that passes through a particle will be absorbed.

Volume rendering integral is an equation that computes light intensity at a point s along

the ray, taking into consideration light attenuation.

I(s) = I(s0)e
−τ(s0,s) +

∫ s

s0

q(s1)e
−τ(s1,s)ds1

Where parts of the equations are:

± I(s0) is initial light intensity at point s0, s0 being a starting point

± e−τ(s0,s) is intensity reduction from s0 to s

± I(s1) is light intensity (emission) at point s1, s1 being a point on the ray further

down than point s0

± e−τ(s1,s) is intensity reduction from s1 to s

± τ is optical depth measure, measuring degree of absorption of light

± integral
∫ s

s0
q(s1)e

−τ(s1,s)ds1 gathers contributions of all points on the ray be-

tween s0 and s1

There is no closed form solution to this integral, but it can be numerically approxi-

mated with a discrete sum of volume samples along the ray. [25]

Each point in the volume is considered to emit and absorb light, according to the

color and opacity specified by the transfer function. There are multiple compositing

schemes for determining the output color. The most common one is Volume composit-

ing or accumulation. For the emission-absorption model, the accumulated color and

opacity are computed according to a set of equations also called Under operator:

Cout = Cin + (1− αin)αC

αout = αin + (1− αin)α

These equations are know as Front-to-Back Compositing Equations, where Cout is

the resulting accumulated color over n voxels seen from the front of volume. Variable

αout is the result opacity. Marching from beginning of the ray towards the end accumu-

lating color and opacity using these equations is repeated until bounding box is exited,

or some other stopping criteria is defined e.g. number of steps is exceeded.
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Figure 4.1: Ray marching through volume using compositing [24]

Another scheme that is going to be mentioned in continuation is Maximum Inten-

sity Projection. It simply takes color of the highest density point along the ray. All the

compositing schemes can be seen on figure below 4.2.

Figure 4.2: Volume rendering compositing schemes[25]
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5. Marching cubes algorithm

Marching cubes algorithm is a computer graphics algorithm for creating polygonal

representation of surfaces with constant density (isosurfaces) first presented in a pa-

per Marching cubes: A high resolution 3D surface construction algorithm [13]. The

algorithm processes the 3D data in scan-line order and calculates triangle vertices us-

ing linear interpolation. The desired density surface is specified as an input by user.

Marching cubes algorithm belongs under surface rendering algorithms.

Its advantages are that it works on lookup tables so it’s relatively high speed, also

it maintains inter-slice connectivity - connections between slices so less detail that is

present in the original data is lost. The most common usage is reconstruction of a

surface from medical volumetric datasets.

The fundamental idea will be presented on a two-dimensional example first, since

it is more clear and easier to understand, before moving on to the three-dimensional

space.

5.1. Marching squares

Marching squares algorithm works on a divide-and-conquer principle, it divides prob-

lem of creating surface to small cells, it focuses on each cell and applies to it one

iteration of the algorithm. First step of the algorithm would be splitting the space into

a uniform grid of cells, in 2D that would be squares and in 3D - cubes. Secondly,

the isovalue is defined, the value usually being the density of a desired isosurface, in

this case the beam density, which serves as threshold value used to determine a pixel’s

relation to the isoline boundary. Next step is assigning a boolean value to each pixel

according to its value in relation to the designated isovalue ± value one if it is greater

than the isovalue and value zero if its less than the isovalue. The former meaning the

pixel is inside or lies on the surface and latter that its outside of the surface.

For each cell four pixels that make up cell corners are taken into evaluation. The

sought case is found in the lookup table by forming 4-bit binary code based on the
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associated Boolean vertex value. The code is composed by going through vertices in a

clockwise direction, starting from the top-left corner and setting bit accordingly from

left to right in binary code ± so the top-left corner will be the bit position with highest

value and bottom-left the one with the lowest.

Edges are line segments that connect two vertices. In this algorithm edge endpoints

lie between vertices with opposing states. Basically, each edge that will be drawn

represents boundary line that separates inner and outer pixels. For 2D case there are

16 possible boundary configurations 5.1.

Figure 5.1: Possible marching squares combinations [16]

Once the calculation of intersected cell edges is complete, the exact points of inter-

section are calculated by linear interpolation. In mathematics, linear interpolation is a

method of using linear polynomials to create new data points approximating the value

of a given function at a given set of discrete points. If the two known points are given

by the coordinates the linear interpolation result is a straight line between these points.
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We can find edge endpoints by calculating the midpoint between two opposing

vertices and assigning those points, midpoint being calculated with simple midpoint

formula, where input points are two vertices of the edge that’s being cut.

(xm, ym) = (
x1 + x2

2
,
y1 + y2

2
)

The formula calculation is very simple but not very accurate, it produces blocky results

with lines angled at 45 degrees, consequently making all edges the same length. This

can be improved by using linear interpolation to place the endpoints of the edges at a

more fitting location based on the isovalue with respect to the original values of the

cells.

First thing is the linear interpolation formula:

Pm(t) = (1− t)P1 + tP2

Where Pm is one endpoint of N edge to be constructed and P1 and P2 are vertices of

the cut edge, t is an interpolation parameter calculated by the following formula:

t =
isovalue− V1

V2 − V1

The interpolation parameter is calculated based on the isovalue and the voxel values

and on both sides of the cut edge according to the equation.[15] V1 and V2 represent

voxel values on both sides of the cut edge, while isovalue is the value chosen in earlier

steps. Using this formula, the intersection will move in the direction of the voxel whose

value is closer to the isovalue of the surface. Now the contours are smoother and more

flexible and can represent even curved surfaces precisely. Once the algorithm repeats

same procedure over all the cells, the boundaries join up to create a complete mesh

even though each cell was considered independently.

5.2. Marching cubes

Now that we grasped the idea of the algorithm we can move on to higher dimension ±

using 3D space and cubes as units.

The good news is that this algorithm works almost identically in the three-dimensional

case as it did in two dimensions. The space is divided into a grid of cubes, each cube

considered individually in algorithm, adequate faces in each cube are drawn, and they

will join up to form the desired boundary mesh.
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Going cube by cube on a grid of cells algorithm locates the surface for each one

by doing following: cube is defined with eight pixels that are its vertices, four belong

to one slice (image) in input image sequence and four to another, adjacent slice, de-

termines how the surface intersects current cube and then moves (or marches, hence

the name) on to the next one. Algorithm finds surface-cube intersection by checking

each vertex on the cube and determining if the data value at that vertex exceeds the

threshold\value of surface user has assigned. The kind of vertices where data excess

the threshold or is equal to it are located below (inside) or on the surface and are as-

signed label 1. While vertices with values below the surface receive label 0 and are

considered above (outside) the surface.

Figure 5.2: Space division to a grid of cubes in a Marching cubes algorithm[13]

The surface intersects cubes at edges where one vertex is outside the surface and

another one is inside, calculating the exact intersection location with interpolation in

later steps of the algorithm. There are eight vertices in each cube and two possible

states for each one, equating to 28 = 256 ways a surface can intersect the cube. This

is where a look up table comes in, the 256 possible cases of surface-edge intersections

are enumerated and put in the table. The states given to each voxel in previous step

are now interpreted as 8 bit index, where each bit corresponds to a vertex, 0 or 1,

depending if the voxel is outside or inside relative to surface, and composed together

into an eight-bit index. That index is used to fetch data from the lookup table; each

index corresponds to the one row in the table.

The 256 possible configurations can be grouped into fifteen equivalent classes that
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generate same triangles. Complementary cases where vertices greater than the sur-

face value are switched with those less than the surface value and vice versa produce

same triangulation and can be grouped together thus reducing number of cases to 128.

Taking into account rotation and symmetry properties, problem can be reduced to 15

patterns. The representation of these case groups can be seen of figure:5.3. Two of

these cases are trivial: when all points are inside or when all points are outside the se-

lected value, in that case no triangles are generated and cube does not contribute to the

final isosurface. For all the other configurations the crossing point of isosurface needs

to be determined along each cube edge, these edge intersection points are used to cre-

ate one or more triangular shapes for the isosurface. Maximum number of triangles

that can be added by one configuration is four.[13]

Figure 5.3: Possible marching cubes combinations[11]

Looking up by an index in the edge table returns a 12 bit number, each bit cor-

responding to an edge, zero meaning the edge isn’t cut by the isosurface while one

means it is cut by the isosurface. If table returns number zero, it means that no edges

are cut, this can occur in the two trivial cases, where all the vertices have the same bi-

nary value. These cases correspond to cube indexes 0 and 256 (0b11111111 in binary

notation).

The final step in the MC algorithm is usually calculating a unit normal vector for

each triangle vertex. This information is later used for rendering algorithms. Since in

implementation this algorithm will be used for the surface mesh construction and not

for visualization this step will be skipped as it is not needed this time.

In general, to improve marching cubes results some kind of smoothing algorithm
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can be applied, for example Gaussian smoothing. Considering that the result is only

used as a collider this technique will not be used as less complex shape is sufficiently

accurate and better for collision computing time (less complex shape equals faster

computation). There are many applications for this type of technique, typical ones

involving reconstruction of a surface or creating a 3D contour of a mathematical scalar

field, example would be medical volumetric datasets as scans result in a volumetric

data.

Algorithm iterates over all of cubes, adding triangles to a list, and the final mesh

is the union of all of these triangles. The smaller the cubes, the smaller the mesh

triangles will be, making approximation more closely match the target function. Each

triangulation contains zero to four triangles and can be stored as a list of triangles where

each triangle is a list of three numbers which are indexes of the vertices belonging to

that triangle.

18



6. Unity

Unity is a game engine with integrated development environment developed by the

game software development company Unity Technologies. It is counted among the

most popular and most used game engines thanks to its ease of use and possibility

to create 3D and 2D games and applications for multiple platforms - from mobile

platforms to gaming consoles. Unity offers numerous options that are updated and

added regularly. This development tool has a Personal Edition that is free for personal

use, making it an appealing choice for aspiring game developers, and is available for

download on Windows, MacOs and Linux operating systems. A numerous number of

tools offer simplified and adjustable creation of games and game logic, as well as the

other kinds of projects. A lot of user community created content can be found on the

Unity Asset Store, with some of them being offered free for use. These user created

tools and assets can be used to introduce some new functionality without needing to

program it on your own or to expand what is already in the game. The version of Unity

that was used in the making of this application is Unity 2020.3.14f1.

6.1. Interface

When opening the Unity Editor we are greeted by the Unity Editor interface. The aim

of this short description is to help introduce names and functions of editor windows;

knowing them is going to make things easier to understand and to follow along later

on. This description assumes that the default layout arrangement is used.

The Toolbar is located at the top of the Editor, on the right side it contains buttons

for manipulating objects such as Move, Scale and Pivot setup. In the middle - play,

pause and step button control Play mode, pressing Play switches editor to the Game

view and shows simulation of how the finished application will look like. Pause button

is useful for pausing the application and then checking the state of objects or making

a few changes in Scene mode and seeing how these changes pan out in the runtime,

these changes are temporary and will reset once the Play mode is quit.
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Figure 6.1: User interface in Unity editor window

The Hierarchy window, on the left, displays all GameObjects in the Scene and their

mutual relationships. The GameObjects can be created by the right-click command

in the window and selecting wanted object from the appearing menu. Parent-child

hierarchy can be manipulated by dragging GameObject name representations. Child

objects inherit movement and rotation of the parent objects. Additional options to

help with organizing GameObjects at user’s disposal include toggling object visibility,

deleting, duplicating and sorting objects.

There are two views - Scene and, already mentioned - Game view. Scene view

permits editing and interaction of the scene currently in a creation process. All the

GameObject instances in the scene can be selected, manipulated and modified through

this view, which is why it is the most utilized view in the course of the development.

Manipulation and easier search of Assets and other files in the project is possible

through the Project window, usually found in the bottom middle part of the screen. On

the right side it has folder hierarchy and on the left it lists all the Assets in the selected

folder. On the window’s top pane, on the right, there is a search bar and view settings

and on the opposite side a button marked with a plus sign for creating new project

Assets.

The Inspector window is used for overview and editing of properties and settings

for almost everything in the Editor, including GameObjects, Unity components, As-

sets, Materials, and in-Editor settings and preferences. For accessing inspector window

for object of type GameObject, it is enough to select one of the objects in the Scene
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and the window opens on the right. In the window, components attached to the object

can be altered as well as their properties, the ones that reference other objects can be

assigned either by dragging and dropping object instances or Assets onto reference

property fields or by using an Object Picker window. The inspector window for Assets

(for example textures and materials) slightly varies as it displays import settings for

the selected Asset instead.[20]

6.2. Shaders in Unity

A shader is a program that takes meshes, textures etc. as an input, calculates the color

of the pixels on the screen and generates a rendered image as the output. Shader runs

on a graphics processing unit (GPU) and it is an crucial part of the rendering pipeline,

a concept that will be touched upon in more detail later; for now it is enough to know

that it is a model that describes steps needed to take to go from a 3D scene to a 2D

screen render.

Components needed for rendering an object in the scene in Unity are a 3D mesh,

an associated material and a shader connected to that material. The 3D mesh describes

model’s geometry, it contains essential data about vertex positions in the model and in

addition to that also provides other data like vertex normals and information for UV

texture mapping. A material interacts with a shader by passing it pivotal data, namely

textures and property values.

In Unity every shader Ð that belongs in the graphic pipeline category Ð is a Shader

object, an instance of the Shader class, which acts as a wrapper for encompassing

shader programs and specification info necessary for Unity to know how to use the

shader in question. Shader objects can be created by writing code in a shader language

or by using Unity’s declarative programming visual tool Ð Shader Graph.

Shaders in Unity are made up of a combination of following languages:

± High-level shading language or HLSL for short, a programming language used

for writing shader programs themselves. It is very alike to the Cg shader lan-

guage. HLSL has two syntaxes: a legacy DirectX 9-style syntax, and a more

modern DirectX 10+ style syntax; the difference mainly being in a way that

functions for texture sampling work.[21]

± A Unity specific language called ShaderLab which is used to define aforemen-

tioned Shader objects. ShaderLab’s most vital role is defining the structure of a

shader and exposing its properties.
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Two crucial parts that compose a shader structure are: Properties and

SubShader sections.

In the Properties part of the shader, as per name, properties of a material are

defined using ShaderLab language, but these property values are set outside of the

shader; when a shader is linked to the material, properties are exposed in the inspector

and users can view and edit them through that window. It should be noted that when

using these variables within the shader code they also need to be defined in the body

of the shader as well.

SubShader is comprised of compatibility information, shader Tags and most im-

portantly, one or more Passes. A Pass block can be described as one run of a shader

program resulting in a rendered image. Shader can have multiple passes, producing

multiple images in that case. The shader Tags are key-value pairs found in the Sub-

Shader and describe important information to Unity to know when and how to use the

SubShader in question.

Queue tag defines which render queue to use when rendering objects. It helps sort

each material in a preferred order for rendering, otherwise the objects farthest from

camera would be drawn first and closer ones later, which could cause problems in

cases where there are transparent objects in the scene. The value can be defined with

predefined queue name or with an integer offset from one of the queues, keeping the

value in 0-5000 range. The materials with lower values will be drawn first while the

ones with higher values will be drawn last, that is why for example default background

value is one thousand as it is usually behind all the other objects.

The command Blend tells GPU how to combine an output of the fragment shader

with the render target Ð color buffers that these fragments point to. The functionality

of this command differs based on the blending operation, which can be set using the

BlendOp command. Blend is a function that expects two input values called factors,

based on the Blend operation it calculates the final color that will be shown on the

screen. Blending occurs after the fragment shader step in a so-called Per-Sample Op-

erations before writing generated color in the framebuffer. The blending equation is as

follows:

finalValue = sourceFactor ∗ sourceValue operation destinationFactor ∗ destinationValue

In this equation:

± finalV alue is the value that the GPU writes to the destination buffer

± sourceFactor is defined in the Blend command
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± sourceV alue is the value output by the fragment shader

± operation is the blending operation

± destinationFactor is defined in the Blend command

± destinationV alue is the value already in the destination buffer[19]

There is one more important command Ð Cull. It decides which polygons are

going to be drawn and which are not based on the direction that they are facing relative

to the camera. Culling reduces GPU time to render things, as it is not rendering what

would not be seen in the final image anyway. The possible values are Cull Back, Cull

Front and Cull Off. By default, the GPU performs back-face culling; this means that it

does not draw polygons that face away from the viewer.

6.3. Graphics pipeline

There is a lot to be said about graphics pipeline (or rendering pipeline), but this chapter

will give just a brief overview for easier understanding of the implementation part

concerning shaders. Graphic pipeline is a sequence of stages that leads from 3D scene

described by meshes and vertices to a 2D image that is shown on the screen. It is

named pipeline as each stage is operating in parallel in a fixed order and the output of

one stage is an input for the following one. [6]

The programs that are written as part of the pipeline are called shaders. Whole

GPU pipeline diagram can be checked on the figure 6.2, as it can be seen there are

many stages, some optional, but this chapter will focus on programmable parts - vertex

and fragment shader.

Vertex shader processes and performs transformations on individual vertices. Most

important task for the vertex shader is transforming vertices’ coordinates to clip space

so that they can be used by rasterizer and be projected on the screen. The conversion

from object space coordinates, which are inputs vertex shader receives, to the clip space

is done by putting vertices through a sequence of transformation matrices. Object

space or local space is a coordinate system tied to an object, as the coordinate system

moves or rotates so does its object; generally, origin of an object’s coordinate system

is the object’s pivot point.
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Figure 6.2: Graphic pipeline steps [8]

World space is reference frame for all the objects in the scene, it gives spatial

relationship to all the objects or, more precisely, to their coordinate systems. World

coordinate system origin is the center of the scene. The transformation matrix which

transforms object space coordinates to world space coordinates is called model matrix.

The transformation is done by multiplying the matrix with coordinates. The aim of

these transformations is to overlap the origins and axes by using translation, rotation

and scaling.

View space or camera space is the space as seen from the camera’s point of view

with camera as its origin. In order to transform coordinates from world space to view
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space the view matrix is used. To determine what positions are actually going to end up

in the image that will eventually get rendered the eye space is converted to clip space

by using projection transform. Clipping determines which objects or object parts will

be rendered. For instance, an object which is out of the desired coordinates will be

discarded i.e. clipped. The clip space defines the allowed range inside the volume in

which vertices should be if they are going to be rendered.

Projection matrix is a bit more complicated than the other two, but it is enough

to know that it transforms coordinates from eye space into clip space which can then

be rasterized and that perspective projection can be imagined as a truncated pyramid

defined by perspective camera and two clip planes. That pyramid is, more technically,

also called camera frustum and it represents part of space that camera sees and will

eventually be rendered on user’s screen. If it is a bit hard to visualize frustum at first,

this is an image for a reference 6.3.

Instead of multiplying three mentioned matrices step by step, they can be combined

into one matrix by the name Model View Projection matrix (MVP). Using the prop-

erties of matrices, several operations (translations, rotations, scaling, and projection)

can be combined into a single matrix by multiplying them together, this composed

matrix directly transforms vertices from object space to clip space. Just directly mul-

tiplying coordinates with MVP matrix is the same as if all three matrices were applied

separately.

Luckily doing above steps and defining matrices one by one is not necessary as

Unity has a built-in helper function UnityObjectToClipPos(float3 pos)

that takes a point position and directly transforms it from an object space to the cam-

era’s clip space in homogeneous coordinates.

Figure 6.3: Perspective camera frustum [12]
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In Vertex post-processing vertices go through variety of operations, most notable

one being clipping. Rasterization converts primitives to fragments, by determining

pixels covered by a primitive (e.g., a triangle) and interpolating the output parameters

of the vertex shader for each covered pixel. The result of rasterizing a primitive is a

sequence of fragments which is also an input for fragment shader.

Fragments are collections of data generated for each pixel covered by a primitive;

each fragment contains attributes that are interpolated per-vertex values obtained from

the rasterization process. It could happen that there is a pixel with multiple fragments

mapping to it. Shader output is most often (unless only depth values are important and

colors are left undefined) an array of colors for each color buffer. Fragment shader

can be programmed to do a lot of things, from doing bump mapping, adding shadows,

highlights and translucency to being used for simulating postprocessing effects.[8]
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7. Implementation

The implementation of the problem presented in this thesis is made by using Unity 3D

development platform. As defined, the goal of the problem is to move the probe as little

as possible across the surface of the specimen so that the scanning for defects takes less

time but to still collect all the needed information. The specimen is presumed to be flat

and has a constant thickness throughout entire volume. It has welding defects, more

specifically side drilled holes. The trajectory of the probe should be able to be either

predefined or defined by the user inside the application.

Firstly, the project was prepared for development by importing needed data - 3D

models and simulation images provided by INETEC. Secondly, the most important

part of implementation was done - implementing the beam visualization using shaders

and textures. The third part was setting up collision detection and mesh generation.

As the last step the options for user controlling the movement of the UT probe were

achieved with scripts and User Interface. On the UI there are also added buttons and

input fields for control of the simulation. The programming language that Unity uses

for scripts is C# so majority of the code is written using C# and shader language HLSL.

Integrated development environment (IDE) used for development is JetBrains Rider as

it has support not only for C# but also for Unity and HLSL shader development.

7.1. Model Import

The 3D models used in the creation of the application were provided by the courtesy of

INETEC. The model set consists of a 3D representation of a UT detector probe and a

3D model of a test steel block. The block consists of multiple elements, some of them

being parts of the block structure while some of them representing welding defects

inside the block.

The models were made outside of Unity, with an external 3D modeling software

from the Autodesk corporation; consequently, they are in the Autodesk’s native format

for the asset exchange - FBX.
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They can be imported by just dragging model files into the Assets folder struc-

ture, this opens the Import Settings window in the Inspector offering different setting

adjustments, the settings are going to be left unchanged in this case.

Next step is instantiating objects by adding each one to the scene, new necessary

components can also be added in the inspector tab by clicking Add Component in the

Inspector window on the right.

First essential component that needs to be added to the probe model and all of

the defects is a Rigidbody with the kinematic setting set to True. The defects also

need an another component - Mesh Collider with a Convex setting checked, this

is going to be required subsequently for the collision detection. To remove the time-

consuming and repetitive job of manually assigning components to all of the defects,

which could be numerous, there is a script for making the job faster, it can be attached

to the block model and automatically adds the above-mentioned components to all of

its GameObject children tagged with a Defect tag.

7.2. Beam Visualization

Visualizing the beam itself was the most important part of the project. It was made

using 3D textures, shaders and the ray marching technique. Each step is detiledly

described in the following sections.

7.2.1. 3D texture and volumetric data storage

The beam volumetric data was stored in a Unity’s 3D texture Asset Type. A 3D texture

is a bitmap image that contains information in three dimensions: width, height, and

depth, rather than the standard two dimensions. Texture coordinates are placed on a

unit cube and texture data is accessed by three-dimensional texture coordinates. This

kind of data type is fitting for storing and manipulating volume data.

The simplest way to imagine a 3D texture is like a series of 2D textures stacked

on top of each other. They are a bit newer and rarer than 2D textures, but 3D textures

are commonly used to simulate volumetric effects such as fog or smoke, scientific

visualization data, or to store animated textures and blend between them smoothly.

One downside is that the size of a 3D texture in memory and on disk increases rather

quickly with the increase of resolution because of three dimensions.

The 3D texture containing volumetric data was built from 2D images through a

script and will be one of the inputs for the shader. The images for creating 3D texture
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are stored in folders, named based on the beam parameters; each folder has two sets

of images, one with color for coloring the beam in later steps of the visualization, and

separate B&W one for calculating density. The reason for needing two textures is the

use of rainbow color scheme, in this color scheme colors are not ordered by brightness

so we can’t just calculate density by using color texture.

The script creates an instance of the Texture3D class and populates it with color

data using built-in functions Texture.SetPixels() and Texture.Apply(),

and then creates Unity Texture asset and saves it to the Resource folder of the Project

with a command AssetDatabase.CreateAsset().

Texture.setPixels() takes an array of colors and applies all of them to the

3D texture pixels, it is executed faster using this function than if every pixel is updated

separately. Texture.Apply() actually applies all of the pixel changes that were

made in previous step by sending them from CPU to GPU. This function is expensive

as it uploads data to the graphics card, which is why it should be used at the end, when

it is sure that there are no more pixel color changes to be made.

7.2.2. Shaders and Ray marching

Volume rendering has a few distinct color compositing types, in the project we will use

Maximum intensity projection and Accumulation using Front-to-Back Compositing

Equation.

To start writing the shader, first it needs to be created by right-clicking in the project

window and selecting the following Create -> Shader -> Unlit Shader. Unlit shader is

adequate as the beam does not need to be affected by lighting models. After naming the

shader Unity assigns default code to it. Shaders can be opened and edited in JetBrains

Rider IDE which offers support for shader development with HLSL and C#.

The Shader implements volume rendering using ray marching algorithm and gives

as a result rendered volume representing the ultrasonic beam, the result looks three

dimensional even though it was made from 2D images.

In the Properties section following data is defined: Maximum step size for the

length of step taken when traversing the ray, two 3D textures, minimum and maximum

density, minimum and maximum slice. Slice data is of Vector data type since it needs

to store three values because cutting can be made along every axis, for example Vector3

value of (0.2, 0.4, 0) would mean we are looking at volume from slice at axis x = 0.2

and axis y = 0.4.
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In ShaderLab Queue will be defined as Transparent and RenderType as Fade.

Blend mode will be defined as standard Blend SrcAlpha OneMinusSrcAlpha.

In the Pass first keyword is CGPROGRAM, this defines CG shader block; it is

very similar to HLSL but the difference is that it automatically includes Unity built-in

shader include files among which are shader helper functions that will come in handy

for writing the rest of the shader. Downside is that the built-in functions are only

compatible with Unity’s Built-in Render Pipeline, but that is acceptable in this case as

that is the render pipeline that is used in project.

At the start of the shader there are two statements with #pragma directives, they

are a type of preprocessor directives in HLSL which are instructions for the preproces-

sor when preparing code for compilation. Pragma directives indicate which shader

function to compile for different shader stages. For example #pragma vertex

vert would tell the preprocessor to compile function vert as the vertex shader.

Defined data structure vertInputwill be the input data type for the vertex shader

while fragInput will be the output data type from vertex shader and input for the

fragment shader.

Semantics next to the variables indicate the information about data required by

GPU for all variables passed between shader stages. Although on the modern GPUs,

rules for assigning them are becoming more arbitrary, for example TEXCOORDn

semantic can be used not only for textures, as could be assumed by its name, but

also for anything that does not fit into other semantic labels. The exception being

SV_POSITION in vertex shader output, which stores the final clip space position of

a vertex, as GPU needs this data for correctly positioning pixels on the screen during

rasterization.

Vertex shader runs for all of the vertices of the model. All the needed operations for

manipulating the vertex position are executed in this part of the graphic pipeline. The

vertInput contains vertex position in object space. To obtain the clip position required

to be stored in SV_Position built in function UnityObjectToClipPos() is used,

it takes a point in object space and transforms it to the camera clip space, its return

type is float4 since result is in homogeneous coordinates. It is equivalent to multiplying

MVP matrix with vertex position. Additionally the object space position will be passed

to fragment shader. Since that are all vertex manipulations needed, this output will now

be sent to fragment shader.

In fragment shader GPU calculates the final RGB color for every pixel. It is a stage

after rasterization and runs for each pixel on the screen. In fragment part the actual ray

marching with compositing will be done.

30



Before starting to ray march, for each pixel there has to be a ray created through it,

that will be done by using pixel’s local position as ray origin and ray direction vector

from camera to pixel using helper function ObjSpaceViewDir() and inverting it

since it returns direction from pixel to camera. Using this ray, the unit cube in which

volume is drawn is intersected. The points of intersection are helpful for calculating

march step size by dividing distance between start point and end point by the defined

maximum step size. The max step size limit is there because of performance concerns,

if the number of steps is too great, visualization would not run smoothly in real-time

use.

Finally, the ray marching in executed in the loop that runs for a number of steps. In

each step a density is read from B&W 3D texture and the color form colored 3D texture

using adjusted local vertex position and saved for later processing. Now what is done

with color information depends on technique chosen. If it is accumulation color is sent

to the BlendColor() function where compositing formulas are used for collecting

and interpolating colors through steps. If the pixel density does not satisfy threshold

limits the pixel color is discarded from calculation. The following formulas are used

in shader for compositing:

colorOut.rgb = colorIn.rgb+ (1− colorIn.a) ∗ color.a ∗ color.rgb

colorOut.a = colorIn.a+ (1− colorIn.a) ∗ color.a

For optimizing calculation time, compositing along the ray can be terminated early if

a currently accumulated opacity is too high, meaning contributions of future samples

are insignificant.

In Maximum intensity projection (MIP) technique, as the name says, the maximum

intensity voxel along the ray is saved and returned after checking all the pixels along

the same ray. In both cases at the end of ray marching loop the final pixel color is

returned.

The color of the beam can be chosen to either be read from a 3D texture or from

a defined transfer function, based on choice the code differs a bit. The case of using

textures was implemented in a way that a color for the voxel is read in ray march-

ing algorithm, while when using transfer function first the density is calculated using

ray marching and then at the end, based on that value the color is read from transfer

function which is saved in a Texture2D format.

To apply shaders to objects, a material that will be linked to this shader needs to be

created and then attached to the object.
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7.2.3. Transfer function

The result of volume visualization algorithm is complete now, but it is in shades of

gray. As the color is a vital component for a good visualization, the next logical step

would be adding it. The volume can be colored by assigning color and opacity based

on density, this is where the color transfer functions come into play. Transfer functions

define mapping from voxel density to RGBA color based on user defined values. Using

transfer functions provides a better overview and clarity to the data, they can be used

to highlight important parts and omit unnecessary ones better emphasizing nuances

inside the volume.

Transfer function takes the scalar value, in this case density and relates it to cor-

responding color and opacity/transparency, for example if it is desirable to highlight

higher density parts higher opacity should be assigned to those densities. Deciding

how a transfer function should look like is not an easy task, there is no fixed guide to

perfect function because of variations from dataset to dataset and taking into consider-

ation what kind features are wanted for particular visualization. Since original images

are colored with rainbow heat map, the transfer function with same colors will be used

for this assignment.

The script for generating transfer function can be executed in the inspector, with-

out needing to put the scene in the play mode. Gradient is an input variable for

the script stored in form of a Unity’s Gradient class. The variable needs to have

[SerializeField] decorator so it is exposed in the Inspector. Clicking the gra-

dient class variable for editing opens up the Gradient editor, showing a gradient with

set of keys at the top and at the bottom 7.1, the keys at the top control alpha value or

transparency while the ones on the bottom determine color. New keys can be easily

created by clicking below or above gradient and then selecting its alpha or color value

with a slider. Gradient mode should be set to Blend if a smooth interpolation between

colors is desired result. When the color choice is decided, script can be executed by

clicking a button with Generate Transfer Function label.

In Unity transfer function can be created by using a 2D texture with height of one,

this is enough since both needed information, color and opacity, can be stored in one

pixel. The process of assigning color to pixels is similar to previous 3D texture creation

except, of course, being in two dimensions. Texture color is read and set based on input

gradient, important thing to note is that setting texture wrap mode to Clamp after the

creation is needed otherwise edge colors will not give desired results. After texture

creation it can be linked to 3D texture’s properties.
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Figure 7.1: Gradient editor window

7.3. Collision

For detecting collisions Unity’s default colliders were not a good enough of an ap-

proximation for the beam, so the mesh had to be reconstructed with surface rendering

from the images. The reconstruction was accomplished with the marching cubes tech-

nique. The input is once again a stack of B&W images. The user defines minimum

density value that is going to be considered as the threshold in the script; the script

goes through each slice row by row, finding a first pixel that satisfies the equation in a

way that its density is greater (or equal) to the threshold. After finding the first point

the search continues until finding the last point that satisfies the equation, point after

it and all the subsequent ones until the end of the row have lower density and will not

be included in the mesh vertices. The pixels between the two found end points are

going to be included inside the mesh, but only two edge points need to be sent to mesh

creation function as other points are going to be included inside generated triangles.

Mesh creation function uses Marching cubes algorithm with interpolation. In this

function the Mesh variable that will be populated with calculated data is defined, ver-

tices are interpolated before finally being assigned and triangles are formed with the

use of case table. (Triangle case table was taken from a reference site [3]) Having both

vertices and triangles a mesh can now be created by populating instance of the Mesh

class.

The script is set up by attaching it to the desired GameObject that must have
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Mesh Renderer and Mesh Filter component and activates when application is run in

the Play mode. After mesh creation the Mesh collider can be added to the beam, Unity

automatically adapts Mesh collider to the selected Mesh - in this case the beam.

Beam Collision script listens for the collision events and reacts by calling

OnCollisionEnter() function that changes material color on a defect when it

is under collision to a some bright color that can be seen easily, in this case - green.

After the beam collider is no longer in contact with defect the material color can be re-

turned to the original one inside OnCollisionExit(). OnCollisionEnter()

and OnCollisionExit() are physics engine specific functions that are triggered

on physic update frames when the collision is detected and when the contact between

colliders has stopped.

7.4. Input Controller

For a user to have a better overview of what is happening there is a

Camera Controller script that controls camera movement by reacting on user’s

input from mouse and keyboard. The camera can move horizontally and vertically

with the arrow keys, rotate around the test model with mouse and be zoomed in and

out with the mouse wheel. Some sensitivity parameters can be adjusted in the Inspector

like zoom in speed, camera damping and such. In Update function the script is lis-

tening for any input from the user in Update() function every single frame, here the

Unity’s Input System interface was used for checking input source, acquiring input val-

ues, and calling appropriate functions - Move(), Zoom() or Rotate() accordingly.

The configuration of Unity’s Input API can be set up in Input Manager, developer can

edit keys, buttons and virtual axes, this menu is accessed by going to Edit > Project

Settings > Input Manager. For example Input.GetAxis("Mouse X") will fetch

action associated with name Mouse X, that action by default being mouse movement

on x axis but it can be customized.

GameObject representing ultrasonic probe has two scripts for controlling its

movement and trajectory attached. The first one, called ProbeController keeps

the track of UT probe’s position and whether it is currently controlled manually or

with the simulation script. It contains references to the object’s Transform, custom

AutoMove script and fields on user interface meant for position setup input values.
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7.5. User Interface

The User Interface is divided into three sections, which can be seen on the figure 7.2

The first section, on the left, consists of settings regarding beam visualization. Most

important ones are Focal depth and Refraction angle, these settings can be chosen from

their drop-down lists, each combination of the two maps to the one set of images and

by extent textures that will be used for visualization for these particular settings.

For output color there are Max Intensity Projection and Compositing options, choos-

ing either comes with different visualization results corresponding to a technique cho-

sen. For the Compositing, the choice of current Z-slice is enabled, by using the slider

user can select any cross-section on z-axis within the beam for a more detailed view.

In addition to the beam options, this section also contains some general settings, like

screen options and application exit button.

The panel on the right is tasked with handling the input of the auto-movement path

parameters. The user can fine tune the course of simulation by inputting the values for

the desired simulation output in the suitable fields. The unit in which field inputs are

calculated are millimeters. Once the user has set all of the parameters, by pressing the

button Set Parameters current values will be saved, play button will be enabled

and automatic simulation will be ready to be played.

The middle section, in the bottom of the screen, controls movement of the UT

probe model, the two tabs are designed for controlling the simulation parameters and

manual user control, respectively. Animation tab offers buttons for playing or pausing

and the slider for rewinding to an any point in the animation. Playback speed can

be slowed down or accelerated with a drop-down menu with playback speed choices

based on user’s preferences. In manual control tab user can either input exact probe

position or use two sliders for selecting horizontal line position and sliding UT probe

by a selected increment along it.

All the menus on the interface can be collapsed (or expanded) by clicking on the

related tab name for a better screen overview.

The components used in process of building the interface were either created from

the scratch or extended from the Quantum UI package [23] which was downloaded

from the Unity Asset store web page. Another custom package that was used was

LeanTween for the UI animations.[17]

Figure 7.2 shows the simulation in the running mode, with completed user interface

which offers the access to options and functionalities of the simulation.
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Figure 7.2: User Interface in the application
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8. Results and Discussion

In this chapter, the final results of the implementation are presented and discussed. The

comparison between technique types and two different color acquisition methods will

be seen. Also, it should be noted that the results are shown on unit 1x1x1 cube (in

Unity’s measure units) for better observation while the beam in simulation is resized

to match the real beam’s dimensions.

As has been previously explained, the beam can be rendered with two techniques:

Maximum intensity projection and Compositing. The differences between the tech-

niques can be viewed on the figures 8.1 and 8.2 below. The images for comparison

were generated using color acquisition from a colored 3D texture, texture used was the

one with 30 degree refraction angle and 30 mm focal depth, and a cutoff density of

0.04 for examples on figure 8.1 and of 0.3 for figure 8.2.

Figure 8.1: Comparison between MIP (left) and Compositing (right), using color from texture

and cutoff density = 0.04
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Figure 8.2: Comparison between MIP (left) and Compositing (right), using color from texture

and cutoff density = 0.3

On the figure with Max projection, the highest density can be clearly seen from all

of the angles (an effect more visible in the simulation, when moving and rotating the

camera than on images), while with Accumulation we see color compositing effect, the

most of the beam being blue as it is the color most present in the beam so it contributes

the most, but also seeing some traces of red and yellow in the middle. The difference

between two methods can be seen more clearly from the side view on figure 8.3.

Figure 8.3: Comparison between sides MIP (left) and Compositing (right), using color from

texture and cutoff density = 0.3 at a 30 degree angle
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The cutoff setting difference is shown on the following sequence of images 8.4,

with the cutoff parameter value increasing from left to right. As an example, the max-

imum projection visualization was chosen as the immutable part and cutoff density is

the parameter that is changed. On figures, it can be seen how with the increase of cutoff

threshold smaller number of pixels in the beam is considered for the final visualization,

the ones that do not satisfy density requirement are excluded from final result. This

setting helps with focusing on the high density/strong detection area of the beam.

Figure 8.4: Comparison between different cutoff densities on example of MIP using color

from texture, cutoff values are 0, 0.04, 0.3

Max intensity projection can be improved upon by adding transparency. With this

feature enabled voxels with lesser density will be more transparent than the ones with

higher values. This shifts focus to more important parts of the beam while still includ-

ing all of the parts of the beam in the render unlike with cutoff setting. The result can

be seen on figure 8.5 with outer blue rays being less visible than the middle ones in

yellow-red range. Transparency is achieved by multiplying voxel density by an alpha

multiplier parameter in the shader.

Figure 8.5: Comparison between MIP without and with transparency, alpha multiplier = 9
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Previous images show that with the Composting color accumulation inner parts of

volume are not clearly seen. To make inner parts more visible and to get better insight

of inner structure there are two options: to remove parts outside of desired density

segments or to slice off the part of the volume that is not needed.

Extracting particular segment from the beam is done by selecting minimum and

maximum density value, all the other parts that are not included in this range are going

to be transparent. The result is a volume or an isosurface where its inner and outer

sides are visible.

Figure 8.6: Compositing result beam with alpha value between 0.07 and 0.115

Another option is cutting the volume along one of the axes. For the example, z-

axis, values are viewed along z axis and everything in front of the minimum z-value

and behind the maximum z-value is removed. As the volume is drawn inside unit cube,

possible input values for slices go from 0 to 1. While cutting the volume it is also

possible to select particular slice by putting slice values for minimum and maximum

as close as possible.
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Figure 8.7: Comparison between different z slice values on example of MIP using color from

texture, cutoff values are 0, 0.2, 0.5

Coloring the volume after calculating densities can be done in different ways. The

most common coloring method for volume rendering is using transfer function, since

it is easily adjustable and can define both color and transparency. Another advantage

of transfer function is that two textures are no longer needed, saving time and space.

Advantage of reading color from texture is that everything is colored exactly like in

the original dataset, there is no approximation and thus it is more similar to the source

data. Also, there is no need for transfer function, saving the time that would otherwise

be needed to try to define perfect one for particular dataset.

On the result images 8.8 the transfer function render gives better results - colors

are brighter and transitions between them are clearer. Even though the B&W texture

used for density calculation was lower resolution the results are very smooth, which

is not the case with a color from texture one where it caused a bit of a blocky look to

colors. If the input images were of better resolution the result would quite probably be

significantly better and more similar to the transfer function result.
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Figure 8.8: Comparison between color acquisition from a 3D texture and a transfer function

Two adjustable settings that substantially affect the beam material are focal depth

and refracted angle. As this changes the parameters of the ultrasonic probe, the simu-

lated field changes along with it which is reflected in implementation by swapping 3D

texture sent to shader.

The focus depth change from 30 to 60 millimeters causes the rendered result to

consist of a more intense and larger surface of red area in comparison with the 30

mm one, this difference shows how the ray with depth change shifts focus to a deeper

depth, around 60 mm deep from probe position.

The refraction angle, as the name says, changes the angle of the probe and in ex-

tension angle in which rays enter the block. The probe can be imagined as if it is

positioned in the top left corner and shoots rays at an angle. The possible angle op-

tions are in range of 30-70 degrees in 10-degree increments. On the figure 8.9, first

two photos have the same angle and present the focal depth change difference, while

second and third photo pair retains the same depth but shows an angle change effect.

Figure 8.9: Settings from left to right: angle 30 depth deg 60 mm, angle 30 depth deg 30 mm,

angle 50 depth deg 30 mm
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Maximum step difference is an important parameter in the ray marching algorithm,

too big of a step and the important data could be missed, too small and the computation

could take a long time. Also, in some cases where step number is too small, the

sampled steps in volume could be seen in a form of thin slices, effect slightly seen

on the left image 8.10. For a reminder, bigger max step size equals smaller steps. The

color is more blue on right photo because with smaller step more color data is gathered,

while with the bigger step parts of blue colored volume were skipped and that is why

the end result is less blue.

Figure 8.10: Difference between max step size of 30 (on the left) and 200 (on the right)

The marching cubes algorithm result is a mesh that approximates the beam. On

the figure 8.11 we can see the comparison between the generated mesh and the beam

using the density threshold of 0.3, the result resembles the high density portion of the

original beam visualization really well. The mesh is lightly shaded on the image for

comparison but it can be disabled from rendering in simulation if desired.
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Figure 8.11: Mesh reconstruction for the density threshold of 0.3 and the original visualized

beam

The final detection result can be observed on example case on figure 8.12. Defects

whose colliders were in the beam range were detected and colored lightly green.

Figure 8.12: Highlighted defects after being detected
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8.1. Possible improvements

Future work could improve upon offering more scanning path options, addition of

possibility to simulate scanning of complex surfaces like the ones with curves or the

ones with obstacles would make this program applicable for use in a wider number of

cases since real objects that need quality scanning are not commonly shaped regularly,

in addition they could have welds and other obstacles on trajectory. Implementing this

can be possibly done by doing some calculations using probe and surface normals but

calculating probe position would be way more complex than it is right now for flat and

straight surfaces. Additional complication to path calculation would present obstacles

that would prevent probe from moving freely.

One small issue, which can be solved easily, is that the results with current images

come out a little pixelated, the cause is that the current images were generated in di-

mensions of 43 x 31 pixels to save time as they were used as a placeholder for a course

of development. If the simulation images can be re-generated in a bigger resolution,

with their quality improved so would the quality results, the final visualization would

be clearer and more accurate.

Another part the future research could explore is adding illumination and shading

to volume rendered surfaces for a more 3D look of the volume. The improved illu-

mination model would take into consideration ambient, diffuse and specular lighting

component as per Phong Illumination Model. The beam visualization would not bene-

fit that much from the three dimensionality given by illumination, since focus is more

on area of detection rather than details of the beam’s structure, and the beam is not a

crude surface, but if its wished to display some other dataset where the structure consist

of solid surfaces, like commonly used example of a head MRI with bones and tissues,

this would be more useful in bringing that dataset to life.
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9. Conclusion

Visualization techniques and computer graphic algorithms have come a long way and

their usage is nowadays applied in many different areas and functionalities. These

techniques are primarily used for scientific visualization in the field of medicine, since

images gained from MRI or CT scanning are normally stored in a series of images, a

format naturally suitable for 3D visualization. With constant upgrades and improve-

ments of graphic equipment positively impacting computational power of computers,

these techniques are now available in real time and are increasingly used in various

industries for different use cases.

The possibilities and advantages of using volume rendering in displaying datasets

have been explored by applying described techniques and algorithms to a practical

problem of visualizing ultrasonic beam for quality inspection. The achieved simulation

can be used as a helping guide in minimizing the amount of redundant scans in search

of defects inside object structure during quality control phase.

The implementation was done using Unity and writing custom shaders, results

achieved were quite satisfactory and showcased one possibility of use of volume ren-

dering in the quality inspection field. The biggest limitation of the final application is

no support for complex trajectories, and solving that would probably be the best course

for future work.

This paper aimed to highlight possibilities and advantages of visualizing data in

three dimensions. Volume rendering offers a lot of adjustability, as it can be achieved

using different technique variations and as such can be used for lot of different pur-

poses. It is especially useful in cases when the dataset is already represented as volume

or in a format that is easily converted into one. This thesis showcased the strengths and

advantages of volumetric data visualization applied on a concrete problem, hopefully

this set of techniques will be even more researched and used in future as it could im-

prove efficiency and reduce errors in different science fields in general.
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Visualization of Three-Dimensional Ultrasound Data

Abstract

The aim of this thesis is exploring visualization methods of three-dimensional vol-

umetric data and applying learned knowledge to a concrete problem. The problem in

question is visualization of ultrasonic probe beam from a series of cross-sections. Ad-

ditionally, it should be possible to simulate real-life quality scanning of metal objects.

The different methods of rendering three-dimensional data from a stack of two-

dimensional images are presented and their advantages and disadvantages discussed.

The final software was developed using Unity game engine Marching Cubes algo-

rithm and Volume Ray Casting. The Volume Ray Casting algorithm was realized using

Unity’s shaders and HLSL language.

The results and options were presented and analyzed along with the possible im-

provements for the future work. The achieved simulation software can be used as a

helping tool in minimizing the number of redundant scans in search of defects inside

object structure during quality control phase.

Keywords: Volume rendering, Ray marching, Ultrasonic probe, Unity, Shaders



Vizualizacija trodimenzionalnih ultrazvučnih podataka

Sažetak

Cilj ovog rada je proučiti metode vizualizacije trodimenzionalnih volumnih po-

dataka i primjena stečenog znanja na konkretni problem. Problem u pitanju je vizual-

izacija zrake ultrazvučne sonde iz niza poprečnih presjeka. Dodatno, trebalo bi biti

moguÂce simulirati skeniranje metalnih predmeta pri kontroli kvalitete.

Predstavljene su različite metode prikazivanja trodimenzionalnih podataka iz niza

dvodimenzionalnih slika te se raspravlja o njihovim prednostima i nedostacima. Kon-

ačni softver razvijen je korištenjem programskog alata Unity, Algoritma marširanja

zraka i Volumnim prikazom podataka. Algoritam marširanja zraka je ostvaren ko-

rištenjem sjenčara u alatu Unity i jezikom za sjenčare ± HLSL.

Dobiveni rezultati i moguÂcnosti programa su predstavljeni i analizirani zajedno

sa moguÂcim poboljšanjima za buduÂci rad. Postignuti softver za simulaciju može biti

korišten kao pomoÂcni alat za smanjenje broja suvišnih skeniranja pri pregledu strukture

objekata tijekom kontrole kvalitete.

Ključne riječi: Prikaz volumena, Marširanje zraka, Ultrazvučna sonda, Unity,

Sjenčari


