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ABSTRACT Accurate detection of characteristic electrocardiogram (ECG) waves is necessary for ECG 

analysis and interpretation. In this paper, we distinguish four processing steps of detection algorithms: noise 

and artefacts reduction, transformations, fiducial marks selection of wave candidates, and decision rule. 

Processing steps combinations from several detection algorithms are used to find QRS, P, and T wave peaks. 

Additionally, we consider the search window parameter modification based on waveform templates extracted 

by heart cycles clustering. The methods are extensively evaluated on two public ECG databases containing 

QRS, P, and T wave peaks annotations. We found that the combination of morphological mathematical 

filtering with Elgendi's algorithm works best for QRS detection on MIT-BIH Arrhythmia Database (detection 

error rate (DER = 0.48%, Lead I). The combination of modified Martinez’s PT and wavelet transform (WT) 

methods gave the best results for P wave peaks detection on both databases, when both leads are considered 

(MIT-BIH Arrhythmia Database: DER = 32.13%, Lead I, DER = 42.52%, Lead II; QT Database: DER = 

21.23%, Lead I, DER = 26.80%, Lead II). Waveform templates in combination with Martinez's WT obtained 

the best results for T wave peaks detection on QT Database (DER = 25.15%, Lead II). Our work demonstrates 

that combining some of the best proposed methods in literature leads to improvements over the original 

methods for ECG waves detection, while maintaining satisfactory computation times. 

INDEX TERMS ECG, characteristic waves, automatic detection algorithms, clustering, expert system, 

biomedical signal analysis  

I. INTRODUCTION 

Electrocardiography has been used as a heart diseases’ 

diagnostic tool for many years. Electrocardiogram (ECG) 

reflects electric polarization and depolarization of the heart 

chambers. Characteristic waves in ECG are known as P 

wave, QRS complex, and T wave. P wave reflects 

depolarization of the atria, QRS complex corresponds to 

ventricular depolarization, and T wave represents ventricular 

repolarization, i.e. restoration of the resting membrane 

potential [1]. The repolarization of atria is concealed by 

depolarization of ventricles. 

Cardiologists monitor patients’ health visually, by 

inspecting signal morphology present in ECG record 

(usually all 12 leads of standard ECG). This requires a 

tremendous amount of time and expert human resources with 

specialized education and practice. To deduct the time and 

amount of required doctors’ attention per patient, a computer 

based expert system for processing and analysis of ECG 

records and diagnosis of the cardiovascular diseases can be 

of great help. 

Duration and amplitude of ECG waves (P, QRS, T) and 

segments between the waves (ST segment, QT interval, PR 

interval) are used to indicate and detect patients' normal or 

abnormal heart rhythm and state of health. Additional 

diagnostic characteristics related to ECG morphology 

include: P wave absence and presence of fibrillatory waves 

in atrial fibrillation; J point amplitude (from baseline), R/S 

wave ratio, ST segment slope in acute myocardial ischemia, 

etc. [2]. Heart rate variability, a time series extracted from 
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cardiac interbeat (R-R) intervals, is also an important 

indicator of patient's overall health and may be used to help 

detect particular disorders, such as congestive heart failure 

[3]. Precise detection of R waves is an essential step in 

deriving the heart rate variability time series. 

Accurate detection of amplitude and time index of peaks, 

onset and offset points of all characteristic ECG waves is 

required to extract features for development of an expert 

system for heart condition diagnoses, ECG recognition and 

other applications [4]. In this respect, detection of QRS 

complex (especially, the R spike peak) is a highly researched 

topic, due to attainability of annotated signal databases. 

Accuracy in the sense of sensitivity and positive predictive 

value is above 99% in most of the related works 

[5][6][7][8][9][10]. On the other hand, detection of P and T 

waves is still unsatisfactory, due to limited availability of 

annotated datasets [11]. Different approaches have been 

researched in order to analyze characteristic waves in ECG 

signals: algorithms based on various derivates and threshold 

decisions, algorithms based on complex transformations, 

such as wavelet [12][13][14][15] and Hilbert-Huang 

transforms [16][17][18][19][20], or algorithms that use 

machine learning methods, like artificial neural networks 

[21][22]. 

The majority of proposed algorithms in literature are 

evaluated on a single major lead (mostly MLII), as it yields 

the best representation of ECG characteristic waves. The 

reported accuracy evaluation in literature lacks the 

information on how well the algorithms perform on other 

leads, as they may be accidentally switched during recording 

sessions. Also, the evaluation of the algorithms’ results 

depends on the exact determination of the ECG characteristic 

wave points, which is performed by comparing with the 

already given annotations. This process does not allow 

comparis the results of the algorithms’ individual processing 

steps. In this work, we divided algorithms into processing 

steps to evaluate improvements in detection accuracy of 

characteristic ECG waves, when specific steps are combined. 

We concentrate on five algorithms which are numerically 

efficient and do not require training sets. From these 

algorithms, we distinguish four processing steps in ECG 

characteristic wave detection, namely: 1) noise and artifact 

reduction, 2) transforms, 3) fiducial marks selection of wave 

candidates, and 4) decision rule (similar to three steps 

reported in [5]). Based on these steps, we aim at adapting the 

described detection algorithms by combining certain steps 

for the optimal waves' detection capabilities. Moreover, we 

explore the search window parameter modification based on 

template waveforms extracted by heart cycles clustering. 

This work is the continuation of our previous study that 

aimed at maximal accuracy of ECG waves detection [23]. 

Our primary motivation is to provide an efficient online 

service to both medical professionals and engineers, related 

to the analysis of multiple heterogeneous biomedical time 

series [24]. 

The contributions of this work are, as follows. 

1) We show that algorithms’ accuracy can be 

improved both for QRS complex and P and T waves 

peaks detection, which is achieved by considering 

combinations of the processing steps and methods. 

2) We introduce parameter modification based on 

waveform templates extracted by heart cycles 

clustering and show that particular methods for P 

and T waves peaks detection may benefit from this 

method. 

3) We present a modification of Martinez’s algorithm 

based on phasor transform (PT). 

The paper is structured as follows. Section II describes the 

algorithms and their combinations, parameter modification 

based on template waveforms, and the used databases. 

Section III summarizes the results obtained for the different 

analyzed databases. The outcomes are discussed in section 

IV. Finally, section V presents the concluding remarks and 

intended future work. 

II. METHODS 

A. ALGORITHMS’ OVERVIEW  

Five ECG characteristic waves’ detection algorithms are 

considered in this paper. The purpose of this subsection is to 

provide a brief and concise description of the algorithms. As 

one of the algorithms also required some modifications, the 

modifications are also explained in detail here. For the more 

in-depth descriptions of the non-modified algorithms, we refer 

the reader to the given references. 

The reported detection results in terms of sensitivity (Se) 

and positive prediction (PPV) of the algorithms considered in 

our work are given in Table I. The algorithms are selected 

based on their different approaches to processing steps (like 

Pan Tompkins’ adaptive thresholding, mathematical 

morphological transform from Sun et al., phasor and wavelet 

transforms from Martinez and moving average approach from 

Elgendi). A comparative study of ECG segmentation 

algorithms (which includes three of the algorithms considered 

in this paper) can be found in [25]. We note that there are other 

algorithms found in literature that use similar processing steps 

and match our selection rule (numerically efficient and do not 

require training sets), such as Vazquez et al. [26], with the 

proposed geometric method, Vitek et al. [27], with the 

continuous wavelet transform, Singh et al. [28], with the 

maximum vertical offset, Di Marco [29], with the discrete 

wavelet transform and adaptive thresholding. However, in this 

paper, we consider only the five algorithms that reported the 

best accuracy in detection of the wave peaks. 

1) PAN TOMPKINS 

Pan Tompkins is a well known algorithm for R spike 

detection, described in [5]. The first step of this algorithm is to 

filter signal with a desirable bandpass filter to maximize the 

QRS energy. The frequency band chosen in the original paper  
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TABLE I 

RESULTS OF DETECTION ACCURACY REPORTED BY RESEARCHERS 

Algorithm 

P peak 

detection 

accuracy 

QRS 

detection 

accuracy 

T peak 

detection 

accuracy 

Pan Tompkins 

[5] 
/ 

Se = 99.76% 

PPV = 99.56% 
/ 

Elgendi et al. 

[6][30] 
Se = 98.05% 

PPV = 97.11% 

Se = 99.78% 

PPV = 99.87% 

Se = 99.86% 

PPV = 99.65% 

Martinez et al. 

(WT) [31] 
Se = 98.87% 

PPV = 91.17% 

Se= 99.80% 

PPV = 99.86% 

Se = 99.77% 

PPV = 97.79% 

Sun et al. [32]  Se = 97.2% (P 
onset) 

Se = 100% 
(QRS onset) 

Se = 99.80% 
(T onset) 

Martinez et al. 

(PT) [33] 

Se= 98.65% 

PPV = 97.52% 

Se = 99.71% 

PPV = 99.97% 

Se = 99.20% 

PPV = 99.01% 

 

is 5-15 Hz. The band is realized with a cascade of low and 

high-pass filters. In the original paper, the filters were 

designed for the sampling frequency of 200 Hz. To provide 

the QRS complex slope information, the filtered signal is 

differentiated, squared and integrated with a moving average 

window of 150 ms width in order to make all data positive and 

to obtain relevant waveform feature information. Fiducial 

marks are extracted from the peaks or maximum slopes of the 

signal, after which the unique adaptive threshold decision 

making on the QRS candidates is applied. Pan Tompkins' 

algorithm is a very simple, yet effective, algorithm for QRS 

complex detection. 

2) ELGENDI’S ALGORITHM BASED ON TWO MOVING 

AVERAGE FILTERS 

Elgendi's algorithm is a somewhat novel algorithm for QRS 

detection described in 2013 [6]. Similar to Pan Tompkins' 

algorithm, the first step is a Butterworth passband filter. 

Thereafter, the squaring is applied. To extract the fiducial 

marks (or blocks of signals which are containing fiducial 

marks, called blocks of interest), two moving averages are 

applied. The width of both moving average (MA) windows are 

based on a priori knowledge about the average ECG intervals, 

chosen to fit the width of QRS complex (for the first moving 

average filter), and the width (duration) of one heartbeat (for 

the second moving average filter). 

Blocks of interest are segments of signal where the output 

from the first moving average filter (MA1) exceed the output 

from the second one (MA2), with the addition of a threshold 

offset. If the block width is greater than or equal to the width 

of the first MA window, it is classified as QRS complex. The 

absolute maximum value in a block is classified as an R spike. 

Elgendi found that the optimal algorithm parameters (tested on 

the MIT-BIH Arrhythmia Database) are: passband filter 

frequency band set to 8-20 Hz, window width for the first MA 

(W1) equal to 97.2 ms and for the second MA (W2) equal to 

611 ms. 

In [30], Elgendi et al. adapted the described algorithm for 

the detection of P and T peaks with the width of W1 and W2 

equal to half of the average P wave duration (55 ms) and 

average T wave duration (110 ms), respectively. Blocks of 

interest are searched in respect to R peaks. 

3) SUN YAN’S ALGORITHMS BASED ON MATHEMATICAL 

MORPHOLOGY OPERATIONS 

Sun Yan's algorithm for characteristic ECG waves detection is 

described in [32]. It uses multiscale morphological derivative 

(MMD) with fixed scale to enhance the slopes in signal. 

Preprocessing is done with mathematical morphological 

filtering (MMF) for noise reduction and baseline correction, 

which is described in [34]. Local minima are considered as the 

fiducial marks for R waves, as the slope of the QRS complex 

produces negative local minimum after the MMD 

transformation. Thresholding decision is set by the histogram 

of the MMD transformed data. Unfortunately, the histogram 

method is not adequately described in the paper, so we did not 

implement it in our work. After detecting the R wave, simple 

peak search loop is applied in order to determine the peaks, 

offsets and onsets of P and T waves. 

4) MARTINEZ’S ALGORITHMS BASED ON WAVELET 

TRANSFORM  

Martinez et al. [31] developed an algorithm for ECG wave 

delineation based on wavelet transformation (WT) approach 

adapted from [35]. The algorithm applies WT with a quadratic 

spline [36] for prototype wavelet ψ(t) over the digitized ECG 

signal without any prefiltering. Using the algorithme à trous 

filter-bank implementation of WT, the frequency responses of 

the first five scales (21 – 25) are computed. 

For QRS detections, the algorithm searches across the 

scales for "maximum modulus lines" exceeding adaptive 

thresholds at scales 21 to 24. The zero crossing of the WT at 

scale 21 between a positive maximum - negative minimum 

pair, or negative minimum - positive maximum (for negative 

waves) is then marked as a QRS. 

For T wave detection, the algorithm looks for local maxima 

of WT at scale 24 in the search window defined with the QRS 

position and RR interval. T wave is present if at least two local 

maxima exceed the threshold ϵT. In that case, the local maxima 

of WT greater than γT are considered as slopes of the wave and 

the zero crossing between them as the wave peak. The strategy 

to identify the P wave peak is similar, except the thresholds ϵP 

and γP are adjusted for P peak detection. 

5) MARTINEZ’S ALGORITHM BASED ON PHASOR 

TRANSFORM WITH MODIFICATIONS 

In [33], Martinez describes a novel ECG delineator based on 

phasor transform (PT). PT converts each ECG sample into a 

complex number (called phasor), preserving its information 

regarding magnitude and phase values. With the application of 

PT to the ECG signal, the slight wave variations in the original 

signal are maximized. 

According to [33], the PT algorithm for QRS detection has 

a sensitivity of 99.71% and a positive predictive value of 

99.97% on MIT-BIH Arrhythmia Database. With all our 

efforts in changing the baseline removal filter and the 

normalization method, we have never got the results in the 

same range. Therefore, we have used Martinez's PT algorithm 

only for P and T wave detection, with R peaks vector as an 
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input parameter. For the input R peaks vector, depending on 

the application, referent record's R peaks annotations or R 

peaks detected with some other QRS detection method were 

used. 

During the implementation of the Martinez's PT algorithm, 

we had to introduce some modifications, because the authors 

did not fully explain all steps, especially the necessary 

preprocessing operations before applying the PT, a fact also 

noted in [37]. In continuation, wherever we mention 

Martinez's PT algorithm, we imply our modified version. 

The first step of our modified algorithm was 

forward/backward filtering using third order Butterworth 

passband filter with frequency band 0.5-20 Hz in order to 

remove baseline wander and high frequency noise from ECG 

signal, as a combination of original Martinez's and Elgendi's 

algorithm preprocessing step. ECG normalization to range [-1 

1] was implemented by dividing the whole ECG signal with 

its maximum R-peak amplitude after discarding outliers 

spikes, which was implemented by discarding 0.1% of the 

largest ECG signal samples. 

For identification of Q and S waves, the modified algorithm 

starts from the input R peaks vector. The algorithm first 

detects two boundary points, γQRS- and γQRS+ as the closest 

points to the R peak in which the phase variation is lower than 

π/8. We have also included a time constraint: an interval 

between γ and R peak cannot be longer than 0.1 s. Otherwise, 

the threshold, initially set to π/8, is increased by 0.05 rad and 

the process of γ point detection is repeated until the time 

constraint is satisfied. The algorithm then creates a window of 

55 ms before the boundary point γQRS- in order to search for 

the Q wave. For the defined window, increased when 

compared to the original algorithm, the algorithm applies PT 

to the absolute value of the ECG, subtracting previously the 

median of the segment.  

According to the original algorithm, if, in the search 

window, no point presents a phase higher than 50% of the 

maximum variation within the window, the local minimum is 

annotated as a Q point. Otherwise, the point with the highest 

magnitude among those exceeding threshold is annotated as a 

Q point. In our modification, we have used a constraint for 

which the Q wave is located in the interval between γQRS- and 

a positive peak closest to the R peak. If there are no positive 

peaks, the point where the elbow in the ECG signal is the 

largest is annotated as the Q point. Similar strategy is used for 

S wave delineation. The only difference is that the search 

window is placed after the γQRS+ point. 

For P and T waves peak detection, the PT algorithm is 

modified in a way that introduces a sliding search window 

across search segment with fixed boundaries. For P wave 

search, the segment is defined as the initial search window in 

the original Martinez's PT algorithm, the length of the search 

window is a quarter of the last RR interval with the Q peak 

position as a boundary. Initially, the length of the search 

window is the same as the search segment and, if no P peak is 

detected, the width of the search window is iteratively reduced 

until the detection of the P wave peak using the original PT 

detection method is obtained [27]. For T wave detection, the 

length of the search segment is doubled to a half of the last RR 

interval and the S wave is considered as the boundary point. 

Furthermore, because the original PT algorithm presumes that 

the T wave is always positive, and cannot detect inverted T 

waves, we have modified the rule for T peak detection. The 

local phase maximum is annotated as a T peak if the point is 

the peak and if its magnitude is 3 times larger than the 

magnitude of the local minimum. The local phase minimum is 

annotated as a T peak if the point is the peak and if its 

magnitude is 2.7 times larger than the magnitude of the local 

maximum. 

We summarize the list of modifications made to the 

Martinez’s PT algorithm below: 

1) Forward/backward filtering using third order 

Butterworth passband filter with frequency band 

0.5-20 Hz 

2) ECG normalization after discarding outliers spikes 

(discarding 0.1% of the largest ECG signal 

samples) 

3) A time constraint for an interval between γ and R 

peak interval 

4) Increased Q wave window search 

5) A constraint for which the Q wave is located in the 

interval between γQRS- and a positive peak closest to 

the R peak, similarly for the S wave 

6) The point where the elbow in the ECG signal is the 

largest is annotated as the Q point 

7) Introduction of a sliding search window across for 

P and T wave peak detection 

8) Modified T wave peak detection rule 

In this work, we also try the combination of Martinez's WT 

and Martinez's PT algorithm. In this combination, we used 

QRS onset and QRS offset obtained by Martinez's WT 

algorithm as an input to determine the boundaries for search 

segments during the detection of P and T waves with the 

modified Martinez's PT algorithm. 

B. DATA 

Two databases are used in this work to evaluate the methods: 

MIT-BIH Arrhythmia Database [38] and QT database [39], 

both freely available from the PhysioNet portal [40]. The 

databases were chosen based on the availability of both QRS 

and P and T wave annotations. A brief description of the used 

databases are given in this subsection. 

1) MIT-BIH ARRHYTHMIA DATABASE 

The database contains 48 ECG recordings sampled at 360 

Hz. The duration of each recording is 30 minutes. 

Recordings 102, 104, 107, and 217 were excluded from the 

analysis because of the paced beats presence. Recording 207 

was also excluded due to a great number of ventricular flutter 

waves. MIT-BIH Arrhythmia Database is widely used for 

testing the R peak detection algorithms. Accessibility of P 
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and T wave annotations were limited to the QT database for 

public use. Elgendi et al. [41] generously made a publicly 

available reannotation of MIT-BIH Arrhythmia Database 

that now includes P and T waves annotations. Due to 

attainability of only peak annotations for MIT-BIH 

Arrhythmia Database, detection of onsets and offsets of each 

wave (QRS complex, P and T wave) are not considered in 

the current paper. 

2) QT DATABASE 

The database contains 105 ECG records, which are sampled 

at (or resampled to) 250 Hz. The duration of each recording 

is 15 minutes. Only the last 5 minutes of the records are 

annotated. The records in QT Database were taken from 

seven different databases. A section of ECG record is 

selected in order to avoid significant baseline wander or 

other artifacts. Between 30 and 100 representative beats were 

manually annotated by cardiologists in each record, who 

identified the onset, peak, and offset of P waves, onset, peak, 

and offset of QRS complexes, the peak and offset of T 

waves, and (if present) the peak and offset of U-waves [39]. 

Annotations in .atr format, reference beat annotations from 

the original database, were recalculated for record sel232 in 

the QT database on the basis of the record 232 annotations 

from the MIT-BIH Arrhythmia Database. We tested the 

algorithms on the whole dataset, wherever the annotations 

were available. We used only .atr annotations of R peaks and 

compared only P and T waves peaks that are annotated.  

The characteristics of the used records from both 

databases are given in Table II. The algorithms were tested 

on both available leads for each record. For the record 114 in 

MIT-BIH Arrhythmia Database (and sel114 of the QT 

database) the leads were switched, as recommended in [38]. 

 
TABLE II 

THE NUMBER OF ANALYZED RECORDINGS AND ANNOTATED WAVES 

PEAKS IN THE SELECTED DATABASES 

Database 
No. of 

records 

No. of 

leads 

Sampli

ng rate 

R peaks 

annots 

P peaks 

annots 

T peaks 

annots 

MIT-BIH 

Arrhythmia 
Database 

43 2 360 98873 95989 98395 

QT 

database 
105 2 250 86357 3194 3542 

C. EXPLORATION OF PROCESSING STEPS 

COMBINATIONS 

Each of the algorithms described in Section II.A. can be 

separated into four processing steps:  

1) noise and artifact reduction (preprocessing) 

2) transformations that enhance the desired property of 

the wave (e.g. slope of the QRS complex) 

3) fiducial marks selection 

4) decision if the selected fiducial marks represent 

characteristic wave peak. 

In this subsection, we elaborate on the procedure for 

combining various processing steps. 

We explored the influence of the selected preprocessing 

step on the algorithms, so we combined the preprocessing step 

of Elgendi’s and Sun Yan’s algorithms (MMF) with the other 

algorithms to improve noise and artifact reduction. Also, 

MMD transformation step was introduced into the 

combinations to test its behavior within Elgendi's and 

Martinez’s WT and PT algorithms. Adaptive thresholding 

from Pan Tompkins’ algorithm was combined with Elgendi’s 

algorithm, to explore possible improvements in the reduction 

of false positives detection. 

Fig. 1 shows the decomposition of the described algorithms 

into four processing steps for R peak detection. We do not 

delve into the mathematical details of the specific steps for the 

inspected algorithms, as these are given in the corresponding 

literature. In the upper block diagram of Fig. 1, the steps of 

QRS detection algorithms are shown. Below that, a block 

diagram describing the combinations of the processing steps 

is shown. In the given example, MMF and MMD are added to 

Elgendi’s algorithm as an additional preprocessing step. In 

Fig. 2, the P and T waves detection processing steps are 

presented, along with an additional combination block 

diagram. Dashed lines in the block diagrams in Fig. 1 and Fig. 

2 indicate signal paths from the original algorithms. 

As the number of all possible combinations is quite large, 

not all combinations are presented in the Results section. The 

combinations which yielded poor results (such as the 

combinations of MMF, MMD and Martinez’s PT algorithm) 

are not presented or discussed. Here follows the list of 

methods that we evaluated, and later compared, with the 

results of the original algorithms (section IV). 

QRS complex detection: 

o Method 1: Pan Tompkins’ original algorithm (5 – 15 

bandpass filtering) 

o Method 2: Pan Tompkins’ algorithm with 8 – 20 

bandpass filtering 

o Method 3: mathematical morphological filtering 

(MMF) with Pan Tompkins’ algorithm 

o Method 4: Elgendi’s algorithm 

o Method 5: mathematical morphological filtering 

(MMF) with Elgendi’s algorithm 

o Method 6: multiscale morphological derivative 

(MMD) with Elgendi’s algorithm 

o Method 7: MMF with MMD and Elgendi’s algorithm 

Method 8: Elgendi’s algorithm with Pan Tompkins’ 

adaptive thresholding 

o Method 9: Martinez’s WT algorithm 

o Method 10: mathematical morphological filtering 

(MMF) with Martinez’s WT algorithm 

o Method 11: multiscale morphological derivative 

(MMD) with Martínez’s WT algorithm  

o Method 12: MMF with MMD and Martinez’s WT 

algorithm 
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FIGURE 1.  Processing steps in the detection algorithms of ECG R peaks (above) and block diagram example of processing step combination for R peak 

detection (below, the example of QRS complex detection method 7 – combination of MMF with MMD and Elgendi’s QRS detection algorithm). 

 

P and T wave detection: 

o Method 1: Martinez’s PT algorithm 

o Method 2: Martinez’s PT algorithm with templates 

(described in Section II.D) 

o Method 3: Martinez’s WT algorithm 

o Method 4: Martinez’s WT algorithm with templates 

(described in Section II.D) 

o Method 5: Martinez’s WT with Martinez’s PT 

algorithms 

o Method 6: Elgendi’s algorithm 

o Method 7: mathematical morphological filtering 

(MMF) with Elgendi’s algorithm 

o Method 8: mathematical morphological filtering 

(MMF) with Martinez’s PT algorithm 

o Method 9: MMF with Martinez’s WT algorithm 

o Method 10: MMF with MMD and Martinez’s WT 

algorithm 

D. SEARCH WINDOW PARAMETER MODIFICATION 

BASED ON WAVEFORM TEMPLATES EXTRACTED BY 

HEART CYCLES CLUSTERING 

During the fiducial mark selection step for the detection of P 

and T waves, search windows are set relative to R peaks. The 

parameters of the search windows are based and defined 

according to the standard waveform in RR interval. This 

causes problems in detection when there is a large deviation 

from this standard. To address this problem, we explore the 

search window parameter modification based on waveform 

templates. Here, we describe the novel approach of using 

waveform templates to improve the detection of P and T wave 

peaks. 

Parameter modification based on waveform templates is 

inspired by [42], where heart cycles are clustered based on 

features calculated from time duration and geometry of the 

cycles. We have opted for the approach to cluster heart cycles 

by the shape of the time series using the k-spectral centroid 

algorithm [43], a time series clustering algorithm which uses 
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FIGURE 2.  Processing steps in the detection algorithms of ECG P and T waves (above) and a block diagram example of processing step combination for 

P and T peaks detection (below, the example of P and T peaks detection method 7 – the combination of MMF and Elgendi’s P and T wave peaks detection 

algorithm). 

 

a similarity metric that is invariant to scaling and shifting. This 

method finds the most representative shape (the cluster 

centroid) for each cluster. This is important for our application, 

because the most representative shapes are in fact the most 

representative heart cycle waveform templates. By using the 

k-spectral centroid algorithm, instead of some clustering 

method based on features calculated from time series, the 

influence of features to the shape of the obtained template is 

avoided, as the clusters deal with the time series directly. 

According to [42], the complete heart cycle is defined 

physiologically as the ECG segment which begins at the P 

wave onset and ends with the T wave offset. However, 

because the first step of ECG delineation is QRS complex 

detection, the sequence of heart cycles is assumed to be RS-T-

P-QR, instead of P-QRS-T. Using this assumption, the 

complete heart cycle can be defined as RR interval time series 

– the ECG segment located between two successive R waves. 

In this study, the performance of the algorithm for 

waveform templates extraction is verified on the MIT-BIH 

Arrhythmia Database (without records 102, 104, 107, 207 and 

217). For all selected records, we have used the MLII lead. 

To get the most representative clusters, in the first step, we 

filtered all the records using third order Butterworth passband 

filter with frequency band 0.5-20 Hz to remove baseline 

wander and high frequency noise from ECG signal. Then, we 

normalized ECG signals to the range [-1 1] by dividing the 

whole ECG signal with its maximum R peak amplitude after 

discarding 0.1% of the largest ECG signal samples. The 

normalization was necessary in order to enable comparison of 

records from different databases, because ECG signals can be 

recorded with different amplifications. After the 

normalization, R peaks were automatically reannotated in a 

way that the closest local peaks were considered to be better R 

peak annotations for the selected lead. The reason for R peak 

reannotation was that the R peaks were annotated using the 

multilead criteria, while during clustering, we use only a single 

lead. 

Using the described process, we obtained 98 830 RR 

intervals. Because RR interval shape depends on the interval 

duration, we divided the obtained set into 5 subsets with an 

equal number of RR intervals. In the first subset, we have the 

shortest intervals, and, for all subsequent subsets, all intervals 

are longer than in the previous subset, ending with the longest 

intervals in the fifth subset. 

To cluster the time series with the k-spectral centroid 

algorithm, all the time series must have an identical length. 

Furthermore, the identical length of the time series is also 

necessary for comparison of records with different sampling   
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FIGURE 3.  Example of membership rules assignment to a waveform template and RR intervals from the MIT-BIH Arrhythmia Database that satisfy them.

frequencies. Therefore, we have resampled every RR time 

series to 251 points using the piecewise cubic Hermite 

interpolation [44][45]. The number of points was initially 

determined as one second (RR interval duration at 60 bpm), 

sampled at 250 Hz (QTDB sampling rate). Afterwards, it was 

experimentally determined that this is a sufficient number for 

waveform description because the shapes of all RR intervals 

remained the same after the resampling. We applied the 

piecewise cubic Hermite interpolation, because it preserves 

monotonicity and the shape of the data. Then, for all 5 subsets, 

we clustered the RR interval time series based on their shape 

into 20 clusters with the k-spectral centroid algorithm. With 

the heart cycles clustering process, we created 100 

representative waveform templates of RS-T-P-QR heart 

cycles. The number of subsets, and the number of clusters are 

determined using the elbow method. 

To determine whether some RR interval belongs to the 

waveform template, we implemented the membership rules 

strategy. For each cluster, we manually, in collaboration with 

cardiologists, assigned a subset of rules that describe it, 

together with the waveform template. We implemented the 

following set of rules that can be assigned to each ECG 

segment of a waveform template: 

1) There is a negative peak in the ECG segment. 

2) There is a positive peak in the ECG segment. 

3) There is no fluctuation in the ECG segment – there 

is no negative or positive peak with amplitude 

larger than 0.01. 

4) There is a dominant negative peak in the ECG 

segment – there is a negative peak with amplitude 

larger than 60% of waveform template's 

amplitude. The absolute difference between the 

ECG value at the start of the segment and the local 

minimum, and the absolute difference between the 

local minimum and the ECG value at the end of 

the segment have to be at least 30% of those in the 

template. Furthermore, there is no positive peak 

with the amplitude larger than the amplitude of the 

negative peak. 

5) There is a dominant positive peak in the ECG 

segment – there is a positive peak with an 

amplitude larger than 60% of waveform template's 

amplitude. The absolute difference between the 

ECG value at the start of the segment and the local 

maximum, and the absolute difference between 

the local maximum and the ECG value at the end 

of the segment have to be at least 30% of the 

template's ones. Furthermore, there is no negative 

peak with the amplitude larger than the amplitude 

of the negative peak. 

6) There is no negative peak in the ECG segment.  

7) There is no positive peak in the ECG segment. 

8) There is a constantly decreasing ECG signal in the 

defined interval. 

9) There is a constantly increasing ECG signal in the 

defined interval. 

10) The maximal absolute difference between the 

template and the ECG signal is less than 0.1 in the 

defined interval. 

11) The maximal absolute "detrended difference" 

between the template and the ECG signal is less 

than 0.05 in the defined interval.  

12) There is no dominant negative peak in the ECG 

segment – there is no negative peak with the 

amplitude larger than 0.1. 
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FIGURE 4.  P and T wave detection strategy using the waveform templates.

13) There is no dominant positive peak in the ECG 

segment – there is no positive peak with amplitude 

larger than 0.1. 

14) The amplitude of the negative peak is larger than 

the amplitude of the positive peak in the ECG 

segment. 

15) The amplitude of the positive peak is larger than 

the amplitude of the negative peak in the ECG 

segment. 

Fig. 3 shows an example of membership rules assignment 

to a waveform template. In Fig. 3, we can observe the RR 

intervals plotted with blue lines, which satisfy all 

membership rules assigned to that waveform template, and 

the waveform template plotted with a red-black line. In this 

example, assigned membership rules are: the RR interval 

must be constantly decreasing in the sample interval [2, 6] 

(marked with a black arrow), there is a dominant negative 

peak in the sample interval [7, 18] (marked with a red arrow), 

there is a positive peak in sample interval [15, 21] (marked 

with a green arrow), etc. The list of rules is marked on the 

right side of Fig. 3. 

The strategy for using waveform templates during P and T 

wave detection is illustrated in Fig. 4. For every RR interval 

in a record, the algorithm has determined whether it belongs 

to some waveform template: in the first step, an RR interval 

was resampled to 251 points using the piecewise cubic 

Hermite interpolation, and afterwards, for all 100 templates, 

the algorithm checked whether all the membership rules for 

each template are satisfied. If an RR interval did not belong 

to any of the templates, P and T waves were detected by the 

default detector. In the Martinez’s PT + templates 

combination, the default detector is the Martinez’s PT 

algorithm and, in the Martinez’s WT + templates 

combination, the default detector is the Martinez’s WT 

algorithm. Otherwise, P and T waves were detected with 

Martinez’s PT algorithm with the modified parameters. 

This procedure was possible to apply, because we have, in 

cooperation with the cardiologists, annotated the intervals 

where fiducial points are located in the ECG for each 

template. Except for the intervals, which served as 

modification for the P/T wave search window boundaries in 

Martinez’s PT algorithm, sometimes additional information 

about the template, like “no P/T wave is present in the 

template” or “wave is positive/negative/biphasic”, have also 

changed the P/T wave detection algorithm. For example, a 

waveform template illustrated in Fig. 3 has the following 

annotated intervals: 

1) T wave is positive with peak located in sample interval 

[55, 100] 

2) P wave is positive with peak located in sample interval 

[200, 227]. 

E. EVALUATION PROCEDURE 

In order to calculate the performance of the detection 

algorithms, four parameters were calculated: sensitivity (Se), 

positive predictive value (PPV), detection error rate (DER) 

and F1 score (F1): 

 
 

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (1) 
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𝑃𝑃𝑉 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

(2) 

 

 

 
𝐷𝐸𝑅 =  

𝐹𝑃 +  𝐹𝑁

𝑇𝑃 +  𝐹𝑁
 (3) 

   

 
F1 = 

2TP

2TP + FP + FN
    

  

(4) 

For determination of true positives (TP) in QRS complex 

peak detection, a sample deviation of 75 ms equivalent is 

used, based on AAMI ECAR recommendations [46]. Hence, 

if the detected peak is in the range of ± 75 ms from the 

annotated peak, the value is considered TP. Otherwise, it is 

considered false positive (FP). Similarly, if no detection of a 

peak was made in the range of ± 75 ms around the annotation, 

the detection was considered false negative (FN). The 

sample deviation of ± 75 ms is also used in the algorithms 

for the detection of P and T wave peaks. During the 

evaluation procedure, the detection of P and T wave peaks is 

independent of QRS complex peak detection. Whether or not 

the algorithm supports detection of QRS complexes, the 

detection of P and T wave peaks for evaluation purposes has 

always started from the annotated QRS complex peaks. In 

this way, the possible deterioration of the P and T wave peaks 

detection for algorithms that also support detection of QRS 

complex peak is eliminated. 

To determine the computational cost of each method, we 

measured the time required for the methods to analyze 30-

minute long ECG recordings from the MIT-BIH Arrhythmia 

Database. As each of the RR intervals is checked 

individually for the template membership, the template 

membership rule assignment computation time is measured 

for a single RR interval. Also, the computation times for 

different lengths of ECG records are explored. The 

algorithms were implemented and executed in Matlab 

R2017b on a computer with Windows 10 OS, Intel Core i7 

CPU at 2.60 GHz and 8 GB of RAM memory. 

Methods 2 and 4 for the P and T wave peaks detections 

(templates combinations) were not tested on the MIT-BIH 

Arrhythmia database, as the MLII leads from the database’s 

records were used to extract waveform templates by heart 

cycles clustering. 

III. RESULTS 

Table III is a summary table that shows the average F1 score 

and the sum of DER for both leads for every method and 

database. On the left side of the table, the R wave peak 

detection methods are given, and on the right side, the P and T 

wave peaks detection methods are shown. In Tables IV – IX, 

we show detailed results of the proposed algorithms for both 

record leads. Tables IV, V and VI show the total results on the 

MIT-BIH Arrhythmia Database for R wave, P wave and T 

wave peaks detections, respectively. Total results on the QT 

database are shown in Tables VII, VIII, and IX, for R wave, P 

wave, and T wave peaks detections, respectively. The best 

obtained methods and their results are emphasized (in bold), 

with the best DER results highlighted in grey. 

The computational cost of the methods that showed the 

best results (in bold and grey in Tables III – IX) are shown in 

Table X. The presented results are obtained as average from 

all the considered records in the MIT-BIH Arrhythmia 

Database. In the second column, the average computation time 

and standard deviation are presented for each method. Fiducial 

marks that are detected with the corresponding method are 

given in brackets. As the Martinez WT + PT method depends 

both on Martinez’s WT and Martinez’s PT algorithms, we 

consider their computation times separately. The template 

membership rule assignment computation time is averaged on 

10 000 RR intervals, and is presented in Table X, as well.  

 

 

TABLE III 

AVERAGE F1 SCORE (%) AND SUM OF DER (%) OF BOTH LEADS FOR EVERY METHOD AND DATABASE 

 
MIT-BIH R 

wave 

QTDB  

R wave 
 

MIT-BIH  

P wave 

MIT-BIH  

T wave 

QTDB  

P wave 

QTDB  

T wave 

Method F1 DER F1 DER Method F1 DER F1 DER F1 DER F1 DER 

Pan Tompkins (5 - 15) 95.18 19.04 95.82 16.84 Martinez PT 80.06 76.12 67.08 128.36 87.58 49.84 83.32 66.35 

Pan Tompkins (8 - 20) 97.04 11.79 97.28 10.92 
Martinez PT + 

templates 
/ / / / 87.40 50.31 84.28 62.51 

MMF + Pan Tompkins 96.45 14.16 97.26 11.04 Martinez WT 72.13 104.61 64.45 139.11 85.49 58.14 87.69 49.18 

Elgendi 97.86 8.54 96.61 13.73 
Martinez WT + 

templates 
/ / / / 86.77 52,50 88.00 48.00 

MMF + Elgendi 97.29 10.83 97.42 10.40 Martinez WT + PT 80.73 74.65 65.63 136.21 88.28 48.03 84.85 60.90 

MMD + Elgendi 97.06 11.72 88.33 47.24 Elgendi 58.24 169.07 70.24 115.54 69.52 129.62 76.76 93.17 

MMF + MMD + 
Elgendi 

97.27 10.89 93.52 26.08 MMF + Elgendi 49.57 204.57 71.86 110.84 44.17 237.88 78.05 88.54 

Elgendi + Adaptive 
Thresh. 

96.58 13.39 96.75 13.09 MMF + Martinez PT 77.39 84.89 61.87 150.03 81.00 74.23 85.24 59.26 

Martinez WT 90.14 38.59 92.55 29.94 MMF + Martinez WT 69.59 112.96 61.81 147.52 76.36 90.20 85.44 57.65 

MMF + Martinez WT 86.38 51.72 88.02 47.57 
MMF + MMD + 

Martinez WT 
56.87 157.80 51.64 180.93 71.30 113.21 71.69 110.47 

MMD + Martinez WT 91.17 36.06 93.11 41.82          

MMD + MMF + 
Martinez WT 

92.85 29.15 94.10 24.40          
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TABLE IV 

METHODS SUMMARY PERFORMANCE ON MIT-BIH ARRHYTHMIA DATABASE (WITHOUT 102, 104, 107, 207, AND 217) FOR R WAVE PEAK DETECTION 

 Lead 1 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Pan Tompkins (5 - 15) 98873 98435 436 438 99.55 99.55 99.56 0.88 
Pan Tompkins (8 - 20) 98873 98280 583 593 99.40 99.41 99.41 1.18 

MMF + Pan Tompkins 98873 98113 559 760 99.23 99.43 99.33 1.33 

Elgendi 98873 98601 290 272 99.72 99.70 99.72 0.56 
MMF + Elgendi 98873 98659 268 214 99.78 99.72 99.76 0.48 

MMD + Elgendi 98873 97823 1005 1050 98.93 98.98 98.96 2.07 

MMF + MMD + Elgendi 98873 98041 750 832 99.15 99.24 99.20 1.60 
Elgendi + Adaptive Thresh. 98873 96981 218 1892 98.08 99.77 98.92 2.13 

Martinez WT 98873 97899 6117 974 99.01 94.11 96.50 7.17 

MMF + Martinez WT 98873 97284 7392 1589 98.39 92.93 95.59 9.08 
MMD+ Martinez WT 98873 95625 6525 3248 96.71 93.61 95.14 9.88 

MMD + MMF + Martinez WT 98873 96203 5502 2670 97.29 94.59 95.93 8.26 

 Lead 2 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Pan Tompkins (5 - 15) 98873 88507 7581 10366 89.51 92.11 90.79 18.15 
Pan Tompkins (8 - 20) 98873 93314 4918 5559 94.37 94.99 94.68 10.59 

MMF + Pan Tompkins 98873 92100 5910 6773 93.14 93.97 93.56 12.82 

Elgendi 98873 94847 3852 4026 95.92 96.09 96.01 7.96 

MMF + Elgendi 98873 93634 4988 5239 94.70 94.94 94.82 10.34 

MMD + Elgendi 98873 93866 4526 5007 94.93 95.40 95.17 9.64 
MMF + MMD + Elgendi 98873 94018 4332 4855 95.08 95.59 95.34 9.29 

Elgendi + Adaptive Thresh. 98873 90868 3123 8005 91.90 96.67 94.23 11.25 

Martinez WT 98873 80182 12375 18691 81.09 86.62 83.77 31.42 
MMF + Martinez WT 98873 71229 14508 27644 72.04 83.07 77.17 42.63 

MMD+ Martinez WT 98873 88175 15183 10698 89.18 85.31 87.20 26.17 

MMD + MMF + Martinez WT 98873 90639 12416 8234 91.67 87.95 89.77 20.88 

 
 

TABLE V 

METHODS SUMMARY PERFORMANCE ON MIT-BIH ARRHYTHMIA DATABASE (WITHOUT 102, 104, 107, 207, AND 217) FOR P WAVE PEAK DETECTION 

 Lead 1 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 95989 75261 9666 20728 78.41 88.62 83.20 31.66 

Martinez WT 95989 70014 16582 25975 72.93 80.85 76.69 44.33 

Martinez WT + PT 95989 77318 12172 18671 80.55 86.40 83.37 32.13 

Elgendi 95989 59482 38501 36507 61.96 60.70 61.33 78.14 
MMF + Elgendi 95989 52948 45770 43041 55.16 53.63 54.39 92.52 

MMF + Martinez PT  95989 69586 10175 26403 72.49 87.24 79.19 38.11 

MMF + Martinez WT 95989 66111 16699 29878 68.87 79.83 73.95 48.52 
MMF + MMD + Martinez WT 95989 46091 28920 49898 48.01 61.44 53.91 82.11 

 Lead 2 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 95989 71117 17800 24872 4.09 9.98 76.92 44.46 
Martinez WT 95989 60297 22166 35692 62.81 73.12 67.58 60.27 

Martinez WT + PT 95989 72741 17565 23242 75.78 80.55 78.09 42.52 

Elgendi 95989 53652 44944 42337 55.89 54.41 55.15 90.92 
MMF + Elgendi 95989 43564 55128 52425 45.38 44.14 44.75 112.04 

MMF + Martinez PT  95989 69548 18462 26441 72.45 79.02 75.60 46.78 

MMF + Martinez WT 95989 58015 23880 37974 60.43 70.84 65.23 64.43 
MMF + MMD + Martinez WT 95989 54122 30789 41867 56.38 63.73 59.84 75.69 
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TABLE VI 

METHODS SUMMARY PERFORMANCE ON MIT-BIH ARRHYTHMIA DATABASE (WITHOUT 102, 104, 107, 207, AND 217) FOR T WAVE PEAK DETECTION 

 Lead 1 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 98395 71583 22636 26812 72.75 75.97 74.33 50.25 
Martinez WT 98395 66071 29210 32324 67.14 69.34 68.23 62.53 

Martinez WT + PT 98395 70007 27352 28388 71.14 71.90 71.53 56.64 

Elgendi 98395 87810 5569 10585 89.24 94.03 91.58 16.41 
MMF + Elgendi 98395 88894 6310 9501 90.34 93.37 91.83 16.06 

MMF + Martinez PT  98395 62105 32952 36290 63.11 65.33 64.21 70.37 

MMF + Martinez WT 98395 61490 29040 36905 62.49 67.92 65.09 67.02 
MMF + MMD + Martinez WT 98395 46939 37493 51456 47.70 55.59 51.35 90.39 

 Lead 2 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 98395 57225 35678 41170 58.15 61.59 59.83 78.10 

Martinez WT 98395 58132 35085 40263 59.08 62.36 60.68 76.57 

Martinez WT + PT 98395 58061 37946 40334 59.00 60.47 59.73 79.55 

Elgendi 98395 46683 45819 51712 47.44 50.46 48.91 99.12 

MMF + Elgendi 98395 50273 45129 48122 51.09 52.69 51.88 94.77 
MMF + Martinez PT  98395 57642 37626 40753 58.58 60.50 59.53 79.65 

MMF + Martinez WT 98395 55877 36692 42518 56.78 60.36 58.52 80.50 

MMF + MMD + Martinez WT 98395 48105 38789 50290 48.88 55.36 51.92 90.53 

 

 
TABLE VII 

METHODS SUMMARY PERFORMANCE ON QT DATABASE (WITH REANNOTATED RECORD SEL232) FOR R WAVE PEAK DETECTION 

 Lead 1 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Pan Tompkins (5 - 15) 86357 84726 2386 1631 98.11 97.26 97.68 4.65 
Pan Tompkins (8 - 20) 86357 84781 2198 1576 98.17 97.47 97.82 4.37 

MMF + Pan Tompkins 86357 84849 2161 1508 98.25 97.51 97.88 4.24 

Elgendi 86357 84865 3304 1492 98.27 96.25 97.25 5.55 
MMF + Elgendi 86357 84618 2545 1739 97.98 97.08 97.53 4.96 

MMD + Elgendi 86357 74056 14270 12301 85.75 83.84 84.79 30.76 

MMF + MMD + Elgendi 86357 79777 7401 6580 92.38 91.51 91.94 16.18 

Elgendi + Adaptive Thresh. 86357 84445 3073 1912 97.78 96.48 97.13 5.77 

Martinez WT 86357 84648 6802 1709 98.02 92.56 95.21 9.85 

MMF + Martinez WT 86357 83946 11991 2411 97.20 87.50 92.10 16.67 
MMD + Martinez WT 86357 83774 8462 2583 97.01 90.82 93.82 12.78 

MMD + MMF + Martinez WT 86357 83882 8515 2475 97.13 90.78 93.85 12.72 

 Lead 2 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Pan Tompkins (5 - 15) 86357 81719 5886 4638 94.62 93.28 93.95 12.18 

Pan Tompkins (8 - 20) 86357 84061 3357 2296 97.34 96.15 96.75 6.54 

MMF + Pan Tompkins 86357 84219 3731 2138 97.52 95.75 96.63 6.79 
Elgendi 86357 84230 4938 2127 97.53 94.46 95.97 8.18 

MMF + Elgendi 86357 84775 3113 1582 98.16 96.45 97.31 5.43 

MMD + Elgendi 86357 80426 8292 5931 93.13 90.65 91.88 16.47 

MMF + MMD + Elgendi 86357 82841 5029 3516 95.92 94.27 95.10 9.89 

Elgendi + Adaptive Thresh. 86357 84025 3987 2332 97.29 95.46 96.38 7.31 

Martinez WT 86357 77152 8140 9205 89.34 90.45 89.90 20.08 
MMF + Martinez WT 86357 69715 10035 16642 80.72 87.41 83.94 30.89 

MMD + Martinez WT 86357 82470 9682 3887 95.49 89.49 92.40 15.71 

MMD + MMF + Martinez WT 86357 84178 7902 2179 97.47 91.41 94.35 11.67 
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TABLE VIII 

METHODS SUMMARY PERFORMANCE ON QT DATABASE (WITH REANNOTATED RECORD SEL232) FOR P WAVE PEAK DETECTION 

 Lead 1 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 3194 2859 342 335 89.51 89.32 89.41 21.20 

Martinez PT + templates 3194 2816 320 378 88.17 89.90 88.97 21.85 
Martinez WT 3194 2739 499 455 85.75 84.58 85.17 29.86 

Martinez WT + templates 3194 2751 395 443 86.13 87.44 86.78 26.23 

Martinez WT + PT 3194 2932 416 262 91.80 87.57 89.64 21.23 
Elgendi 3194 2392 1187 802 74.89 66.83 70.63 62.27 

MMF + Elgendi 3194 1572 2029 1622 49.21 43.65 46.27 114.30 

MMF + Martinez PT 3194 2501 442 693 78.30 84.98 81.51 35.54 
MMF + Martinez WT 3194 2370 557 824 74.20 80.97 77.44 43.23 

MMF + MMD + Martinez WT 3194 2117 954 1077 66.28 68.93 67.58 63.58 

 Lead 2 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 3194 2751 472 443 86.13 85.36 85.74 28.65 
Martinez PT + templates 3194 2752 467 442 86.16 85.49 85.83 28.46 

Martinez WT 3194 2733 442 461 85.56 86.07 85.82 28.27 

Martinez WT + templates 3194 2747 392 447 86.01 87.51 86.75 26.27 

Martinez WT + PT 3194 2845 507 349 89.07 84.87 86.92 26.80 

Elgendi 3194 2329 1286 865 72.91 64.42 68.41 67.34 

MMF + Elgendi 3194 1433 2186 1761 44.86 39.59 42.07 123.57 
MMF + Martinez PT 3194 2551 593 643 79.87 81.14 80.50 38.70 

MMF + Martinez WT 3194 2285 591 909 71.54 79.45 75.29 46.96 
MMF + MMD + Martinez WT 3194 2379 770 815 74.48 75.54 75.01 49.62 

 
 

TABLE IX 

METHODS SUMMARY PERFORMANCE ON QT DATABASE (WITH REANNOTATED RECORD SEL232) FOR T WAVE PEAK DETECTION 

 Lead 1 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 3542 2985 559 557 84.27 84.22 84.25 31.50 
Martinez PT + templates 3542 3035 505 507 85.68 85.73 85.71 28.57 

Martinez WT 3542 3087 475 455 87.15 86.66 86.91 26.25 

Martinez WT + templates 3542 3115 464 427 87.94 87.03 87.49 25.15 

Martinez WT + PT 3542 3030 558 512 85.54 84.44 84.99 30.20 

Elgendi 3542 2632 942 910 74.30 73.64 73.97 52.28 

MMF + Elgendi 3542 2720 884 822 76.79 75.47 76.13 48.16 
MMF + Martinez PT 3542 3007 569 535 84.89 84.08 84.49 31.16 

MMF + Martinez WT 3542 2947 562 595 83.20 83.98 83.59 32.66 

MMF + MMD + Martinez WT 3542 2332 1038 1210 65.83 69.19 67.48 63.46 

 Lead 2 

Method No. of beats TP FP FN Se (%) PPV (%) F1 (%) DER (%) 

Martinez PT 3542 2888 580 654 81.53 83.27 82.40 34.83 

Martinez PT + templates 3542 2905 565 637 82.01 83.71 82.86 33.93 

Martinez WT 3542 3113 383 429 87.88 89.04 88.46 22.92 
Martinez WT + templates 3542 3114 381 428 87.91 89.09 88.50 22.84 

Martinez WT + PT 3542 3012 557 530 85.03 84.39 84.71 30.68 
Elgendi 3542 2816 722 726 79.50 79.59 79.55 40.88 

MMF + Elgendi 3542 2855 743 687 80.60 79.34 79.97 40.37 

MMF + Martinez PT 3542 3055 508 487 86.25 85.74 86.00 28.09 
MMF + Martinez WT 3542 3037 380 505 85.74 88.87 87.28 24.98 

MMF + MMD + Martinez WT 3542 2623 746 919 74.05 77.85 75.91 47.00 

 
TABLE X 

THE AVERAGE COMPUTATION TIME FOR EACH ALGORITHM ON 30-MINUTE LONG ECG RECORDINGS 

Method Computation time [s] 

Elgendi (P, T and R wave peaks) 4.859 ± 1.098 

MMF + Elgendi (P, T and R wave peaks) 13.290 ± 1.167 

MMF + Pan Tompkins (R peak) 8.037 ± 0.500 

Martinez WT (P, T and R wave peaks) 18.453 ± 13.113 

Martinez PT (P, T and R wave peaks) 52.671 ± 50.963 

Template membership rule assignment a 0.079 ± 0.029 

aThe average computation time for a single RR interval 
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FIGURE 5.  Method computation times for different ECG signal lengths 

 

In Fig. 5, the computation time for different lengths of 

ECG signals is given for the methods that showed the best 

results. As the processing steps are computed sequentially, 

the computation time of each method is presented separately. 

The methods include: Pan Tompkins (R peak detection), 

MMF (filtering), Martinez PT, Martinez WT (P, T and R 

peak detection), Elgendi (R peak detection), and Elgendi (P 

and T peak detection). 

 

IV. DISCUSSION 

We divide this section into several subsections related to 

different topics. In subsection A, we discuss the metrics used 

in this work and provide a comparison of the obtained results 

with related work. In subsection B, a discussion related to R 

peak detection is provided. Subsection C focuses on the 

issues related to P and T wave peaks detection. Finally, 

subsection D is devoted to the discussion on computational 

burden of the used approaches.  

A. COMPARISON TO SIMILAR WORK 

To conclude which of the algorithms gave the best solutions 

overall, we take the DER and F1 score metrics, which both 

consider the information on the number of TP, FP and FN 

detections in a signal and thus can be considered as the most 

comprehensive evaluation measures. When DER tends to 

decrease, F1 score tends to increase. In Table III, the best 

methods in terms of F1 score coincide with the best methods 

in terms of DER. Since there is no clear benefit in discussing 

both evaluation metrics that behave in the same way, in 

further text, the results are discussed in terms of DER. Due 

to the observed inconsistency in the annotations for P and T 

wave peaks (some of the peaks are clearly missed), we also 

discuss the algorithms in terms of sensitivity (Se), as Se does 

not incorporate false positive detections, which are maybe 

missed because of the annotations.  

The results of our research differs significantly from those 

presented in literature (compare the results shown in Table I 

with Tables III–IX), especially in the cases of P and T wave 

peaks detection. We suspect this is due to the following 

reasons:  

1) our lower (more strict) sample deviation interval, 

based on AAMI ECAR guidelines (e.g. in [25], 

sample deviation interval of 120 ms was used) 

2) inconsistent annotations from multiple annotators 

can lead to different interpretations [31],  

3) other researchers report only the best lead results, 

which may not be representative in a real case 

scenario where the actual sample of peak occurrence 

is unknown [25], and  

4) the exact protocol of determining the true positive P 

and T wave peak detection is not described in some 

of the related work [30][32], which reduces 

reproducibility of the results. 

The problem of different sample deviation intervals for 

evaluation is discussed in [11]. In [11], a range of sample 

error intervals were tested, with the reported results for P and 

T wave peak detections in line with ours (Se is around and 

below 90% for P wave peak detection and below 80% for T 

wave peak detection with ±80 ms sample deviation interval 

on the algorithms tested on QT Database). However, note 
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that putting aside the absolute values of the results, our work 

mainly focuses on discovering whether the combinations of 

processing steps increase the detection accuracy compared to 

the original methods. In this setting, we emphasize that the 

evaluation protocol has been the same for all the tested 

methods, so we can compare the increase (or decrease) in 

DER and Se. 

B. DETECTION OF R PEAKS 

For QRS complex (R peak) detection, when comparing the 

results on both leads (Table III), method 3 (Elgendi’s 

algorithm) gave the best results regarding DER on the MIT-

BIH Arrhythmia Database. However, using MMF with 

Elgendi’s algorithm improved the results on the QT 

Database. When considering only the first lead, the 

combinations of MMF and Elgendi’s algorithm (on MIT-

BIH Arrhythmia Database), and MMF and Pan Tompkins’ 

algorithm (on QT Database) show the best overall results. 

It is noted that the MMF noise reduction proposed by [34] 

works well only on some of the records, while on some 

others, it lowers the expected accuracy. We suspect that the 

lower results on some records are caused by the fact that the 

structuring elements of MMF are fixed and based on a priori 

knowledge. Thus, in some cases, MMF can filter out useful 

information about characteristic waves, which can result in a 

higher DER than when MMF is not applied. Although the 

number of cases like this is small, overall improvement of 

QRS detection when MMF is used (Table III) is lower than 

expected. In [47], an algorithm based on adaptive 

mathematical morphology is proposed, which gave 

promising results. With this approach, the structuring 

elements of MMF can be modified for each recording so that 

no information about the waves are lost or degraded. Using 

the adaptive thresholding of Pan Tompkins’ algorithm with 

Elgendi’s algorithm improved the overall PPV, as expected, 

but the Se and DER degraded, as there is a high increase in 

FN detection, due to added additional thresholding step. 

Higher Se was achieved when the first lead (MLII) was used, 

possibly because of the high amplitude QRS complexes in 

that lead.  

According to the results on both leads, Elgendi's algorithm 

alone, or in the combination with MMF, is the best R wave 

peak detector. However, it should be noted that the Elgendi's 

algorithm is optimized for the MIT-BIH Arrhythmia 

Database. This would mean that, if we disregard the 

Elgendi's algorithm results on the MIT-BIH Arrhythmia 

Database due to the optimization bias, the Elgendi + MMF 

combination is shown to be the most accurate R wave peak 

detector. This finding could mean that the Elgendi's 

algorithm should be used in combination with MMF in 

general. Note that this assumption should be verified on other 

ECG databases with R wave peak annotations. 

C. DETECTION OF P AND T WAVE PEAKS 

Martinez’s PT algorithm shows the best results for P wave 

peak detection on both databases, with the lowest DER when 

using only the first lead. Slight improvement in Se of the 

detection may be obtained when the PT algorithm is 

combined with Martinez’s WT algorithm. In addition, when 

both of the leads are considered, the combination of PT and 

WT algorithms gave the lowest sum of DER on both 

databases, which is an important result.  

On the MIT-BIH Arrhythmia Database, the combination 

of MMF and Elgendi’s algorithm gave the best results for T 

wave peak detection (on the first lead and on the sum of both 

leads). For the QT database, Martinez’s WT algorithm in 

combination with templates shows the best results. From 

Table IX, we can see that the second lead is better for the 

detection of T wave peaks than the first lead, although in 

most of the described algorithms, only the first lead is used. 

This suggests that the detection of this characteristic wave is 

lead dependent. If more than one ECG lead are available, 

automatic lead selection should be incorporated, if possible, 

in order to determine the optimal lead for desired 

characteristic wave detection (for example, based on the first 

30 seconds of the signal [48]). 

It is important to mention that P and T wave peaks 

annotations of the MIT-BIH Arrhythmia Database made 

publicly available by Elgendi et al. [35] do not match those 

in the QT Database for the same records (sel100, sel102, 

sel103, sel104, sel114, sel116, sel117, sel123, sel213, 

sel221, sel223, sel230, sel231, sel232 and sel233). In our 

opinion, the annotations of P and T waves in the QT 

Database are the better ones, because Elgendi et al. [41] often 

did not annotate the inverted T waves, which is visible when 

inspecting both leads. If the T waves are approximately 

biphasic on a single lead, the positive wave is frequently 

selected, despite the fact that the negative wave may have a 

larger amplitude than the positive one and without 

consideration for the T wave on the other lead. Elgendi's 

method selects the highest positive peak in a block of 

interest. Therefore, there is a reason to believe that Elgendi's 

T wave annotations are biased in the respect described above. 

Generally speaking, our opinion, based on the conducted 

work, is that Martinez's WT algorithm is the best T wave 

peak detector. Note that we show that T wave peak detection 

accuracy is further enhanced by using the search window 

parameter modification for RR intervals that belong to a 

particular waveform template (see Table IX). 

D. COMPUTATION TIME 

As the length of ECG records can be quite long, it is 

important to consider the computational cost of the proposed 

methods. From Table X, it can be seen that Martinez’s PT is 

considerably more time demanding than Elgendi’s or 

Martinez’s WT methods. Also, the average computation time 

on 30-minute long ECG recordings is considerably longer 

when MMF processing step is used. The MMF method has 
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an approximately linear computational complexity (see Fig. 

5) and for the input ECG signal that is 30 minutes long, it 

runs up to 8 seconds. Methods combined with MMF are 

therefore considerably longer in duration, especially when 

long ECG records are analyzed. Optimized versions of some 

of the algorithms, for example, fast MMF algorithm, may be 

used to achieve more efficient MMF computations [49]. 

The average computation time of template membership 

rule assignment for a single RR interval is 0.079 s (Table X). 

On 30-minute long ECG recordings, with an average heart 

rate of 60 bpm, this can prolong the calculation for about 142 

seconds, which may not be suitable for real-time detection 

purposes. However, if the RR interval is assigned to a current 

template, P and T wave peaks detection is done by 

comparing the membership rules of the assigned template. 

The number of RR intervals that gets assigned to current 

templates depends on the morphology of the signal. In our 

case, about 60% of the RR intervals is assigned to the 

templates. In terms of P and T wave peak detections, this can 

yield a significant computation time improvement. 

Holter ECG recordings are usually up to 48 hours long. 

The computations that take more than several minutes can be 

impractical in everyday use, and a compromise between the 

computational burden and detection accuracy is an important 

factor to consider in such cases. When we examine the 

acceptability of the methods for real-time use, Elgendi’s 

methods are the most suitable for R peak detections, as most 

of the methods have high accuracy. For T and P wave peak 

detections, although with a lower accuracy than some of the 

other methods, Elgendi’s method may be used if fast 

computation time is required. However, we believe that the 

importance of accurate detection overcomes the 

computational cost, especially in the cases where the 

computation time grows approximately linearly with respect 

to the record length (see Fig. 5). Hence, MMF preprocessing 

step as well as Martinez’s algorithms (including our 

modified PT algorithm) may also be considered for real-time 

uses, when highly accurate detection of peaks is sought. 

V. CONCLUSION 

In this paper, we combined methods from several known 

algorithms for detection of characteristic waves in ECG. 

Detection of QRS complexes achieved high sensitivity and 

positive predictive value. The proposed modifications showed 

some improvement over QRS detection methods (Elgendi’s 

method) when additional noise and artefact reduction step 

(MMF) was used. The improvement with the use of MMF 

suggests that special cases of signal distortion are causing false 

detections. Although slight improvements may be achieved 

using the same method for T wave peak detection (see the 

results for method 7 on the MIT-BIH Arrhythmia Database), 

we do not advise the same combination for P wave peak 

detection. However, in future work, we plan to incorporate 

adaptive MMF for each recording to insure the optimal MMF 

structuring element that will preserve information about all the 

characteristic waves, which could lead to further 

improvements of the results. We consider that the adaptive 

approach may improve algorithm detections in the case of 

abnormal ECG cycles (such as the presence of PVC and paced 

beats or presence of flutter waves), when the morphology of 

ECG waves is drastically changed. 

We have shown that the modified Martinez’s PT algorithm 

proved the best for P wave peak detection and that Martinez’s 

WT in combination with waveform templates extracted by 

heart cycles clustering reached the best results for T wave peak 

detections. Nevertheless, both sensitivity and positive 

predictive value are still around or less than 90% for P and T 

wave peaks detection. In an effort to improve P and T wave 

detection algorithms, high quality annotated databases are still 

lacking. We would like to encourage medical experts to help 

annotate the publicly available ECG databases, as the value of 

contemporary high accuracy algorithms can only be 

established on well-annotated datasets. As acquiring ECGs 

from subjects is not an issue nowadays, due to advanced 

remote monitoring systems [50], we consider that reserving 

some expert time to annotate and publish the acquired signals 

is crucial for further advancements in automatic detection 

algorithms. 

Parameter modification of Martinez’s PT algorithm based 

on waveform templates extracted by heart cycles clustering 

used in this work is still under development. Perhaps the 

membership of the RR intervals to certain templates could be 

described better with different or somewhat modified 

membership rules. We suppose that the accuracy of P and T 

waves detection could be further enhanced by concentrating 

the templates, along with the membership rules, to the P and 

T waves’ onset, peak and offset, respectively. This application 

of templates may insure high quality extraction of clinically 

relevant ECG features, like QT and PR intervals. 

The computational burden of different methods is briefly 

explored in this paper. However, it is important to note that 

our algorithms are implemented in Matlab, with some parts 

implemented in C++, which may not help in clarifying all the 

details regarding their comparison. Hence, although we 

showed experimentally that most of the methods considered in 

this work may be used in real-time applications, further, more 

detailed, studies focusing on computational complexity of the 

methods may provide a clearer insight. 
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