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Abstract 

Background: Symbolic dynamics' methods provide a description of time series variability that allows 

inference of new predictive markers. Classification of disorders using symbolic dynamics is 

accomplished through the use of nonlinear entropies, measured upon encoded series.  

Method: This work applies a recently developed symbolic dynamics method, alphabet entropy 

(AlphEn) to heart rate variability (HRV) analysis in order to improve automatic classification of 

cardiac arrhythmias. Experiments are conducted on PhysioNet MIT-BIH Arrhythmia Database. The 

approach is experimentally compared with other HRV linear and nonlinear feature combinations 

established in literature. AlphEn is experimentally compared with other common nonlinear entropies: 

Shannon's entropy, approximate entropy, sample entropy, etc. Feature selection using symmetrical 

uncertainty is used for discovering relevant AlphEn features and random forest algorithm is used for 

arrhythmia classification. 

Results: The best classification result obtained for six heart rhythms on 20 s segments is achieved for 

AlphEn no-change threshold θ = 100 ms. AlphEn features improved mean sensitivity of other feature 

combinations by 2% on average, with the best results achieved: SENS: 91.2%, SPEC: 97.1%, AUC: 

99.0%. AlphEn may be used efficiently by adding top 10 ranking features, obtained with symmetrical 

uncertainty, to other established combinations. AlphEn provides the best incremental result to linear 

feature combination with respect to the inspected entropies.  

Conclusions: AlphEn improves the results of established HRV feature combinations on the problem 

of automatic cardiac arrhythmia classification. The method enables the extraction of a number of 

potentially significant, domain-oriented features. It can be used as an accurate first-hand screening for 

arrhythmia problems. 
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1. Introduction 

One of the most studied, and not yet fully understood, biomedical signals is the heart rhythm. The 

analysis of the fluctuations of the heart inter-beat intervals (RR-intervals) is known as heart rate 

variability (HRV) analysis. It is an important prognostic marker of cardiac health [1]. Research shows 

that heart rhythm of healthy subjects displays interesting short- and long-scale complex fluctuations. 

HRV decreases with the occurrence of cardiac disorders and aging [2,3]. Through the analysis of 

HRV, the researchers, among other objectives, aim at classifying heart rhythm patterns [3,4], obtaining 

accurate cardiac disorder models [5,6], and predicting the onset of cardiac disorders [7]. 

Disorder modeling using HRV usually includes feature extraction. Biomedical time series variability 

features in general can be classified into: statistical, geometric, informational, energetic, and invariant 

[8]. Additionally, several transformations of the heart rate series are possible, with the most common 

ones being frequency domain transformations: discrete Fourier transform [9], bispectrum calculation 

[10], higher-order spectrum calculation [11], discrete cosine transform [12], and Hilbert-Huang 

transform [13]. Other transformations are also possible, such as wavelet transform [14] and symbolic 

dynamics [15]. The purpose of these transformations is to adapt the time series into a more suitable 

form that will enable the calculation of some highly accurate domain-oriented modeling features. 

In this work, the focus is on symbolic dynamics transformation methods. These methods were first 

introduced into heart rhythm analysis by Voss et al. [16]. There are several known approaches to 

symbolic dynamics analysis of HRV [17,18]. Two phases can be perceived in the approaches. In the 

first phase, the original signal is transformed into a new series by discretizing the numerical values 

into a set of categories, with the potential to obtain more relevant information. This phase is termed 

symbolization and leads to an overall loss of signal information [19]. It can be achieved by: 1) 

calculating first derivatives of the series values and retaining only binary information (heart beat 

shortening or prolongation) [20], 2) taking several categories between minimum and maximum value 

of the signal (coarse-graining) [17], or 3) taking several categories based on the distance from the 

series' mean value [19,21]. The second phase includes analyzing the newly encoded sequence using 

complexity measures such as approximate entropy [20,22], Lempel-Ziv complexity [23], Rényi's 
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entropy [21], or permutation entropy [24], with the aim of quantifying the characteristics of the 

observed signal. 

This work presents the application of a recently developed symbolic dynamics method, appropriately 

named alphabet entropy [25], to the analysis of HRV. Alphabet entropy preserves both qualitative and 

quantitative information about the biomedical time series' dynamics on short time scales. It starts by 

transforming the original signal into a sequence of alphabet letters. The method proposes 27 possible 

letters of the alphabet, which are encoded by observing four-by-four consecutive measurements and by 

analyzing their possible changes (prolongation, shortening, or no-change). The method then proceeds 

to calculate the expanded version of properly adapted Carnap's one-dimensional entropy for each 

quadruple of measurements. Our previous research showed that the method is highly sensitive to 

significant changes in the signals, but due to a threshold parameter for no-change, it is mostly 

insensitive to noise [25]. Also, previous results indicated that common nonlinear measures improve 

the results of automatic classification of cardiac disorders in comparison with standard linear time and 

frequency measures [26,27], which supports the use of nonlinear entropy measures in feature 

combinations.  

In order to test the capabilities of the method, the aim of this work is to apply it to automatic 

classification of cardiac arrhythmias. While classification of arrhythmias based on the whole ECG can 

provide us with highly accurate results [28,29], classification based on HRV is more challenging. 

When using HRV alone, accuracy of the constructed models is high only in the cases where the 

arrhythmias are markedly different, as shown by Asl et al. [3] and Yaghouby et al. [30].  

However, the classification of significantly different arrhythmias has limited applicability in practice, 

because there are several types of cardiac arrhythmias that are not noticeably different if HRV 

information is used alone (e.g. atrial vs. ventricular arrhythmias), but are quite common in patients 

[27]. The arrhythmias ought to be classified as accurately as possible in order to enable early detection 

of potentially significant cardiac disorders.  

Therefore, this work focuses on the application of alphabet entropy to classification of several, not 

easily discernible cardiac arrhythmias. The problems are analyzed on a set of records taken from MIT-

BIH Arrhythmia Database from PhysioNet web portal [31]. 
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The major goal of this paper is to discover whether alphabet entropy can increase the accuracy of 

models of linear and nonlinear HRV feature combinations on the problem. This could be clinically 

relevant, because more accurate models would enable more reliable detection of arrhythmias, which 

would lead to earlier treatment for patients. The secondary goal is to compare alphabet entropy with 

other commonly used entropy features in order to establish its relevance. 

The paper is structured into the following sections. In section 2, a brief overview of symbolic 

dynamics methods is given in order to provide a rationale for exploring and utilizing an additional 

symbolic dynamics method. Section 3 describes the alphabet entropy method and its resulting features. 

Considerations of applying alphabet entropy to HRV series is given in section 4. Evaluation 

methodology is presented in section 5 and results are shown in section 6. The results are discussed and 

conclusions are drawn in sections 7 and 8, respectively. 

 

 

2. Symbolic dynamics methods overview 

Symbolic dynamics methods have been used extensively in biomedical time series analysis: HRV 

[18,20,32,33], ECG [23,34], EEG [35,36], and joint time series analysis [15]. Most researchers 

perform binary encoding of the original series [18,32,34], although ternary encoding (with adjustable 

threshold) can also be applied, particularly for those signals where the lack of significant change is 

relevant for classification [33]. Coding to a richer alphabet has occasionally been explored [19]. 

Several complexity features of such encoded sequences are usually analyzed, such as:  

1. Entropy and information-based features calculated from short-term encoded sequences' distributions 

[18,33,34]. 

2. Other complexity features, e.g. Lempel-Ziv complexity [35] and detrended fluctuation analysis 

(DFA) [15]. 

3. Similarity measures between encoded sequences [32]. 

The commonly used topological entropy measures include: Shannon's entropy (ShEn) [37], correlation 

entropy (CorrEn) [38], and Rényi's entropy (RenEn) [21,39]. These methods quantify the information 

in a topological setting where there is no reference to movement of the system's trajectory over time. 
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The entropy methods that do consider the movement of the system trajectory over time are based on 

approximations of Kolmogorov's entropy for a smaller number of measurements [40]. These include: 

approximate entropy (ApEn) [22], sample entropy (SampEn) [41], corrected conditional Shannon 

entropy (CCShEn) [37], and more recently, fuzzy approximate entropy (FuzzyApEn) [42]. These 

entropy methods proved to be successful for the majority of biomedical time series [35,43], although 

theoretically, they still require the analysis of several hundred measurements, at least [44]. 

A different topological approach to measuring system entropy was proposed by Carnap in 1977, as 

presented in the work of Pudmetzky [45]. The idea was that, instead of dividing a d-dimensional phase 

space �� into a number of cells (bins) with a fixed volume ��, one should divide the space into cells 

that are attributed to each measurement point. The division of the phase space into such environments 

is called Voronoi tessellation [46]. The entropy measure that Carnap defined on the Voronoi diagram 

of an arbitrary finite dimension d is known as Carnap's entropy (CarnEn).  

The issues with some of the existing symbolic dynamics' methods, including CarnEn, can be 

summarized as: 

1. Separation of the encoding process method (qualitative) and the complexity evaluation method 

(quantitative) [18,19,32]. 

2. Lack of assurance that the complexity evaluation method will provide different results for two sets 

of different sequences, because of different binning options. This limits the precision of such methods 

[24,45]. 

3. Effective application of common entropy methods depends on a large number of available 

measurements [22,44]. 

The methodology that we use, based on alphabet entropy, is derived from CarnEn and explained in 

section 3. Our approach is novel and timely, because it solves all the three aforementioned issues 

related to efficient and accurate quantification of time series changes.  

 

 

 

 



© 2016, 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  

3. Alphabet entropy 

Alphabet entropy has already been presented in a recent work that describes its successful application 

in the analysis of industrial signals for quality control [25]. In this work, the method is adapted for 

HRV modeling. For the sake of completion, the necessary segments of the method's theory are 

repeated in subsection 3.1. Reader is referred to Jovic, F. et al. [25] for additional details.  

 

3.1 Deriving alphabet entropy 

Alphabet entropy is derived from two theories: Carnap's one-dimensional entropy [45] and the matrix 

of differences for discrete measurements [47]. CarnEn in one dimension was originally proposed as: 

������	
 = ∑ log� |��|�����	                                 (1), 

where |��| is the size of the environment of the point ��, and N is the number of points in the series. 

The measure is adapted in order to scale for the absolute values of the measurements and to handle the 

borderline measurements: 

��������	
 = − ��������� log� �������� +! 
+ ∑ ��"�#��$���� log� ��"�#��$�����#	���  !+ ��#��$���� log� ��#��$���� &   (bits/sequence span)                    

            (2). 

Here, �� is a point placed on a line (one-dimension). This adaptation does not consider the evolution of 

the system, because the points on the line do not necessary appear in the same order as in the original 

signal. 

From theoretical perspective, the changes between the measurements can be expressed qualitatively as 

a positive unit change (Δ), a negative unit change (-Δ), or no change (0): 

'� = ( 0,     if |���	 − ��|≤θ Δ,    if ���	 − �� >  θ−Δ,    if ���	 − �� <  θ !                           (3), 

where θ is the threshold for no-change, dependent on the nature of the signal. The letters L of the 

alphabet are formed as possible combinations of '�,  . = 1. .3. There is a total of 27 possible 

combinations, labeled as 2 = 3�, 4, … , 6, ��7. It can be shown that the information content based on 
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CarnEnAd (2) for the letters of the alphabet is not unique for each alphabet letter, i.e. some letters have 

equal unit changes information content, e.g. letters B, H, and Q [25]. 

Alphabet entropy (AlphEn) is the extension of CarnEnAd that takes four-by-four discrete 

measurements in the signal and proceeds to describe their entire informational content. This includes 

the absolute values of the measurements as well as differences between each of the measurements. The 

evolution of the changes is recorded in order to keep the information about the system trajectory. 

Let  8 = 9�	,  ��,  �:,  �;<,  �� ∈ ℝ be a quadruple of sequential quantitative measurements of the 

signal. An expansion of the alphabet information content is considered that accommodates changes 

between measurements in order to quantify the dynamics of the system. The matrix of differences for 

this quadruple can be presented as:  

?�	,�   ��,:  �:,;  ×     �	,:  ��,;  ×     ×     �	,;
A                                        (4),  

where d�,C is a change between measurements xi and xj, and × stands for an irrelevant element of the 

matrix. The expansion vector 9�	,�  ��,:  �:,;  �	,:  ��,;  �	,;) encodes all possible changes between 

four consecutive measurements and adds the information on second- and third-order differences. The 

alphabet is shown in Table 1.  

In order to keep the information about absolute values of the measurements, another sextuple is 

defined as: 

D = 9E	,  E�,  E:,  E;,  EF,  EG<, where: E	 = �	 + �	,� = ��,    E� = �� + ��,: = �:,    E: = �: +
�:,; = �;,   E; = E: + �	,:,    EF = E; + ��,;,    EG = EF + �	,;. 
Since there is no guarantee that the values in D are given in an ascending order, which is necessary for 

calculation (2), the values are sorted prior to the entropy’s calculation. 

Let Z= 9H	,  H�,  H:,  H;,  HF,  HG< be the sextuple of the sorted values of Y. Alphabet entropy can be 

calculated for any four consecutive measurements as: 

�IJℎ�� = − LH	 + H�2HG log� H	 + H�2HG +! 
+∑ N�"�#N�$��NO log� N�"�#N�$��NOF��� + !NO#NP�NO log� NO#NP�NO &  (bits/sequence span)                               (5). 
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Table 1. Alphabet letters and the encoded symbolic dynamics changes  

Letter 
Changes encoded 

by the letter 

Qualitative representation of 

the expansion vector 

A 0 0 0 0 0 0 0 0 0 
B 0 0 + 0 0 + 0 + + 
C 0 0 - 0 0 - 0 - - 
D 0 + 0 0 + 0 + + + 
E 0 - 0 0 - 0 - - - 
F 0 + + 0 + + + + + 
G 0 - - 0 - - - - - 
H 0 + - 0 + - + 0 0 
I 0 - + 0 - + - 0 0 
J + 0 0 + 0 0 + 0 + 
K - 0 0 - 0 0 - 0 - 
L + 0 + + 0 + + + + 
M + 0 - + 0 - + - 0 
N - 0 - - 0 - - - - 
O - 0 + - 0 + - + 0 
P + + 0 + + 0 + + + 
Q + - 0 + - 0 0 - 0 
R - - 0 - - 0 - - - 
S - + 0 - + 0 0 + 0 
T + + + + + + + + + 
U + + - + + - + 0 + 
V + - + + - + 0 0 + 
W + - - + - - 0 - - 
X - - - - - - - - - 
Y - - + - - + - 0 - 
Z - + - - + - 0 0 - 
AA - + + - + + 0 + + 

 

The information content is unique in this case for each alphabet letter [25]. Note that if there are some 

equal measurements within the sextuple, then the logarithms in (5) cannot be calculated. In such a 

case, some logarithms are taken into consideration multiple times, while those that contain equal 

measurements are omitted.  

 

3.2 Alphabet entropy features 

It is evident from the expression (5) that AlphEn quantifies very short-term variability of the original 

time series. The shortest time frame that can be analyzed with this method is therefore dependent on 

the sampling, but always includes only four measurements. The largest time frame is, however, not 

limited to only four measurements, as the entropy can be calculated sequentially for each four-by-four 

measurements.  

Formally, any signal segment 3��7 can be encoded into its corresponding letter series 32�7 using (3), 

such that the length of the letter series equals |2| = IQ�932�7< = IQ�93��7< − 3. 
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AlphEn can be calculated for each letter 2� in 32�7. This yields a series of alphabet entropies 

3�IJℎ���7 corresponding to letters 32�7, calculated using (5). From letters series 32�7 and alphabet 

entropies series 3�IJℎ���7, numerous statistical features can be extracted. Some of these may include: 

1. Average alphabet entropy in segment:  

��Q��IJℎ�� = ∑ RSTUVW�|X|�Y� |Z|            (6); 

2. Alphabet entropy variance in segment:  

�IJℎ��[�� = \∑ 9RSTUVW�#R]^_RSTUVW<�|X|�Y� |Z|#	        (7); 

3. Maximum alphabet entropy in segment:  

`���IJℎ�� = max� �IJℎ���         (8); 

4. Average alphabet entropy for each letter in segment: 

 ��Q��IJℎ��92�< = ∑ RSTUVWdeX�edY� |Z�|  , . = 1. .27       (9); 

5. Alphabet entropy variance for each letter in segment: 

�IJℎ��[��92�< = \∑ gRSTUVWd#R]^_RSTUVW9Z�<h�eX�edY� |Z�| , . = 1. .27      (10); 

6. Maximum alphabet entropy for each letter in segment: 

`���IJℎ��92�< = maxC �IJℎ��C ,  2�~�IJℎ��C, j = 1. . |2�|, . = 1. .27               (11); 

7. Letter existence in segment: 

��.'k'g2Ch, if 2C ∈ 32�7, j = 1. .27        (12); 

8. Letter occurrence rate in segment:  

��kQg2Ch = l�Qm92C< |2|⁄ , 2C ∈ 32�7, j = 1. .27      (13). 

All of these features are not computationally demanding and can be obtained quickly from segments 

of various lengths. 
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these disorders will be applied here, as biodiversity and specific disease states may sometimes show 

somewhat different types of abnormal patterns. In Fig. 

contraction (PVC) arrhythmia is given and the

are marked. For example, letter C (0 0 

second and the first, and between the third and the second RR

a shortening between the fourth and the third RR

the letters C (0 0 -) and K (- 0 0) could have resulted from normal behavio

deceleration). However, the letters I (0 

identification. Similar representations can be given for other heart rhythm patterns. 

In Table 2, the theoretical  alphabet e

premature atrial contraction (PAC), PVC, atrial fibrillation (AFIB), ventricular bigeminy (VBI), and 

ventricular trigeminy (VTR) are presented. The information about the arrhythmias in Table 2 i

on Garcia & Holtz [48] and on consultations with medical experts. It is clear that some of the letters
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4. Considerations of alphabet entropy application to heart rate variability analysis

The heart rate series may display discrepancies from normal behavior in the case of some cardiac 

cardiac disorders. A restriction to theoretical consideration about the nature of 

these disorders will be applied here, as biodiversity and specific disease states may sometimes show 

somewhat different types of abnormal patterns. In Fig. 1, an example of premature ventricular 

is given and the alphabet entropy letters that are typical for this disorder 

For example, letter C (0 0 -) indicates that there were no significant changes between the 

between the third and the second RR-interval, respectively, but that there was 

a shortening between the fourth and the third RR-interval because of the PVC. It should be noted that

0 0) could have resulted from normal behavior (significant heart rate 

deceleration). However, the letters I (0 - +), Z ( - + -), and Q (+ - 0) are much more specific for PVC 

identification. Similar representations can be given for other heart rhythm patterns. 

In Table 2, the theoretical  alphabet encodings for normal sinus rhythm (NSR) and abnormal patterns: 

premature atrial contraction (PAC), PVC, atrial fibrillation (AFIB), ventricular bigeminy (VBI), and 

ventricular trigeminy (VTR) are presented. The information about the arrhythmias in Table 2 i

on Garcia & Holtz [48] and on consultations with medical experts. It is clear that some of the letters

Fig. 1. An example of premature ventricular contraction (PVC) arrhythmia and its corresponding 

alphabet entropy letters 

ND 4.0 license 

ropy application to heart rate variability analysis 

case of some cardiac 

cardiac disorders. A restriction to theoretical consideration about the nature of 

these disorders will be applied here, as biodiversity and specific disease states may sometimes show 

remature ventricular 

letters that are typical for this disorder 

) indicates that there were no significant changes between the 

interval, respectively, but that there was 

interval because of the PVC. It should be noted that 

r (significant heart rate 

0) are much more specific for PVC 

identification. Similar representations can be given for other heart rhythm patterns.  

ncodings for normal sinus rhythm (NSR) and abnormal patterns: 

premature atrial contraction (PAC), PVC, atrial fibrillation (AFIB), ventricular bigeminy (VBI), and 

ventricular trigeminy (VTR) are presented. The information about the arrhythmias in Table 2 is based 

on Garcia & Holtz [48] and on consultations with medical experts. It is clear that some of the letters 

 

and its corresponding 
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Table 2. The theoretical alphabet encoding for normal sinus rhythm and other rhythm patterns  

Rhythm 

pattern 

Example of RR-

interval changes 
Alphabet letters 

Expected 

frequency 

NSR 

0000000 A Common 
000+000 A,B,D,J Occasional 
000-000 A,C,E,K Occasional 
000+-00 A,B,H,Q,K Rare 
000++00 A,B,F,P,J Rare 
000--00 A,C,G,R,K Rare 

PAC 
000-+00 A,C,I,S,J Common 
000-+-00 A,C,I,Z,Q,K Common 

PVC 
000-+-00 A,C,I,Z,Q,K Common 
000-+00 A,C,I,S,J Occasional 
000-++00 C,I,J,P,AA Rare 

AFIB Irregular All letters Common 

VBI 

+-+-+-+ V,Z Common 
000-+-+- A,C,I,V,Z Common 
-+-+-000 A,K,Q,V,Z Common 
000-+-+-00 A,C,I,K,Q,V,Z Common 

VTR 

-+--+--+ W,Y,Z Common 

000-+--+--+-00 A,C,I,K,Q,W,Y,Z Common 

+--+-0-+--+- I,N,Q,W,Y,Z Occasional 

 

and letter sequences are specific for certain disorders. For example, letters W, Y, and Z are common 

for VTR, while practically any combination is possible in the case of an irregular rhythm such as 

AFIB. Ventricular arrhythmias are different from atrial arrhythmias in that the compensation after the 

premature ventricular beat is usually more pronounced. This results in a significant shortening after 

the compensation, i.e. the letter Z (- + -) occurs in PVC instead of J (- + 0). 

In practice, some of the beat disorders can be masked by other disorders so that it is not easy to 

distinguish the exact beat types based on heart rhythm alone. For example, a PVC followed by a 

normal beat and then a couplet of two PVCs may lead to a non-detection of either the PVC or the 

couplet, or both, because the letter sequence is not the same as the theoretically expected one anymore. 

There are also other concerns. For example, VBI is not present in the segment if there is only a single 

letter Q (+ - 0), because alternation of at least three normal-abnormal beats should be present [48]. To 

resolve these issues, a statistical approach using features (6)-(13) is applied, and disorders are detected 

based on the analysis of the whole segment. If two or more rhythm disorders are present within a 

segment, the one that is clinically the most significant is considered. It should be noted that the 

disorders that usually span more than four RR intervals (e.g. sustained supraventricular tachycardia) 

cannot be detected by AlphEn and are therefore not considered here. 
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5. Evaluation method details 

5.1 Dataset description 

For the analysis of cardiac arrhythmias, the MIT-BIH Arrhythmia Database, with 44 non-pacemaker 

records (pacemaker records 102, 104, 107, 217 excluded), first half-hour, is used [31]. The signals in 

the database were band-pass filtered at 0.1–100 Hz and digitized at 360 Hz. The database contains the 

information on many types of anomalous beats. The records are used as-is, without additional 

preprocessing of beats, because the aim was to discover potential arrhythmic patterns using HRV 

features. The rhythm was considered normal (NSR) in a segment if there were no anomalous beats 

marked in the beat annotations. 

The records were divided into segments of 20 s, which was already shown to be near-optimal for 

automatic classification of arrhythmias based on short-term HRV analysis [27]. The analyzed rhythm 

patterns included: NSR (1520 segments), PAC (197 segments), PVC (437 segments), AFIB (364 

segments), VBI (210 segments), and VTR (106 segments). The total number of valid segments 

(feature vectors) was 2834. All of the segments that contained other types of disorders (e.g. atrial 

bigeminy, atrial trigeminy, bundle branch blocks, 2nd degree block, ventricular tachycardia, paced 

rhythm) were disregarded because of either of the following two reasons: too few different patient 

records contained the disorder, or the rhythm itself is not considered to be distinguishable from normal 

rhythm using features of HRV alone [48]. A small number of segments that contained multiple 

disorders (e.g. PACs and PVCs), or couplets (atrial, ventricular, or mixed) were also disregarded.  

 

5.2 Methods Description 

Four different analyses were performed for distinguishing between several types of arrhythmic 

patterns. The first analysis aims to: 1) discover the optimal threshold θ (3) for AlphEn, which is to be 

used in the other arrhythmia analyses, and 2) discover the minimal set of AlphEn features that 

completely describes arrhythmia classification problem. The search for the optimal threshold included 

examining the classification results of the combination of all AlphEn features (combination #0, Table 

3) on the dataset for threshold values of θ = {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150, 

200} ms. When the optimal threshold was found, filter-based feature selection using symmetrical 
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uncertainty [49] measure was performed on the feature set with the optimal threshold. Symmetrical 

uncertainty of a feature is given by the expression: 

oEppq9�, r< = 2 s9t<#s9t | u<s9t< + v9r<            (14), 

where C is the goal (class) variable, F is the evaluated feature, H(C) is the Shannon's entropy of the 

class variable, H(F) is the Shannon's entropy of the evaluated feature, and H(C | F) is the conditional 

Shannon's entropy of the class variable C given the feature F.  

Feature selection was deemed necessary as it is unexpected that all of the AlphEn features are useful 

for the specific set of analyzed arrhythmias. The minimum number of features that do not reduce 

accuracy of the full set of features is retained. This feature combination is named combination #1 in 

Table 3.  

The second analysis included an evaluation of different feature combinations for cardiac arrhythmia 

classification. The goal was to discover whether the addition of AlphEn features can improve the 

classification potential of the most promising feature combinations according to literature 

[1,3,27,54,55]. For comparison purposes, we used four different combinations of features, with details 

outlined in Table 3. The combination #2 is based only on standard linear time-domain and frequency 

domain features recommended by HRV analysis guidelines [50]. The combination #3 is a balanced 

combination that includes both linear and nonlinear features. Here, the linear features are the same as 

in #2, and the nonlinear ones were taken from a recent review paper on HRV [1], with details on 

recurrence plot features taken from [51], considering only those features from the review that can be 

reasonably estimated from short-term segments. The combination #4 is also a balanced and well-

known combination of linear and nonlinear HRV features proposed for automatic arrhythmia detection 

[3]. The combination #5 was more recently shown to be near-optimal for arrhythmia classification on 

short-term HRV series [27]. The combinations #2 - #5 were considered alone and with the addition of 

relevant AlphEn features (comb #1). For all estimations of spectral parameters, Lomb-Scargle 

periodogram method was used, because recent work found it more appropriate than traditional Fourier 

and Autoregressive spectrum estimates for HRV data [52].  

The third analysis included direct comparison of AlphEn with other nonlinear entropy features. In  
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Table 3. Feature combinations considered for cardiac arrhythmia classification and CHF detection  
 

# Feature combination 
Number of 

features 

0 
Mean, AverAlphEn, AlphEnVar, MaxAlphEn, AverAlphEn(A) - AverAlphEn(AA), AlphEnVar(A) - 
AlphEnVar(AA), MaxAlphEn(A) - MaxAlphEn(AA), Exists(A) - Exists(AA), Rate(A) - Rate(AA) 

138 

1 
MaxAlphEn, Exists(Z), Rate(Z), AverAlphEn(Z), MaxAlphEn(Z), AverAlphEn, Rate(A), Rate(V), AlphEnVar, 
Exists(V), Exists(I), MaxAlphEn(I), MaxAlphEn(V), AverAlphEn(I), AverAlphEn(V), Rate(I), Exists(Q), Rate(Q), 
AverAlphEn(C), MaxAlphEn(C)... (for the whole list see Table 7) 

70 

2 Mean, SDNN, RMSSD, SDSD, pNN50, HRV Triangular Index, TINN, (LF, HF, LF/HF)* [50] 10 

3 
Mean, SDNN, RMSSD, SDSD, pNN50, HRV Triangular Index, TINN, (LF, HF, LF/HF)*, SD1/SD2, ApEn3 0.2, 
LLE, SampEn3 0.2σ, DFA alpha short, Recurrence plot features: REC, Lmean, DET, LAM [1,51] 

19 

4 
Mean, SDSD, RMSSD, pNN5, pNN10, pNN50, SD1/SD2, LLE, (SpectEn, LF/HF)*, STA1, STA2, ApEn3 0.2σ, 
DFA alpha short [3] 

14 

5 
Mean, SDNN, RMSSD, SDSD, pNN5, pNN10, pNN20, pNN50, HRV Triangular Index, TINN, (LF, HF, LF/HF, total 
PSD)*, SD1/SD2, Fano factor, Allan factor [27] 

17 

* spectral features were obtained using Lomb-Scargle periodogram method [52] 

 

order to perform a proper evaluation, the linear combination #2 was taken. Then, a single nonlinear 

entropy feature was appended to this combination of linear features and the classification results of the 

complete combinations were compared. The nonlinear features included: ApEn [22], SampEn [41], 

ShEn [37], CCShEn [37], CorrEn [38], CarnEn (using (1)), FuzzyApEn [42], and AlphEn (using (5)). 

Rényi's entropy (RenEn) [44] was not considered in this work because of too short segments for a 

reliable estimate. All of the entropies were considered in a way that their respective parameters were 

varied and the single most accurate feature was reported. Details about the entropies' parameters are 

provided in Table 4. The goal of the analysis was to discover which of the nonlinear entropy measures 

possesses the highest incremental contribution in classification accuracy to standard linear features. 

In the fourth analysis, a detailed examination of the behavior of AlphEn, when it is applied to real-life 

heart rhythm patterns, was pursued. Herein, we first report on the statistical properties of the relevant 

AlphEn features from comb #1. Second, for each heart rhythm pattern, we perform a thorough search 

for the frequently reoccurring letter combinations in 20 s segments (considering all possible AlphEn 

letters). The search is set to determine in what manner do the individual heart rhythms differ 

qualitatively, with respect to the used alphabet. 

 

5.3 Analysis tools and evaluation 

Cardiac records preprocessing and feature extraction was performed using HRVFrame framework 

[53], v2.1. The framework is available from the website [54]. AlphEn was implemented as an 
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Table 4. Entropies and their parameters used in the comparison analysis 

Entropy Parameters 

Total no. of 

examined 

features 

ApEn m = {1,2,3}, r = {0.1, 0.15, 0.2, 0.25, ApEnMax*} σ  15 
SampEn m = {1,2,3}, r = {0.1, 0.15, 0.2, 0.25, SampEnMax*} σ 15 
FuzzyApEn m = {1,2,3}, r = {0.1, 0.15, 0.2, 0.25, FuzzyApEnMax*} σ 15 
ShEn dim = {2,3}, no. of bins = {5, 10, 15} 6 
CCShEn dim = {2,3}, no. of bins = {5, 10, 15} 6 
CorrEn dim = {2,3}, no. of bins = {5, 10, 15} 6 
CarnEn non-parametric 1 
AlphEn AlphEn features from Table 3, comb. #1  70 

* radius r for which the maximum value of the corresponding entropy is obtained 

 

additional method in the framework, while other nonlinear entropy methods had already been 

implemented in earlier versions. The framework is freely available under GPL 2.0 license. 

Feature selection and classification was performed in the Weka platform for knowledge discovery and 

data mining [55]. 10x10-fold stratified cross-validation evaluation method was employed on the 

segments obtained from all patients for all analyses. The dataset is considered to be sufficiently large 

for all of the heart rhythm patterns so that there was no need to consider subject-specific modeling. 

Total classification accuracy = mean sensitivity (SENS), mean specificity (SPEC), and mean Area 

Under Curve (AUC) are reported. Details on these measures can be found in Hastie et al. [56]. 

Symmetrical uncertainty (SymmetricalUncertAttributeEval in Weka) was used for feature selection. 

Information gain and OneRule filter based feature selection methods [55,57] were also tried, but 

symmetrical uncertainty obtained the most favorable results regarding the accuracy of the models and 

the number of included features. For classifier construction on the multi-class (heart rhythm patterns) 

problem, random forest (RF) [58] classifier was employed. AdaBoost.M1+C4.5 and rotation forest 

ensembles were also tried, as our earlier papers indicated it [27,59], but the overall results were not 

better and the training times were longer compared to RF. The size of the forest was set to 300 trees 

and no limit to tree size for all analyses. Visualization of the results was performed in Matlab R2013a.  
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6. Results 

The results for optimal threshold using all AlphEn features (#0, Table 3) and mean RR interval is 

shown in Fig. 2. It can be seen that the maximum values of total classification accuracy, which equals 

mean sensitivity for all rhythms, are achieved for threshold values of θ = <70–110 ms> with a peak at 

θ = 100 ms. This threshold range shows that ectopic beats (PAC, PVC) can be detected most reliably 

from cardiac rhythm if there is a shortening or prolongation larger than 70 ms and smaller than 110 

ms. Setting the threshold to 120 ms or more obscures some of the ectopic beats, while setting it to 60 

ms or less takes some of the normal beats as ectopic ones. Small variations of changes in accuracy for 

threshold range <70–110> ms can be attributed to the given sample. Other datasets with the same 

arrhythmia types may exhibit similar, but not exactly the same behavior in the range <70–110> ms, 

especially when the numbers of feature vectors per arrhythmia class differ significantly from the 

current ones. 

The results of symmetrical uncertainty feature selection is shown in Fig. 3. It can be seen that the 

accuracy at θ = 100 ms is achieved most efficiently when top 70 AlphEn features are included (out of 

138). These features form comb #, which is reported in Table 3 and used in further analyses. In Table  

 

Fig. 2. Analysis of AlphEn's optimal threshold for arrhythmia classification 
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Fig. 3. Classification with AlphEn features: the x-axis depicts the number of included features, ranked 

with the symmetrical uncertainty measure 

 

3, we report only the first 20 ranked features, while the complete combination is given later in the 

paper with statistical details in Table 7. 

In Fig. 4, the box-and-whisker plot of mean sensitivity and mean specificity for the feature 

combinations #1 - #5 listed in Table 3 is shown, with and without the addition of AlphEn features. It 

can be seen that relevant AlphEn features (comb #1) alone are comparable to other HRV-based cardiac 

arrhythmia feature combinations used in literature. The addition of relevant AlphEn features to the 

known combinations improves sensitivity of other combinations by 2%, on average. Specificity does 

not show any major changes with the addition of AlphEn to all combinations. AlphEn combination has 

the lowest mean specificity (roughly 0.6%) and the highest mean sensitivity (roughly 0.3%) among the 

examined combinations. Linear combination (comb #2) appears to have somewhat better specificity  
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five feature combinations from Table 3, with and without the addition of AlphEn (comb #1
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mean specificity box-and-whisker plot for arrhythmia classification for 

ombinations from Table 3, with and without the addition of AlphEn (comb #1

ND 4.0 license 

 

whisker plot for arrhythmia classification for 

ombinations from Table 3, with and without the addition of AlphEn (comb #1 = C1) 
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than more complicated combinations, but all the differences are within 0.3%. Overall, the best 

combinations with respect to mean sensitivity and mean specificity appear to be #2 and #5, with the 

addition of AlphEn features (C2 with C1: mean SENS: 91.10%, mean SPEC: 97.01%, mean AUC: 

98.99%; C5 with C1: mean SENS: 91.15%, mean SPEC: 97.05%, mean AUC: 99.00%). 

Table 5 shows the influence of adding only a number of relevant AlphEn features to the combinations 

#2 - #5. The addition of the first ranked AlphEn feature slightly increases mean sensitivity for all 

combinations, while the addition of 5 highest ranking features increases mean sensitivity by 1%, on 

average, for all combinations. Although adding all 70 relevant features increases mean sensitivity by 

roughly 2%, the gain in mean sensitivity is only 0.5% with respect to adding only the first 10 highest 

ranking features. This means that the majority of relevant information necessary to boost the efficiency 

of established feature combinations is hidden in the first 10 highest ranking AlphEn features. It is 

interesting to note that mean specificity tends to increase up to the number of 10 highest ranking 

AlphEn features, while a decline is observed afterwards, which may be explained with insignificance 

of the majority (but not all) of the remaining AlphEn features. In Table 6, we provide details on the  

 

Table 5. The analysis of influence of adding a number of highest ranking AlphEn features from 

combination #1 (C #1) to feature combinations #2 - #5 

X= 
 C #X w/o  

C #1 

C #X with 

1 AlphEn 

C #X with 

3 AlphEn 

C #X with 

5 AlphEn 

C #X with 

10 AlphEn 

C #X with 

20 AlphEn 

C #X with 

all C #1 

2 
SENS, % 88.97 89.12 89.90 90.14 90.50 90.44 91.10 
SPEC, % 97.07 97.00 97.08 97.18 97.28 97.06 97.01 

3 
SENS, % 89.21 89.60 90.06 89.98 90.26 90.56 90.97 
SPEC, % 96.87 97.04 97.08 96.98 97.00 96.90 96.94 

4 
SENS, % 89.08 89.70 89.99 90.02 90.66 90.94 91.09 
SPEC, % 96.94 97.20 97.30 97.28 97.30 97.14 96.95 

5 
SENS, % 89.06 89.40 89.88 90.00 90.48 90.70 91.15 

SPEC, % 96.96 97.08 97.14 97.20 97.34 97.22 97.05 

 

Table 6. Detailed classification results for all rhythm types for combination #5 + 10 highest ranking (C 

#6) and for combination #5 + all relevant AlphEn features (C #7), mean of 10x10-fold cross-validation 

Rhythm 
Sensitivity, % Specificity, % AUC, % 

C #6 C #7 C #6 C #7 C #6 C #7 

NSR 98.96 99.16 97.13 96.34 99.66 99.62 
PAC 71.90 72.29 98.73 99.17 97.36 97.62 
PVC 83.74 83.09 95.77 96.96 97.32 97.46 
AFIB 93.85 96.14 97.70 97.10 99.40 99.30 
VBI 77.85 79.50 98.98 98.96 98.70 98.82 
VTR 44.42 50.80 99.54 99.66 96.77 97.88 
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classification results for each rhythm type for the best combination #5, with 10 AlphEn features (C #6) 

and with all relevant AlphEn features (C #7) added. It can be seen that the addition of all relevant 

features improves sensitivity compared to C #6 for almost all rhyhtms (except PVC). However, 

specificity is somewhat lower for NSR and AFIB (and higher for other rhythms), which leads to an 

overall drop in specificity when all relevant features are included (see Table 5), because NSR and 

AFIB have a high number of individual feature vectors that contribute to the overall mean specificity. 

AUC is also decreased for NSR and AFIB in C #7 (and increased for other rhythms), however, the 

decrease is very small.  

Fig. 5 shows the results' comparison of several nonlinear entropy measures (added to the basic linear 

combination) with AlphEn. The best results with respect to the sum of mean sensitivity and mean 

specificity for all rhythms were obtained for parameters: (ApEn: m = 2, r = ApEnMax; SampEn: m = 

1, r = 0.25σ; FuzzyApEn: m = 2, r = 0.2σ, ShEn: d = 3, bins = 5; CCShEn: d = 2, bins = 5; CorrEn: d = 

2, bins = 15; AlphEn: Rate(V)).  

From Fig. 5, it can observed that ApEn, SampEn, ShEn, FuzzyApEn and AlphEn all improve mean 

sensitivity and mean specificity of linear combination, while CarnEn increases mean specificity but  

 

 

Fig. 5. Best arrhythmia classification results achieved for several different entropies appended to the 

basic linear feature combination (comb #2, Table 3) 
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decreases mean sensitivity. CCShEn and CorrEn decrease both measures. AlphEn entropy stands out 

the most with significant improvement in mean sensitivity.  

In Table 7, statistical data on the relevant AlphEn features (comb #1) is presented. We report on the 

mean value, standard deviation, minimum value, maximum value, and symmetrical uncertainty score 

with respect to the goal class for numerical features, and on the category counts and symmetrical 

uncertainty score for categorical (Exists(X)) AlphEn features. 

There are several interesting statistical properties of AlphEn features that can be inferred from Table 6. 

For example, the maximum AlphEn in segment for all letters (MaxAlphEn) has a maximum score of 

4.48 bits/sequence span. This was achieved by AlphEn for letter Y (-,-,+), as can be seen for feature 

MaxAlphEn(Y). The letter Y is mostly related with VTR arrythmia, as seen in Table 2. Next, the rate 

of letter A (Rate(A)), which shows the rate of four-by-four beats with no significant changes in 

segments, is ranked quite high and also has a high mean value: the segments thus have, on average, 

63% of four-by-four beats with no changes (at 100 ms threshold). Also, the letters Z (-,+,-) and V (+,-

,+) seem to be very relevant for distinguishing arrhythmia types, as 6 out of 10 highest ranking  

 

Table 7. Statistical properties of the relevant AlphEn features, ranked in descending order of 

symmetrical uncertainty (SymmU) measure 

Rank 
Feature 

name 

Mean/StDev/Min 

/Max/SymmU or 

category count/SymmU 

Rank 
Feature 

name 

Mean/StDev/Min 

/Max/SymmUnc or 

category count/SymmU 

Rank 
Feature 

name 

Mean/StDev/Min 

/Max/SymmUnc 

1. MaxAlphEn 2.55/1.36/1.00/4.48/0.403 25. Rate(Y) 0.01/0.03/0.00/0.31/0.204 49. AverAlphEn(O) 0.35/1.01/0.00/4.11/0.139 
2. Exists(Z) yes=1041/no=1793/0.390 26. MaxAlphEn(W) 0.54/1.29/0.00/4.34/0.194 50. Exists(K) yes=1135/no=1699/0.134 
3. Rate(Z) 0.06/0.10/0.00/0.54/0.387 27. AlphEnVar(V) 0.01/0.05/0.00/1.11/0.193 51. Exists(O) yes=411 / no=2423/0.132 
4. AverAlphEn(Z) 1.13/1.58/0.00/4.20/0.380 28. AverAlphEn(W) 0.54/1.27/0.00/4.34/0.192 52. Rate(J) 0.02/0.03/0.00/0.20/0.128 
5. MaxAlphEn(Z) 1.17/1.63/0.00/4.24/0.370 29. AverAlphEn(K) 1.03/1.62/0.00/4.18/0.190 53. Exists(A) yes=2530 / no=304/0.127 
6. AverAlphEn 1.63/0.79/0.81/3.88/0.367 30. Rate(S) 0.01/0.03/0.00/0.25/0.189 54. AlphEnVar(I) 0.01/0.08/0.00/1.43/0.125 
7. Rate(A) 0.63/0.38/0.00/1.00/0.366 31. MaxAlphEn(K) 1.05/1.64/0.00/4.18/0.187 55. Rate(N) 0.01/0.03/0.00/0.28/0.124 
8. Rate(V) 0.03/0.09/0.00/0.53/0.322 32 MaxAlphEn(Y) 0.42/1.11/0.00/4.48/0.187 56. Rate(E) 0.01/0.03/0.00/0.25/0.123 
9. AlphEnVar 0.58/0.68/0.00/4.19/0.318 33. Exists(W) yes=431 / no=2403/0.187 57. MaxAlphEn(N) 0.41/1.19/0.00/4.16/0.122 
10. Exists(V) yes=613 / no=2221/0.290 34. MaxAlphEn(S) 0.52/1.17/0.00/4.08/0.186 58. AverAlphEn(N) 0.41/1.18/0.00/4.11/0.122 
11. Exists(I) yes=1088/no=1746/0.286 35. AverAlphEn(Y) 0.41/1.08/0.00/4.48/0.185 59. MaxAlphEn(M) 0.36/1.04/0.00/4.07/0.119 
12. MaxAlphEn(I) 0.97/1.47/0.00/4.31/0.282 36. Exists(Y) yes=376 / no=2458/0.184 60. Rate(B) 0.03/0.04/0.00/0.21/0.119 
13. MaxAlphEn(V) 0.69/1.36/0.00/4.14/0.279 37. Rate(C) 0.03/0.03/0.00/0.25/0.182 61. Exists(N) yes=300 / no=2534/0.116 
14. AverAlphEn(I) 0.94/1.44/0.00/4.31/0.276 38. AverAlphEn(S) 0.51/1.15/0.00/4.07/0.180 62. AlphEnVar(Q) 0.01/0.09/0.00/1.62/0.115 
15. AverAlphEn(V) 0.66/1.31/0.00/4.05/0.272 39. Rate(H) 0.01/0.03/0.00/0.25/0.174 63. AverAlphEn(M) 0.36/1.03/0.00/4.05/0.115 
16. Rate(I) 0.03/0.05/0.00/0.28/0.255 40. Exists(S) yes=605 / no=2229/0.173 64. AverAlphEn(E) 0.44/1.07/0.00/3.84/0.111 
17. Exists(Q) yes=1052/no=1782/0.249 41. Exists(C) yes=1141/no=1693/0.164 65. Exists(M) yes=438 / no=2396/0.105 
18. Rate(Q) 0.03/0.05/0.00/0.27/0.242 42. Rate(O) 0.01/0.03/0.00/0.25/0.163 66. Rate(U) 0.00/0.01/0.00/0.16/0.105 
19. AverAlphEn(C) 1.14/1.66/0.00/4.06/0.228 43. Rate(K) 0.03/0.04/0.00/0.25/0.161 67. MaxAlphEn(E) 0.44/1.08/0.00/3.84/0.103 
20. MaxAlphEn(C) 1.15/1.68/0.00/4.07/0.228 44. Exists(H) yes=575 / no=2259/0.146 68. AverAlphEn(U) 0.19/0.75/0.00/3.95/0.101 
21. MaxAlphEn(Q) 0.98/1.51/0.00/4.18/0.224 45. MaxAlphEn(H) 0.55/1.24/0.00/4.17/0.146 69. AlphEnVar(W) 0.01/0.09/0.00/2.57/0.100 
22. AverAlphEn(Q) 0.96/1.47/0.00/4.17/0.215 46. Rate(M) 0.01/0.03/0.00/0.33/0.145 70. Rate(D) 0.02/0.03/0.00/0.24/0.098 
23 Rate(W) 0.01/0.04/0.00/0.36/0.210 47. AverAlphEn(H) 0.54/1.22/0.00/4.13/0.143    
24. AlphEnVar(Z) 0.02/0.07/0.00/1.14/0.208 48. MaxAlphEn(O) 0.36/1.03/0.00/4.17/0.140    
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features are related to them, including quantitative entropy measures for the letter Z.

Additionally, in Fig. 6, we present a comparison of the results when adding a single AlphEn

the linear combination (comb #2)

using the highest ranking feature, MaxAlphEn

linear combination. Rate(V) should be used

mean sensitivity and mean specificity. When compared with the results from Table 5 (for comb #2), it 

becomes apparent that some of the top 10 features contribute more significantly than others to the 

overall success of the combination. Nevertheless, 

the highest contribution to the success of all combinations.

Table 7 presents the most common letter combinations in 

that all the alphabet letters were found in 

 

Fig. 6. Improvements in classification results 

relevant features to 
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features are related to them, including quantitative entropy measures for the letter Z.

we present a comparison of the results when adding a single AlphEn

the linear combination (comb #2) for the top 10 features from comb #1. It is important to notice that

using the highest ranking feature, MaxAlphEn, does not lead to the best results when u

Rate(V) should be used instead, which leads to significant improvement in

mean sensitivity and mean specificity. When compared with the results from Table 5 (for comb #2), it 

becomes apparent that some of the top 10 features contribute more significantly than others to the 

overall success of the combination. Nevertheless, including all 10 highest ranking AlphEn features has 

the highest contribution to the success of all combinations. 

Table 7 presents the most common letter combinations in the analyzed segments. It should be noted 

that all the alphabet letters were found in the arrhythmia records, probably because AFIB irregular 

Improvements in classification results when adding a single AlphEn feature from the top 10 

relevant features to the linear combination #2 

ND 4.0 license 

features are related to them, including quantitative entropy measures for the letter Z. 

we present a comparison of the results when adding a single AlphEn feature to 

. It is important to notice that 

does not lead to the best results when used with the 

leads to significant improvement in both 

mean sensitivity and mean specificity. When compared with the results from Table 5 (for comb #2), it 

becomes apparent that some of the top 10 features contribute more significantly than others to the 

including all 10 highest ranking AlphEn features has 

segments. It should be noted 

the arrhythmia records, probably because AFIB irregular  

 

adding a single AlphEn feature from the top 10 
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Table 7. The most common AlphEn letter combinations in 20 s segments for arrhythmia classification, 

threshold θ = 80 ms 

Heart rhythm Letter combination 
Segments with the 

combination 

Example of RR-

interval changes 

NSR, 

1520 segments 

A only 965 00000 

B,D,J 81 00+00 

C,E,K 53 00-00 

B,C,D,E,J,K 21 00-000+00 

B,H,K,Q 13 00+-00 

B,D,H,J,K,Q 7 00+00+-00 

PAC, 

197 segments 

C,I,K,Q,Z 46 00-+-00 

C,I,J,S 32 00-+00 

C,I,J,K,Q,S,Z 17 00-+00-+-00 

PVC, 

437 segments 

C,I,K,Q,Z 136 00-+-00 

C,I,K,N,Q,Z 13 00-+-0-+-00 

B,D,J 13 00+00 

I,N,Q,Z 11 -0-+-0 

C,I,K,Q,V,Z 9 00-+-+-00 

C,I,K,Q,W,Y,Z 8 00-+--+-00 

VBI, 

210 segments 

V,Z 43 -+-+-+- 

V,W,Y,Z 11 +-+--+-+- 

C,I,K,Q,V,Z 9 00-+-+-+-00 

C,I,K,N,Q,V,Z 7 00-+-+-0-+-00 

C,I,N,Q,V,W,Z 7 00-+-+-+-0-+-- 

AFIB, 

364 segments 

Mostly 9 - 18 different 

letters in segment 
N/A N/A 

VTR, 

312 segments 

C,I,K,Q,W,Y,Z 23 00-+--+--+-00 

I,M,S,W,Y,Z 6 -+--+0-+--+ 

 

episodes were considered. Letters that represent ectopic beats such as I (0 - +), Q (+ - 0), and Z (- + -) 

are common. PAC and PVC had the same most common pattern, with letters C, I, K, Q, Z: 00-+-00, 

which is theoretically unusual, because PAC should not have large compensations after the anomalous 

beat [53]. Aside from typical combination C, I, J, S that is present in PAC and absent in PVC, a 

possibility to distinguish these two beat types is presented through quantification of the compensation 

with AlphEn (5). 

 

 

7. Discussion 

Comparing studies related to classification of cardiac arrhythmias from HRV time series is 

challenging because there are rarely any two studies that use the same dataset with the same 

preprocessing methods and with classification of the same arrhythmias. Nevertheless, for the sake of 

completeness, a summary of related relevant studies is provided in Table 9. It should be noted that in 
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the cases of multiple arrhythmias classification, only mean sensitivity and mean specificity are 

reported in Table 8. Details on sensitivity or specificity for a particular arrhythmia may be available in 

the original literature.  

One may argue that the number of extracted AlphEn features (138) may hinder the application of our 

method. However, as we have shown, a rather simple filter feature selection method such as 

symmetrical uncertainty may be used prior to construction of the final feature combination in order to 

identify only relevant AlphEn features. In addition, as shown in the second analysis, one can add only 

top 10 AlphEn features ranked by symmetrical uncertainty to an established combination and still 

achieve high results. Moreover, the features themselves are very fast to calculate, as they rely only on 

basic algebra for sets of four-by-four measurements. Still, discovering the optimal set of AlphEn 

features that should be added to established combinations is troublesome, as the exhaustive search 

procedure is computationally unfeasible due to the high number of features.  

It should be noted that the number of relevant AlphEn features certainly depends on the number and 

quality of the analyzed arrhythmias. Hence, the resulting set of relevant AlphEn features presented in  

 

Table 8. Relevant studies dealing with classification of cardiac arrhythmias from HRV series 

Author Dataset Features Classifier Arrhythmias 

ACC | 

SENS | 

SPEC, 

% 

Tsipouras & 
Fotiadis [60] 

MIT-BIH 
Arrhythmia 
Database 

Linear time and 
time-frequency 
sets of features 

Neural network Normal / arrhythmia N/A | 
90.0 | 
92.9  

Asl et al. [3] MIT-BIH 
Arrhythmia 
Database 

Linear (7) and 
nonlinear (7) 
(comb #3) 

SVM (binary 
classification) 
+GDA 
feature reduction 

Normal, premature ventricular 
contraction, atrial fibrillation, 
ventricular fibrilation, sick 
sinus syndrome, second degree 
block 

99.2 | 
95.8 | 
99.4 

Yaghouby et 
al. [30] 

MIT-BIH 
Arrhythmia 
Database 

Linear (5) and 
nonlinear (4)  

Neural network + 
GDA feature 
reduction 

Left bundle branch block, first 
degree heart block, supraventricular 
tachyarrhythmia and ventricular trigeminy 

100.0 | 
100.0 | 
100.0 

Mohebbi & 
Ghassemian 
[61] 

Atrial 
Fibrillation 
Prediction 
Database 
(AFPDB) 

Spectral (2), 
bispectral (6), 
nonlinear (4) 

SVM Normal / Paroxysmal atrial fibrillation N/A | 
96.3 | 
93.1  

Jovic, A. & 
Bogunovic 
[27] 

MIT-BIH 
Arrhythmia 
Database 

Linear (14), 
nonlinear (3) 
(comb #5) 

AdaBoosted C4.5 Normal, paced, premature atrial 
contraction, premature ventricular 
contraction, atrial fibrillation, ventricular 
tachycardia, ventricular bigeminy, 
ventricular trigeminy, second degree block 

87.5 | 
87.5 | 
95.6 | 

This study MIT-BIH 
Arrhythmia 
Database 

Comb #2 (10) + 
comb #1 (70) or 
comb #5 (17) + 
comb #1 (70) 

Random forest Normal, premature atrial contraction, 
premature ventricular contraction, atrial 
fibrillation, ventricular bigeminy, 
ventricular trigeminy 

91.2 | 
91.2 | 
97.1 
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this work should only be used with the analyzed six rhythm types. For other rhythm types, the 

procedure applied in this work should be repeated in order to find feature combinations of high 

quality.  

Results presented in Fig. 4 and Table 5 strongly support the addition of AlphEn features to known 

expert combinations. However, the idea of replacing established feature combinations entirely with 

AlphEn features remains controversial. Although mean sensitivity is somewhat higher for comb #1 

than for the established combinations, the mean specificity is lower. Thus, using only AlphEn features 

for a classification problem may be possible in situations where sensitivity is more important than 

specificity or in the case of classification of disorders that do not have established feature 

combinations available. 

 

 

8. Conclusion 

The aim of the current study was to establish the relevance of AlphEn in HRV analysis. It has been 

shown that AlphEn may be considered as a traditional short-term complexity measure of a signal, 

comparable to ApEn, FuzzyApEn, and others. It has also been shown that the strength of AlphEn lies 

in domain-oriented feature extraction and classification of arrhythmia from HRV series, where it can 

be used in addition to other established feature combinations to boost the performance. The qualitative 

aspect of AlphEn, as reflected in features determined by (12) and (13) may be used to explain the 

cause of variability in a segment, as well as to achieve classification accuracy improvement. The 

quantitative aspect of AlphEn, as calculated with features (6)-(11) should mostly be used in discerning 

between disorder types that do not differ significantly in its qualitative aspect (e.g. PAC and PVC). As 

a result of these findings, it can be recommended that the main application areas of AlphEn would be 

automatic classification systems, especially for first-hand screening for arrhythmia problems, as well 

as in decision support systems in medicine. 

Future work will focus mostly on applying AlphEn to other common disorders such as congestive 

heart failure and to other cases of biomedical time series variability, e.g. in ECG and EEG series, as 

well as in examining the entropy's potential for online analysis of patient records. 
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