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INTRODUCTION

Image upscale is one of the seamless constant processes used within computer devices with-

out us even realizing it. This process operates continuously within video players, image

previewers, and image editing software like Photoshop. With the amount of different device

screen resolutions we have today, image upscale is a necessary method of showcasing the

same image on them. This thesis dives into the challenges of upscaling raster images, ex-

ploring the challenges involved. Additionally, the thesis provides an optimization process

that can facilitate the successful implementation of real-time video upscaling in the future.

The structure of this paper is as follows. In the first chapter, we discuss the issues related

to image, video, and real-time video upscaling. We then review the existing literature and

state-of-the-art methods for real-time image upscaling. Subsequently, we explore mathemat-

ical upscaling methods, focusing on interpolation as the primary technique. Additionally, we

delve into modern upscaling approaches utilizing convolutional neural networks (CNNs) and

generative adversarial networks (GANs). In the subsequent chapter, we provide detailed in-

sights into real-time upscaling methods that rely on GPU inference and further optimization.

We also address the challenges associated with constructing a dataset for high-quality image

upscaling. Furthermore, we examine metrics and the difficulties involved in assessing image

quality using automated computer processes. In the following chapter, we offer a compre-

hensive overview of the program implementation of these methods. Finally, we present the

results, comparing CPU, GPU, and optimized GPU inference for real-time video upscaling.
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1. Background

Two most commonly used types of image formats are vector and raster graphics (Figure 1.1).

Both types have different approaches to storing and visualizing image data.

Rasterized images contain pixel magnitude information for each pixel of the image in a

two-dimensional data matrix. Values of pixel magnitude vary between image formats. Due

to the limitation of the format, each image contains an exact number of pixels, which can

be calculated by multiplying the height and width of the image in pixels. The most popular

formats of images using raster graphics are .jpeg, .png, .gif, .bmp, etc.

Vectorized images on the other hand are not limited by pixel data information rather they

define objects on images with specific mathematical formulas which describe shapes and

curves. This allows us to view vectorized graphics in any resolution we want. Commonly

used image formats for vector graphics are .svg, .wmf, .eps, .ai, etc.

Figure 1.1: Comparison of raster (left) and vector graphics (right)

Some of the advantages of the usage of raster images over vector images are the possi-

bility of single-pixel manipulation, simplicity of the data format, and matrix operations for

image manipulation. However, vector images are usually small in size, accurately define

curves, and can be both upscaled and downscaled without loss in quality.

Information about the most used image formats on the Internet shows us that mostly

rasterized graphics is used1. Due to screens being different resolutions, the problem happens

1https://w3techs.com/technologies/overview/image_format
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with displaying rasterized graphics on a higher-resolution screen. We can proceed with this

problem in two ways: just show the image in the original resolution which will be small or

transform the image to a higher resolution (upscale it).

The problem with upscaling the raster image is the loss of quality due to missing pixel

data. When upscaling the LR image of dimensions (H×W ) with the factors of x and y, there

is (xH ∗ yW ) − (HW ) number of unknown pixels in the image. For the sake of simplicity

and performance comparison, in the rest of the paper, we will scale both height and width

with the same factor so x = y. In that case, each pixel in the LR image gets upscaled into x

pixels in the HR image.

X X

X X

X ? X ?

? ? ? ?

X ? X ?

? ? ? ?

x2

Figure 1.2: Example of missing pixels during x4 image upscale

This paper overviews two types of methods of image upscale: mathematical methods and

modern (ML) methods. Mathematical methods mostly rely on interpolation which recreates

pixel data using the given LR image pixel data. These methods are usually fast but tend to

lack the quality of the generated image, especially if the factor of upscale is larger than two

times. Modern methods rely on machine learning to predict the intensity of unknown pixels.

This is the natural usage of artificial intelligence as we try to predict the distribution of pixels

and recreate pixels from the given distribution. The downside of these methods is that they

are slower than mathematical methods and sometimes rely heavily on the usage of GPU.

Because video is just a sequence of images in time (frames), the same principles apply

to video upscale. Video upscale present another set of challenges. Using a naive approach

upscaling a video can be implemented to iterate through all frames of the video, escape them

and save them to a file. However, due to image upscale models focusing on image quality

and not that much on the performance of the models, video upscale can take a lot of time.

The most impressive challenge in video upscale then would be to optimize models so much

that they can upscale video in real-time as the LR video is being buffered. These models

are a sweet spot between the quality of the frame generated and the speed of inference that

model is reproducing an HR frame.
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2. Related work

Shi et al. (2016) showcases real-time image upscale research with the usage of a convo-

lutional neural network (CNN). They demonstrate that deconvolution layers in CNN can

perform upscale of the image at the later stages of the model architecture.

Galteri et al. (2019) in their paper Towards Real-Time Image Enhancement GANs ex-

plore increasing the size of the discriminator and decreasing the size of the generator. Both

parts of a GAN are used in training but only the generator is used for inference as presented

by Goodfellow et al. (2014). This allows for more efficient and faster generation of HR im-

ages. They also conclude that technology such as TesnorRT1 may be used to further enhance

inference performance which is explored in this paper.

Yang et al. (2022) review submissions of AIM 2022 Challenge on Super-Resolution of

Compressed Image and Video2 contestants. Authors showcase that research is mostly fo-

cused on image upscale. Not many teams competed in Task 2 of the challenge, which focused

on upscaling video. The reason is that some of the state-of-the-art upscale method winning

methods take up to 120 seconds to generate the HR image scaled up 4 times3. The metric

used for comparing the speed of the methods in the competition was runtime per image (in

seconds). As a baseline model bicubic interpolation was used which is further explained in

Section 3.3.

1https://developer.nvidia.com/tensorrt
2https://data.vision.ee.ethz.ch/cvl/aim22
3https://codalab.lisn.upsaclay.fr/competitions/5076
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3. Mathematical upscale methods

Most commonly used mathematical methods for image upscale are interpolations. Inter-

polation is a mathematical estimation method that allows us to approximate values of new

data points based on existing discrete data points. In particular, interpolation methods es-

timate function values between known discrete data points. The data we are going to be

estimating in raster images are pixel intensity values that are unknown. As functions can be

N-dimensional, points can be interpolated in any dimension (Figure 8.1). Although for some

raster formats (like RGB), pixel intensity values are 3-dimensional we can showcase them in

a 2D matrix. So for image upscale, we are only interested in two-dimensional interpolations.

These methods are really fast but all of them have their specific advantages and disad-

vantages. In the following sections, we will describe the most used interpolations methods

from the method of lowest computational complexity to the method of highest computation

complexity.

Figure 3.1: Example of one-dimensional (linear and cubic) and two-dimensional (bilinear and bicu-

bic) and interpolation methods. The dashed black and red line represents an interpolated data point.

Solid colored lines represent known data used for interpolation.

In the rest of the paper following mathematical notation will be used. We will represent

images as two-dimensional matrices of size (N × N). For accessing and setting the pixel

intensity on coordinates (x, y) we will use notation I (x , y). IHR is the intensity of pixel

(x, y) on a high-resolution image whilst ILR is the intensity of pixels on a low-resolution

image. The top left corner of the image will have coordinates (0, 0).
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3.1. Nearest neighbor interpolation

The simplest image upscale method is the nearest neighbor interpolation. The intensity of the

unknown pixel is calculated by directly copying the intensity value of the nearest neighbor

pixel (Figure 3.2).

Figure 3.2: Example of nearest-neighbor interpolation on one-dimension and two-dimensions. The

interpolated data point is displayed with a black line.

With (x, y) coordinates from the HR image, we can calculate neighboring pixels in the

LR image using factor = width−1
(scale∗width)−1

. We can calculate the intensity of pixels in the HR

image with the following equations:

IHR(x, y) = ILR(⌊x ∗ factor⌉, ⌊y ∗ factor⌉) (3.1)

where ⌊x⌉ is the notation of rounding decimal numbers to the nearest integer value

(equivalent to round() functions).

This method preserves details in the image but loses object sharpness. For an image with

high contrast (black text on white background), we have an unwanted stairway-like object

border (Picture ). Because of mentioned disadvantages, nearest neighbor interpolation finds

adequate usage in upscaling bit-art icons and pixel-art (Picture 3.3.)

Figure 3.3: Example of nearest-neighbor interpolation providing pleasing results pixel-art images.
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3.2. Bilinear interpolation

Bilinear interpolation method is based on linear approximation between two data points in

one dimension and four data points in two dimensions.

Figure 3.4: Example of linear (one-dimensional) and bilinear (two-dimensional) interpolations. The

interpolated data point is displayed with a black line.

Four neighboring pixels (x1, y1), (x1, y2), (x2, y1), and (x2, y2) are needed to calculate

the intensity of the pixel on the HR image. With (x, y) coordinates from the HR image,

we can calculate neighboring pixels in the LR image using factor = width−1
(scale∗width)−1

, x1 =

⌊x ∗ factor⌋, x2 = ⌊x ∗ factor⌋ + 1, y1 = ⌊y ∗ factor⌋, y2 = ⌊y ∗ factor⌋ + 1. We can

calculate them using the following:

wx = x ∗ factor

wy = y ∗ factor

IHR(x, y) = (1− wx) ∗ (1− wy) ∗ ILR(x1, y1)

+ wx ∗ (1− wy) ∗ ILR(x1, y2)

+ (1− wx) ∗ wy ∗ ILR(x2, y1)

+ wx ∗ wy ∗ ILR(x2, y2)

(3.2)

In comparison to nearest neighbor interpolation, bilinear interpolation preserves the smooth-

ness of the object lines. On the other hand detail of the object may not be preserved as well

using nearest neighbor interpolation. Images that work the best with bilinear interpolation

are images with smooth pixel intesnity transitions and already blurred images. When an

image is already blurred at the beginning of the upscale bilinear interpolation might be an

interpolation method of choice as it is faster then bicubic interpolation.

6



3.3. Bicubic interpolation

Bicubic interpolation is mathematically and computationally more complete than bilinear

interpolation. In the case of interpolating a point in one dimension, we would need four

known data points. For interpolation, a point in two dimensions sixteen known data points

are needed (Figure 3.5).

There are several ways to implement bicubic interpolations. One of the implementations

methods is using B-splines.

Figure 3.5: Example of cubic (one-dimensional) and bicubic (two-dimensional) interpolations. The

interpolated data point is displayed with a black line.

This method is used as a baseline when comparing the quality of modern upscale methods

to mathematical upscale methods. It is also the upscale method of choice in most image

viewer and video player software offering an adequate trade-off between speed and image

quality in comparison to other interpolation methods.

3.4. Lánczos interpolation

Named after Hungarian mathematician Cornelius Lánczos this interpolation method is heav-

ily relied on normalized sinc windowed mathematical function which is defined as sinc(x) =
sinπx
πx

. Functions are defined as windowed when it evaluates to 0 outside a predefined interval.

Normalized functions are functions that integrate to 1 on their whole domain.

Lánczos kernel function is defined with normalized windowed sinc(x) function as such:

L(x) =







sinc(πx)sinc(πx
a
), if − a < x < a

0 otherwise
(3.3)

The kernel is used to sample pixel intesnity values from its given pixel window in original

image.

7



factor =
width− 1

(scale ∗ width)− 1

xLR = x ∗ factor

yLR = y ∗ factor

IHR(x, y) =

⌊xLR⌋+a
∑

i=⌊xLR⌋−a+1

⌊yLR⌋+a
∑

j=⌊yLR⌋−a+1

ILR(i, j)L(xLR − i)L(yLR − j)

(3.4)

The size of the Lánczos kernel window is defined with the hyperparameter a. The quality

of the image may improve with an increase in a because the Kernel window for interpolation

will be bigger which may lead to smoother image details. Kernel size is determined with the

equation K = 2a + 1 for 2D images. Lánczos interpolation upscale with a = 2 already has

a bigger kernel size (5× 5) than bicubic interpolation (4× 4).

Figure 3.6: Comparison of different interpolation methods for upscaling from 128×128 to 512×512.

Particularly all methods struggle with fine sharp details like the net of the tennis court.

When upscaling hyperparameter a is going to be optimized to suit upscale quality needs.

As we increase the hyperparameter, upscale algorithms’ computational complexity is also

decreasing proportionally. It is important to take notice that value a can be a real number but

by default, we select an integer anywhere in the range from two to four.
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3.5. Mitchell-Netravali filter

In addition to upscale we can use some popular interpolation filters after the image is up-

scaled to improve upon the quality of the HR image. The following filters are applied after

upscaling the image with methods mentioned in the previous sections.

As defined by Mitchell and Netravali (1988) Mitchell-Netravali filter is usually compared

with bicubic interpolation. Image editing programs usually name this combination a bicubic

filter. We define weights of the filter with the following equation:

wx(x) =
1

6

[

(12− 9B − 6C) |x|3 + (−18 + 12B + 6C) |x|2 + (6− 2B)
]

wy(y) =
1

6

[

(12− 9B − 6C) |y|3 + (−18 + 12B + 6C) |y|2 + (6− 2B)
]

(3.5)

where x and y are distances from the original to neighboring pixels. Getting neighboring

pixels of the already upscaled image and modifying the pixel multiplying its intensity with

wx, and wy.

The filter has two parameters B and C which can be modified to suppress blurring

and ringing artifacts. The combinations of (B, C) hyperparameter can form specific cubic

splines:

Figure 3.7: Satisfactory combinations of (B, C) values based on Mitchell and Netravali (1988). The

research was conducted on test subjects that are image processing researchers.
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3.6. Raster vectorization

Underlying concept of the following method is not to work with raster images but rather to

convert them into vector images. This method is known as raster vectorization (or sometimes

raster-to-vector conversion) (Figure 3.8). The fundamental objective of vectorization is to

accurately trace or recreate the raster image as a collection of vector primitives. Images can

be vectorized via manual and automatic methods.

Figure 3.8: Line raster vectorization example

0https://videoprocessing.ai/metrics
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4. Modern upscale methods

Deep learning models are well-suited for image upscaling tasks due to their ability to capture

and recreate image distributions. When scaling up images, the goal is to generate high-

resolution outputs that align with the underlying distribution of the original images. Deep

learning models excel in this regard by learning patterns and features, enabling them to

produce realistic and visually appealing upscaled images.

4.1. Convolutional Neural Network approaches

In Convolutional Neural Network (CNN) approaches, it is common to apply mathematical

upscaling methods to the image at the beginning of the network and then combine the output

of the network with the upscaled image to enhance its quality. By incorporating deconvolu-

tional layers in the final layers of the network, the image can be upscaled within the model

itself. This eliminates the additional computational steps required for traditional method

upscaling.

Fast Super-Resolution Convolutional Neural Network

Fast Super-Resolution Convolutional Neural Network (FSRCNN) developed by Dong et al.

(2016) in mind of real-time image upscale (and subsequently video upscale).

Architecture consists of two main components: the feature extraction network and the

deconvolution network. The feature extraction network learns to extract meaningful vector

features from the LR image. These features are then processed and refined by the deconvo-

lution network, which gradually upscales the image while recovering fine details. FSRCNN

contains a sub-pixel convolutional layer, which rearranges the learned features in the upscal-

ing process. This layer enhances the final HR image by redistributing the information across

different sub-pixel positions, increasing the resolution and sharpness.

This model is the optimization of already existing Super-Resolution Convolutional Neu-

ral Networks (SRCNN) as shown in Picture 4.1. It improves upon SCRNN in the following

aspects:

11



1. FSRCNN processes the LR image as input without bicubic interpolation at the start.

Often in CNN approaches image is firstly upscaled and then via convolutions and

residual blocks additional noise is added to the bicubic HR image. Instead of this

approach, the deconvolution layer is introduced to perform upscaling to HR image

dimensions

2. Non-linear mappings SRCNN are replaced multiple steps in FSRCNN (specifically

shrinking, mapping, and expanding )

3. Filter sizes are decreased and architecture is deeper in structure

Figure 4.1: Changes of FSRCNN to SRCNN to optimize inference process

4.2. Generative Adversarial Models approaches

Generative Adversarial Models (GANs) are composed of two components: Discriminator

and the Generator (Figure 4.2). Components of the GANs are trained with a minimax game

where the Generator aims to deceive the Discriminator into misclassifying the generated

images. The objective is for the Generator to produce synthetic data that closely resembles

real data, while the Discriminator strives to accurately classify between real and fake images.

As training progresses, the model ideally converges to a point where the Discriminator is

uncertain, classifying both real and generated images with a probability of 1
2
, indicating an

equal level of uncertainty in determining the authenticity of the images. In the inference,

only the Generator part of the GAN is used to generate new high-resolution images.

GANs are capable of generating high-quality, realistic data that closely resembles real

data distribution. They have been successfully applied in various domains, including image

1https://sthalles.github.io/intro-to-gans/

12



Figure 4.2: Two models used withing GAN. Generator and Discriminator1.

generation, text synthesis, and even video generation. However, it is worth noting that some

GAN generators can be large in size, leading to slower inference times. This is why they

need to be heavily optimized before they are used for real-time upscale.

Fast Super-Resolution Generative Adversarial Network

Fast-SRGAN2 is a modification to Ledig et al. (2017) Super-Resolution Generative Adver-

sarial Network (SRGAN) for real-time image inference capabilities.

SRGAN is a large GAN network architecture that is used for upscaling images up to 8

times with a focus on the quality of the image generated. It was trained on the DIV2K dataset.

Although giving state-of-the-art results at the time, it was really slow and only capable of

single-image super-resolution image upscale.

The training process of SRGAN involves a two-step procedure. Initially, the generator

network is trained using a mean squared error (MSE) loss function to minimize the difference

between the generated high-resolution images and the corresponding real high-resolution

images. This process is a standard training procedure for GANs. The key innovation of

SRGAN lies in the perceptual loss function, which combines the adversarial loss with a

content loss based on high-level feature representations extracted from a pre-trained deep

neural network (such as VGGNet). This perceptual loss encourages the generator to not only

produce visually plausible images but also capture the perceptual details and structure of the

high-resolution ground truth images.

To optimize GANs for real-time inference there are a few key manual architecture changes

that can be applied:

2https://github.com/HasnainRaz/Fast-SRGAN
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1. Inference of GANs only depends on the complexity of the Generator. To some ex-

tent, Generator can be decreased in size and Discriminator can be increased. This

allows us to maximize the capabilities of the original model but speed up the inference

immensely.

2. To speed up operations inverted residual blocks are employed instead of normal resid-

ual blocks for parameter efficiency. Inverted residual blocks employ a more efficient

design by introducing 1 × 1 convolutional layers to reduce the dimensionality of the

input feature /maps before applying 3 × 3 convolutions (Picture 4.3). This common

optimization is often used with CNNs when deploying them to mobile platforms.

Figure 4.3: Inverted residual block as common optimization in mobile deep-learning networks.

Fast-SRGAN claims to upscale images of dimension 384× 384 to 1536× 1536 (4 times)

in 68 ms on average (or in a maximum of 15 FPS) on GTX 1080 GPU. Usually, manual

optimization is hard and we may miss some simple model architecture changes. Applying

ONNX (as explained in Section 5.2) optimization techniques to the Fast-SRGAN model

can potentially unlock additional gains in performance. By optimizing the model structure

and leveraging the capabilities of ONNX, it becomes possible to streamline computations,

reduce memory requirements, and take advantage of hardware-specific optimizations. This

optimization process enables the model to achieve even higher performance levels, delivering

faster image upscaling capabilities while maintaining image upscale quality.
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5. Real-time video upscale

In order to achieve real-time video upscaling, we need to have a method that is optimized

for inference. The slow-performing method leads to a jittery and non-fluid video. Metrics

that will be important in monitoring model inference speed are FPS (frames per second) and

RPI (runtime per image). It is desirable that the upper bound for runtime per image metric is

41.67 milliseconds. Further elaboration on these metrics can be found in Section 7.3.

We will use GPU-optimised mathematical upscale methods. In the context of modern

upscale models, they will be saved and optimized using the ONNX format.

5.1. Computer Unified Device Architecture

To speed up both mathematical and modern upscale methods we are going to use Computer

Unified Device Architecture (CUDA) platform. This platform is developed by NVIDIA and

allows developers to execute high-performance code in parallel on NVIDIA GPUs. Although

the CUDA model is based on C++, Python implementations are also available. Most of

the image manipulation and deep learning frameworks enable us to use CUDA to speed up

execution that may be slower on CPUs.

All mathematical methods are implemented and CUDA optimized in most of the image

processing and deep learning frameworks. Python code for CUDA interpolation methods is

following:

import torch

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

torch.cuda.set_device(device)

output_size = (input_size * SCALE, input_size * SCALE)

interpolation_methods = [transforms.InterpolationMode.NEAREST,

transforms.InterpolationMode.BILINEAR,

transforms.InterpolationMode.BICUBIC,

transforms.InterpolationMode.LANCZOS,

...

]
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for method in interpolation_methods:

output_image = transforms.Resize(size=output_size,

interpolation=method).forward(image)→֒

It is important to note that CUDA will not be utilized if the environment is not set up

correctly. The code snippet above will still work as we are utilizing torch.cuda.is_ ⌋

available() function.

When CUDA is enabled in deep learning frameworks, it ensures that the model will

utilize the GPU for both training and inference. However, to optimize the model itself,

manual adjustments or optimizations for universal model formats like ONNX are required.

5.2. Open Neural Network Exchange

Open Neural Network Exchange (ONNX)1 is an open format for representing deep learning

models. This format type allows us to universally use it across different machine-learning

frameworks 5.2. Furthermore, ONNX models can be further optimized to improve execu-

tion speed, memory usage, and overall efficiency. The ONNX project is an open-source

project supported and advanced by a community of researchers, developers, and industry

professionals.

Figure 5.1: Onnx runtime which allows interoperability between deep learning frameworks.

Except for interoperability between frameworks, ONNX also allows for optimization

for specific hardware. ONNX model format is represented as a graph that allows for the

following usage.

1https://onnx.ai/
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5.2.1. Optimization

There are several optimizations that can be done to the already existing model to further

improve model inference. Python package ‘tf2onnx‘ provides us with the built-in set of

functions for loading and optimizing TensorFlow, PyTorch, and Keras models. The following

operations are examples of actions taken to further optimize the model:

Data type optimization

Model is analyzed and optimized to use lower precision data types for operations that can

tolerate reduced precision. This optimization is specified on memory usage but it can speed

up the computations.

Shape inference

All tensor shapes in the model must be resolved to static dimensions. This leads to better

usage of memory and speeds up the inference because of a decrease in function calls

Dead code elimination

Operations and subgraphs that are not required for producing output are eliminated. This

optimization specifically speeds up the computations as it is eliminating unnecessary com-

putations.

Operator fusion

Multiple consecutive operations are merged into a single operation which can be then exe-

cuted more efficiently. The number of intermediate tensors is also reduced so this optimiza-

tion speed up the computations and is lowering the memory usage.

Constant folding

Model is analyzed for the usage of constant values. Subgraphs in the model where the inputs

are constants are then replaced with pre-computed constant values. This optimization leads

to replacement in computations during inference.

5.2.2. Vizualization

Because of the ONNX graph structure it is easy to develop a visualization tool that will be

able to visualize the model in a graph structure from a file. One of those tools is Netron2

2https://netron.app/
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which allows us to view the model, input, and output tensor shapes, exporting graph visual

representation as an image, etc.

Figure 5.2: Start of the graph for FSRCNN model visualization on Netron portal.

5.2.3. Backend-agnostic

By being backend agnostic, ONNX enables model deployment and execution across a wide

range of hardware and software configurations. It allows for flexibility, portability, and ef-

ficient execution of ONNX models on different inference engines and hardware platforms,

making it a versatile choice for deploying machine learning models.
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6. Dataset

Many problems may be encountered while selecting the dataset for image upscaling tasks.

The best way to select a dataset is to target a specific thematic of images for upscale. AI

image upscale model will be able to upscale images of the same variety the best if it is

learned on the dataset for that specific variety. The clean dataset may overfit the model,

which can only upscale images without artifacts. Additionally, incorporating data diversity

and augmentation techniques can help enhance the model’s generalization capabilities and

enable it to handle real-world images effectively, even in the presence of various artifacts and

imperfections as demonstrated by Shorten and Khoshgoftaar (2019).

6.1. Large-scale Diverse Video Dataset

Large-scale Diverse Video (LDV) Dataset was established first for usage in NTIRE (New

Trends in Image Restoration and Enhancement) Workshop 20211 by Yang and Timofte

(2021). The newest version of the dataset is LDV32 which contains 365 videos and it is

an update to version 2.0 Yang et al. (2022). The dataset was split with an 80-10-10 ratio split

into the train, test, and validation subsets. After the split train subset contains 292 videos,

the test subset contains 37 videos, and the validation subset contains 36 videos.

The purpose of the dataset is to have a large collection of videos from diverse categories

with various frame rates and different artifacts. As seen in Figure 6.1 dataset contains a large

variety of nature, cityscape, people, animals, etc. To showcase the diversity of the dataset

we extracted a 4x4 grid of random frames from validation videos using the following Python

code using the OpenCV library:

for _ in range(num_rand_images):

rand_frame = random.randint(0, total_frames)

vidcap_ground_truth.set(cv2.CAP_PROP_POS_FRAMES, rand_frame)

success, image = vidcap_ground_truth.read()

if success:

cv2.imwrite(output_file_path, image)

1https://data.vision.ee.ethz.ch/cvl/ntire21/
2https://data.vision.ee.ethz.ch/reyang/AIM2022/LDV3.zip
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Figure 6.1: LDV3 dataset random image sample from validation part of dataset

6.2. DIV2K Dataset

DIVerse 2K resolution high-quality images (DIV2K) is most commonly used for the task

of image super-resolution. Most of the pre-trained models we are going to use are trained

on that dataset. The dataset consists of a collection of 2K (meaning images with longer

dimensions is at least 2000 pixels) high-quality images. It consists of synthetic and real-

world images to provide balance in the dataset for all image characteristics.

As we are working on real-time video upscale DIV2K is not suited as much as LDV3

for that specific task. Video frames have specific video artifacts, such as motion blur or

shaky camera movements, that cannot be found on high-resolution image datasets. This is

the reason why it is a good idea to fine-tune pre-trained models so that they have additional

inputs from the video dataset.
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7. Metrics

Calculating the quality of the image upscale is challenging. Usual metrics used in machine

learning can usually often fall short, not accounting for image artifacts such as blur, ringing,

and overall loss of details. For more plausible metrics, it is important to consider local image

patches and the image as a whole.

While metrics can be useful to provide objective measures, best practices show that sub-

jective evaluation of image quality is crucial as discussed by Afnan et al. (2023). Human

perception of color is something objective metrics may not yet fully comprehend. More ad-

vanced metrics have been developed with the usage of simple neural networks that determine

image similarity based on image vector representations and subjective input.

7.1. Full-reference quality metrics

If we have access to the GT image that we want to be most similar to we can use full-

reference quality metrics. They allow us to compare the quality of the HR image directly to

the GT image. Full-reference metrics can provide pixel-level or structural-level information

about image artifacts. An important disadvantage of full-reference quality metrics is that

it is hard to evaluate the quality in real-time upscale as we need to have constant access to

reference video which may not be available.

Mean square-root error

Mean square-root error (MSE) calculates the mean square distance between two vectors. In

our case vectors are the pixel intensity of the pixels. If we have two images GT (ground truth)

and HR (high-resolution image) of the same dimensions (height, width), we can calculate

MSE between them with the following equation:

MSE (GT ,HR) =
1

height ∗ width

height−1
∑

i=0

width−1
∑

j=0

[HR(i , j )−GT (i , j )]2 (7.1)

This metric can be really deceiving as it only compares pixel-to-pixel relations between

two images. Neighboring pixels are not taken into consideration although they bring a lot of
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context to the image as a whole.

Peak-signal-to-noise ratio

Peak-signal-to-noise ratio (PSNR) is a simple engineering metric used for the comparison of

signals. If we already calculated MSE (GT ,HR), PSNR can be easily calculated as follows:

PSNR(GT ,HR) = 10 ∗ log10
MAXI

2

MSE (GT ,HR)
[dB] (7.2)

where MAXI
2 is the squared maximum intensity of the signal (in our case picture). Maxi-

mum intensity can be different for a lot of picture formats. For example, the maximum pixel

intensity of a pure RGB image is 255 but it can also be 1 if the picture is normalized. Images

with higher PSNR have lower visual qualities. Ideally, we want PSNR to be small.

MSE and PSNR have critical flaws in the evaluation of image similarity. Images with

completely different visual qualities may have equal MSE and PSNR scores. This is due to a

lack of ability to measure structural distortions (Figure 7.1). Because of this important flaw,

MSE and PSNR are not as highly regarded as measures for image upscale.

Figure 7.1: Images with different visual qualities but same MSE values1

1https://videoprocessing.ai/metrics
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Structural Similarity

Introduced in Wang et al. (2004), structural similarity (SSIM) improves upon flaws of MSE

and PSNR. SSIM can have values in the range [−1, 1] where: 1 is the value for two com-

pletely similar images, 0 for images that are not similar and -1 is the value for two com-

pletely dissimilar images. Calculating SSIM is more computationally complex than cal-

culating MSE and PSNR. The following equation highlights the most important terms in

calculating SSIM:

SSIM (GT ,HR) = l(GT ,HR)α ∗ c(GT ,HR)β ∗ s(GT ,HR)γ

l(GT ,HR) =
2µxµy + c1

µ2
x + µ2

y + c1

c(GT ,HR) =
2σxσy + c2

σ2
x + σ2

y + c2

s(GT ,HR) =
σxy + c3

σxσy + c3

(7.3)

Components of the following Equation 7.3 are: luminance(l), contrast(c), structure(s),

and constants ci are used for stabilizing division. For calculating this metric pixel sample

mean, variance, and covariance between images. Usually constants are defined as c1 =

(k1L)
2, c2 = (k2HvL)2, c3 = c2

2
where L is dynamic range of pixel-values, k1 = 0.01 and

k2 = 0.03. If we set weights α, β and γ to 1 formula resolves into:

SSIM (G ,HR) =
(2µxµy + c1)(2σxσy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(7.4)

We can conclude from Equation 7.4 that whole image statistics are used to calculate

error rather than comparing two images on a pixel-to-pixel basis. SSIM is more robust in

comparing images with artifacts than MSE and PSNR as seen in Figure 7.2.

This method, however, has disadvantages. Particularly SSIM cannot detect image arti-

facts such as color shifts and localized artifacts. Also, big changes in the brightness of the

image can result in small changes in SSIM value as seen in Figure 7.3.

Learned Perceptual Image Patch Similarity

With the usage of deep neural networks such as VGG and AlexNet Zhang et al. (2018) cre-

ated the Learned Perceptual Image Patch Similarity (LPIPS) metric which focuses on high-

level visual features and compares them. This method is based on feature representations

of the images and compares the perceptually. Such metric shows that it aligns with human

perception of images better than other methods (as shown in Figure7.4).
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Figure 7.2: Example of SSIM taking into consideration blur inside of images

Figure 7.3: Example of similar SSIM values but with the different visual quality of the images

However, it must be noted that LPIPS also has its disadvantages. As the metric is based

on learned representations it may not be universally applicable to all image content and image

artifacts. Pretrained models can be fine-tuned to fit more various training data, but then it is

important that a new model is publicly available so that results may be comparable. If used

improperly model behind the metric can be over-trained and may lead to faulty but favorable

24



Figure 7.4: Preference of L2, PSNR, SSIM, LPIPS metrics based on image artifacts2

results.

7.2. No-reference quality metrics

Advancements in image compression and upscaling led to the development of non-reference

metrics which do not require GT images to assess the quality of the image. The disadvantages

of no-reference quality metrics are the advantages of full-reference quality metrics. No-

reference metrics can not provide information about image artifacts whilst, on the other

hand, we do not need access to GT for metric evaluation in real-time.

Blind/Referenceless Image Spatial Quality Evaluator

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) is defined by Mittal et al.

(2012). The basis for the metric is a premise that all images have similar statistical qualities

and that all deviations from image statistics may showcase image artifacts. To evaluate

the quality of an image, BRISQUE employs a pre-trained Support Vector Regressor (SVR)

model that has been trained on the LIVE IQA database introduced by Sheikh et al. (2006).

BRISQUE provides quality scores ranging from 0 to 100, where lower scores tend to indicate

higher image quality.

Naturalness Image Quality Evaluator

Naturalness Image Quality Evaluator (NIQE) is defined by Mittal et al. (2013). This metric is

similar to BRISQUE but it is designed specifically for natural images, which typically exhibit

statistical regularities inherent in natural scene statistics. NIQE’s quality scores range from

0 to infinity, with lower scores indicating higher image quality.

2https://richzhang.github.io/PerceptualSimilarity/
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Perception-based Image Quality Evaluator

Perception-based Image Quality Evaluator (PIQE) is defined by Venkatanath and S. (2015).

It is similar to NIQE but less computationally efficient. With the usage of machine learning

techniques, this metric is trained on datasets that contain both pristine reference images and

corresponding distorted images, along with subjective quality ratings provided by human

observers. The scoring range of PIQE can vary depending on the specific implementation

and dataset used for training, but it typically ranges between 0 and 100, with lower scores

indicating higher image quality.

Figure 7.5: Comparison of non-reference image metrics for reference and image with Gaussian

noise(σ = 10)

7.3. Video metrics

Frames Per Second

Frames Per Second (FPS) is a commonly used video metric. Simply FPS measures the

number of frames displayed per second. It is considered that the minimum viable FPS for

video is 24 or 30 as at that FPS video content can provide relatively smooth motion. In

the case of video games, explored by Claypool (2007), this minimum viable FPS might be

higher (the most commonly used values are 60, 120, and 240 FPS) as it provides a better

visual experience and improves responsiveness.
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Runtime Per Image

This metric is specific to the case of real-time video upscale and we are going to call it

Runtime Per Image (RPI). Due to the need for fluid video, we will measure this measure in

milliseconds. If we have an origin video of FPS and we can generate images faster than the

paired FPS value, our video will change the duration in real-time (if we are not implementing

video buffers). Due to this, RPI is a showcase of upscale performance when we can generate

images in less RPI then it is necessary to fluidly run it in real-time (shown in Table 7.1).

FPS 5 15 24 30 45 60 120 240

RPI [ms] 200 66.67 41.67 33.33 22.22 16.67 8.33 4.17

Table 7.1: Most commonly used FPS for video paired with minimum inference time needed to up-

scale video in real-time. Bolded 24 FPS is the most common FPS for video.

7.4. Subjective metrics

Subjective metrics are widely regarded as one of the most challenging yet efficient evalua-

tion methods for image and video upscale quality. These metrics rely on participants who

evaluate and provide judgments on the perceived quality of the upscaled video. While sub-

jective metrics require more resources and time compared to objective metrics, they provide

valuable insight into the experience of the viewer.

Objective metrics still can not provide valuable enough metrics to provide input that is

pleasing to the human eye. Although there are research efforts in deep learning models for

quality assessment with subjective input, it is hard to even determine what is objectively

pleasing to the human eye’s perception. Enjoyment of viewing images and video depends on

individual differences, biases, and contextual factors as explored by Reibman and Schaper

(2006).

Mean Opinion Score

Mean Opinion Score (MOS) is a widely used standard for subjective media assessment. This

assessment requires a user study with a set of images varying discrete number scales mostly

from 1 to 5 or from 1 to 10 where higher values indicate better quality. The International

Telecommunication Union (ITU) published ITU-R BT.5003 guideline for video quality as-

sessment, which provides detailed recommendations for conducting MOS experiments. The

3https://www.itu.int/rec/R-REC-BT.500
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result of the metric is an average quality rating which typically range from 0 to 100. In this

case, a higher score is better.

Differential Mean Opinion Score

While MOS focuses on one stimulus (one image) Differential Mean Opinion Score (DMOS)

focuses on the difference between two stimuli (two images). A most important difference to

MOS is that DMOS represents preference between two images which can provide different

valuable input in the quality of upscale. User study asses preference of image on a discrete

scale where lower numbers show a preference for image number one and higher numbers

show a preference for image two. Typically DMOS values range from 0 to 100, a lower

score is better for image one (which is often taken as reference stimuli).
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8. Implementation

The implementation of the real-time video application was done in Python using popular li-

braries such as TensorFlow, PyTorch, Keras, and OpenCV. The main script rt_upscale.py

can be executed with various command-line arguments to specify the mode and set the re-

quired parameters for the application to function properly.

All of the source code is available in the GitHub repository of the project 1

8.1. Preprocess

Crop video

Crop video mode allows us to crop squares in the middle of the video to be used for upscaling

later. This mode is used to create dimensions sizes of the same dimensions to get compa-

rable results. Command line arguments for this methods are following: --mode preprocess

--preprocess_mode crop_video --original_video_path <org_video_path> --crop_ ⌋

video_size <crop_size>

Figure 8.1: Example of rectangle crop implemented

1https://github.com/dinogrgic1/real-time-video-upscale-master-thesis
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Downscale video

Downscale video mode allows us to downscale video with factor downscale_ratio to be

used for upscaling later. This mode is used to create a downscale video used later for up-

scaling to the original size (GT video). Command line arguments for this methods are

following: --mode preprocess --preprocess_mode downscale_video --original_ ⌋

video_path <original_video_path> --downscale_video_ratio <downscale_ratio>

8.2. Onnx

Save ONNX

Save ONNX mode loads the model of the most popular deep learning frameworks and ex-

ports it to ONNX format. Command line arguments for this method are following: --mode

onnx --onnx_mode save_onnx --onnx_model_path <onnx_model_path>

Save Engine

Save engine mode loads ONNX model, optimizes it and exports it to engine file to be

loaded for inference. Command line arguments for this method are following: --mode onnx

--onnx_mode save_engine --model_path <model_path>

Upscale

Within this mode, we initiate the upscaling process for a particular video file by specifying

a desired resize factor. Moreover, we have the flexibility to choose the target device for per-

forming the upscaling operation. If the ONNX mode is selected, an additional argument,

onnx_engine_path, must be provided. Alternatively, when choosing CPU or GPU mode,

the argument --model_path needs to be specified. Command line arguments for this meth-

ods are following: --mode upscale --upscale_device [cpu, gpu, onnx] --onnx_ ⌋

engine_path <saved_onnx_engine_path> --model_path <saved_model_path> --original_ ⌋

video_path <video_path> --scale <scale_factor>

Video Stream

To achieve the real-time performance of the model, it is crucial to implement a buffering

mechanism that leverages the computational power of the GPU to load frames in parallel.

This can be accomplished by utilizing a custom VideoStream class, which utilizes multiple

30



threads and OpenCV to efficiently load multiple frames simultaneously into a buffer. The

detailed implementation of the VideoStream class can be in the GitHub repository 2.

8.3. Helper scripts

Powershell helper scripts were used to through all images in the dataset calling the Python

script with specified arguments. All scripts can be found under scripts folder in GitHub

repository.

Crop dataset

Crop dataset script was used to go thorugh all videos in dataset and crop center crop them to

four given dimensions (128 × 128, 256 × 256, 348 × 348, 512 × 512). An example of the

script used is the following:

Get-ChildItem -Path $folderPath -Filter *.mkv | ForEach-Object {

$fileName = $_.Name

$filePath = $_.FullName

$fileNumber = $fileName -replace '[^0-9]', ''

$cropVideoSizes = 128, 256, 384, 512

foreach ($cropVideoSize in $cropVideoSizes) {

$newFileName = "{0:D3}.mkv" -f $fileNumber

$command = "python rt_upscale.py --mode preprocess

--preprocess_mode crop_video --original_video_path $filePath

--crop_video_size $cropVideoSize"

→֒

→֒

Write-Host "Processing file: $fileName"

Write-Host "Executing command: $command"

Invoke-Expression $command

Rename-Item -Path $filePath -NewName $newFileName

}

}

Downscale dataset

Similar to cropping dataset downscale dataset scrip was used to downscale all videos by two

factors 0.5 and 0.25. An example of the script used is the following:

Get-ChildItem -Path $folderPath$cropped_size -Filter *.mkv |

ForEach-Object {→֒

$fileName = $_.Name

2https://github.com/dinogrgic1/real-time-video-upscale-master-thesis/

blob/main/processing/VideoStream.py
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$filePath = $_.FullName

$cropVideoSizes = 0.25, 0.5

foreach ($cropVideoSize in $cropVideoSizes)

{

$command = "python rt_upscale.py --mode preprocess

--preprocess_mode downscale_video --original_video_path

$filePath --downscale_video_ratio $cropVideoSize"

→֒

→֒

Write-Host "Processing file: $fileName"

Write-Host "Executing command: $command"

Invoke-Expression $command

}

}

Random frames

The following code snippet from a Jupyter Notebook was utilized to extract random frames

from the videos in the validation set and save them as individual images. This Python code

was specifically employed to generate a collection of randomly selected frames that would

be used for showcasing the grid of upscale methods and datasets.

total_frames = vidcap.get(cv2.CAP_PROP_FRAME_COUNT)

for i in range(NUM_RANDOM_FRAMES):

rand_frame = random.randint(0, total_frames)

vidcap.set(cv2.CAP_PROP_POS_FRAMES, rand_frame)

success, image_gt = vidcap.read()

if success:

cv2.imwrite(f"{OUTPUT_PATH}_{rand_frame}.jpg", image_gt)
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9. Results

In order to compare the performance of the models, we will conduct tests on various hard-

ware configurations, including CPU, GPU, and ONNX-optimized model variants, across

multiple image dimensions. By increasing the image sizes linearly and ensuring consistent

hardware usage across all scenarios, we aim to gain valuable insights into the inference speed

of each specific model.

The evaluations were conducted using the following PC configuration and software ver-

sions:

± Processor: 12th Gen Intel Core i7-12700F

± Graphics Card: NVIDIA GeForce RTX 3060 (12 GB VRAM)

± RAM: 16GB DDR4

± Python version: 3.9

± CUDA version: 12.1

All experiments will be conducted on all validation subsets of the dataset. Each experi-

ment will be conducted on 4 different dimensions: (128 × 128), (256 × 256), (384 × 384),

(512× 512). Each video will be upscaled by a factor of 2 and 4.

CPU inference

For the task of CPU inference we will just run all the models on the CPU. This is the default

setting for most of the deep learning frameworks.

GPU inference

For the task of GPU inference we will just run the models directly with the framework each

model is defined on, without optimizations.

ONNX optimization

For this experiment each model will be converted to ONNX and then an optimized engine

will be built for it.
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Results show that ONNX optimization may help to optimize the model further if it was

not already manually optimized. Even if manual theoretical optimization is made there are

still lots of room for small improvement which may lead to a bigger inference speed boost

for images of higher dimensions. This is particularly seen in the ONNX optimization of

Fast-SRGAN. It is clear that optimization is needed in order to upscale in real-time.

RPI / [ms] x2 upscale x4 upscale

LR dimension Model CPU GPU ONNX CPU GPU ONNX

(128,128)
Fast-SRGAN x x x 195.612 67.224 8.105

FSCRNN 19.154 12.375 2.789 19.467 13.867 3.946

(256,256)
Fast-SRGAN x x x 836.613 99.334 30.931

FSCRNN 57.061 14.91 5.3779 68.229 28.74 12.976

(384,384)
Fast-SRGAN x x x 1867.23 167.532 72.965

FSCRNN 162.866 18.507 10.656 168.674 42.562 29.744

(512,512)
Fast-SRGAN x x x 3327.278 257.566 126.235

FSCRNN 275.573 28.424 18.733 306.881 56.926 46.873

Table 9.1: Results of ONNX optimisations in regards to unoptimized GPU and CPU usage for infer-

ence. Bolded measurements show a smooth upscale that is fluid for a minimally 24 FPS video.

FSRCNN Fast-SRGAN

Upscale x2 x4 x2 x4 x4

Dimensions (128x128) (128x128) (256x256) (128x128) (256x256)

Nearest Neihgbour

PSNR 12.62 12.79 12.91 12.63 12.70

SSIM 0.3471 0.3746 0.3794 0.3633 0.3741

LPIPS 0.5621 0.6957 0.5719 0.7066 0.5751

Bicubic

PSNR 12.44 13.00 13.06 12.84 12.85

SSIM 0.3327 0.3928 0.3926 0.3810 0.3857

LPIPS 0.5580 0.6798 0.5756 0.6912 0.5785

Lanczos

PSNR 12.49 12.85 12.96 12.69 12.61

SSIM 0.3371 0.3841 0.3834 0.3700 0.3689

LPIPS 0.5441 0.6904 0.5586 0.7015 0.5528

Model

PSNR 12.37 12.67 12.84 12.51 12.74

SSIM 0.3276 0.3638 0.3741 0.3532 0.3781

LPIPS 0.5355 0.6481 0.5507 0.6577 0.5615

Table 9.2: Image quality metrics indicate that both FSRCNN and Fast-SRGAN may have higher

image quality then standard mathematical approaches
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10. Conclusion

In conclusion, ONNX optimization demonstrates a significant improvement in real-time

image inference speed. This enhancement is particularly noticeable in models that have

not been manually optimized, such as GANs. While additional performance gains may be

achieved through manual optimization, this thesis highlights the effectiveness of automated

tools for model optimization in inference.

Furthermore, the findings demonstrate that GANs require substantial optimization im-

provements to effectively generate high-resolution (HR) images. In contrast, CNN ap-

proaches exhibit greater potential as they operate more akin to image enhancers in traditional

upscaling methods.

Future work could encompass fine-tuning models using the train-test subsets specifically

created for this thesis. Furthermore, efforts can be made to identify datasets that contain

both low-resolution (LR) and high-resolution (HR) images captured by the same camera. By

eliminating the need to downscale images, this approach would provide cleaner LR images

for upscaling, thereby minimizing the impact of image artifacts.
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Appendix A

Metrics table

Metric Media Type Better

PSNR image full-reference higher

SSIM image full-reference higher

LPIPS image full-reference lower

BRISQUE image no-reference lower

NIQE image no-reference lower

PIQE image no-reference lower

FPS video - higher

Time per image video - lower
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Appendix B

Acronyms

GT Ground Truth

LR Low-Resolution

HR High-Resolution

CNN Convolutional Neural Network

GAN Generative Adversarial Network

FPS Frames Per Second

CUDA Computer Unified Device Architecture

ONNX Open Neural Network Exchange

SRGAN Super-Resolution Generative Adversarial Network
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Modeli dubokog učenja za poveÂcanje rezolucije video sekvence u stvarnom vremenu

Sažetak

Ključni fokus ovog rada je tehnike za poveÂcanje rezolucije videa i slike u stvarnome

vremenu, specifično je naglašena optimizacija dubokih modela kako bi uspjeli postiÂci per-

formanse potrebne za rad u stvarnom vremenu. Rezultati ovog rada demonstriraju sve po-

tencijalne načine kako se CUDA i ONNX mogu iskoristi snagu GPU i optimizacije kako bi

se postigao rad u stvarnome vremenu.

Ključne riječi: poveÂcanje rezolucije slike, poveÂcanje rezolucije videa, real time, duboko

učenje, ONNX



Deep Learning Models for Real-Time Video Upscaling

Abstract

The primary focus of this thesis revolves around techniques for real-time image and video

upscaling, specifically emphasizing the optimization of deep learning models to attain the

necessary speed for real-time inference. The results of this thesis provide a comprehensive

demonstration of the potential of CUDA and ONNX in harnessing the capabilities of GPUs

and optimization methods to achieve real-time image and video inference.

Keywords: image upscale, video upscale, real-time, deep learning, ONNX
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