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Abstract. The goal of this paper is to evaluate 
the application of a combination of heart rate 
variability features on successful classification of 
known heart disorders. We propose an extension 
over our previous work, which employs 11 
features, both from non-linear and linear 
analysis of heart rate variability. The features 
were extracted from electrocardiogram 
recordings and analyzed in Weka system for data 
mining using several well-known classification 
algorithms: C4.5 decision tree, Bayesian 
network, random forest, and RIPPER rules. 
Significance of each feature is analyzed and the 
algorithms' success rates are compared. The 
selected combination of features has a high 
classification potential. 
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1. Introduction 
 

The observation of the decrease in heart rate 
variability (HRV) in patients is often a predictor 
of coronary problems. It has been associated with 
both old age and physiological heart problems 
and it is a popular and efficient method for 
patient health monitoring [13]. Non-linearity of 
the heart rhythm is a good descriptor of a 
patient’s overall health and it is this rhythmic 
pattern that we study in this work. A pioneer 
investigation performed by [6] introduced the 
concept of non-linear dynamics into the field of 
cardiology. Healthy physiological systems have 
fractal complexity whereas unhealthy biological 
systems lack the complex non-linear properties 
and are marked by periodical dynamics and loss 
of the adaptive capabilities. 

In our work, we propose an approach to ECG 
analysis of HRV by means of several standard 
statistical HRV measures and several non-linear 
features which are used to quantify the 
underlying non-linear processes. This work is an 
extension of our previous work [7,8] in which we 

prepared ground for a more thorough 
investigation of the possibilities of using chaos 
theory in the successful classification of patient 
ECG records. It is in this work that we explore a 
novel combination of features that borrow some 
of the best qualities from both linear and non-
linear analysis. The goals of this work are to: 
1. Demonstrate the classification capabilities of 
some of the HRV statistical, geometric and non-
linear features over several types of patient ECG 
records. 
2. Discuss the features’ significance and to 
compare the efficiencies of data mining 
algorithms on this problem. 

In section 2, we present a short overview of 
the existing work in HRV analysis. Methodology 
of our work is given in section 3 and the results 
are presented and discussed in section 4. In 
section 5 we give a conclusion. 
 
2. Background 
 

The use of HRV analysis for estimating the 
status of the autonomic system in the heart is 
well established in literature. The work done by 
[1] clearly showed the existence of non-linear 
components in HRV. Today, most of the research 
done in the field of ECG analysis, particularly 
classification problems, includes the HRV 
analysis with at least some non-linear features, 
because the traditional HRV features do not 
contain any information about time-directed 
dynamics [1]. These traditional features have 
been reviewed and presented in comprehensive 
guidelines for heart rate variability [13].  

Standard time domain features can be roughly 
divided into statistical and geometric. Geometric 
features are based on sample density 
distributions of R-R intervals. R-R intervals are 
time intervals between two consecutive R peaks 
in ECG signal. HRV can also be analyzed in 
frequency domain, wherein usually spectral 
power is measured. However, the existing 
guidelines do not evaluate non-linear methods 
for HRV analysis because this area of ECG 



analysis is still being researched. Approaches to 
the evaluation of HRV using non-linear features 
vary both in the features that are extracted, as 
well as in the methods used for analysis. It is also 
a fact that HRV analysis does not contain enough 
information in order to discern between some 
specific cardiac dysfunctions, e.g. left bundle 
branch block and right bundle branch block. 
Hence, most solutions to successful classification 
contain at least some additional method applied 
to the whole ECG signal, as opposed to using 
only HRV features.  

Still, there were many studies conducted that 
showed the possibility of efficient classification 
of ECG records based on HRV information 
alone. Non-linear features that were extracted in 
these studies include various kinds of entropy 
measures: approximate entropy, sample entropy, 
multiscale entropy, and spectral entropy [4]. 

Also, some of the more readily studied 
features include correlation dimension D2, 
Lyapunov exponents, spatial filling index, and 
central tendency measure (CTM) [12].  

For the purpose of HRV analysis, researchers 
usually take advantage of standard, internet 
databases that contain various types of ECG 
records. The collection of many ECG databases 
can be accessed from the PhysioBank website 
[10]. 
 
3. Methods 
 
The first part of analysis was to obtain relevant 
ECG HRV records. For this purpose, we chose 
several databases from the PhysioBank 
collection of databases. A total of 100 patient 

annotation records were prepared as an input to 
the feature extraction process. The complete list 
is given in Table 1. This is an extension to our 
previous work [7], where we analyzed a smaller 
number of records. Four types of heart conditions 
were inspected: normal heart rhythm, any 
arrhythmia, supraventricular arrhythmia and 
congestive heart failure. Annotation records 
contain the annotations that were made either by 
a doctor’s inspection or by a machine feature 
recognition algorithm. The most common 
annotation is the time of an R peak in the ECG 
signal. R-R intervals were extracted from the 
designated times by using ECE platform [8].  

For each ECG record, first 5 minutes of the 
R-R interval time series were analyzed. 
Depending on the heart rate, this constitutes to 
around 500 R-R intervals. The records were not 
searched for time segments with anomalous 
rhythm. Thus, the 5 minute intervals do not 
necessarily contain the anomalous rhythm. This 
fact poses a significant challenge and limitation 
to the classifier.  However, it is our opinion that 
in a real hospital environment it is necessary to 
have a reliable prognosis for a patient disorder, 
even if the disorder itself is not momentarily 
present in the ECG signal.  

It is the recommendation of [13] to use four 
HRV features, three statistical measures and one 
geometric measure, in any serious HRV analysis. 
This was respected and pursued in this work. 
ECG Chaos Extractor platform implements 
extraction algorithms for four heart rate 
variability features and seven non-linear features. 
Standard heart rate variability features that were 
extracted include: SDNN, RMSSD, pNN20, and

�

Table 1. Patient records used in the study. 
 

Heart condition Internet database Annotation records 
Normal heart rhythm MIT-BIH Normal Sinus Rhythm 

Database, 
Normal Sinus Rhythm RR Interval 
Database 

16265, 16272, 16273, 16420, 16483, 
16539, 16773, 16786, 16795, 17052, 
17453,17693, 18177, 18184, 19088, 19090, 
19093, 19094, 19140, 19830, nsr001, 
nsr002, nsr003, nsr004, nsr005 
 

Arrhythmia MIT-BIH Arrhythmia Database 100, 101, 102, 103, 104, 105, 106, 107, 
108, 109, 111, 112, 113, 114, 115, 116, 117, 
118, 119, 121, 122, 123, 124, 200, 201 

Supraventricular 
arrhythmia 

MIT-BIH Supraventricular 
Arrhythmia Database 

800, 801, 802, 803, 804, 805, 806, 807, 
808, 809, 810, 811, 812, 820, 821, 822, 
823, 824, 825, 826, 827, 828, 829, 840, 841 

Congestive heart failure BIDMC Congestive Heart Failure  
Database, Congestive Heart Failure  
RR Interval Database 
 

chf1, chf2, chf3, chf4, chf5, chf6, chf7,  
chf8, chf9, chf10, chf11, chf12, chf201,  
chf202, chf203, chf204, chf205, chf206,  
chf207, chf208, chf209, chf210, chf211,  
chf212, chf214 
 



HRV triangular index (HTI). Non-linear features 
are: spatial filling index (SFI), central tendency 
measure (CTM), correlation dimension D2, and 
four features for approximate entropy (ApEn1- 
ApEn4).  

For non-linear methods in HRV analysis, we 
use phase space reconstruction. Description of 
the algorithms for non-linear features analyzed in 
this work is given in [8]. We give here only the 
explanation of the additional features that were 
extracted: SDNN, RMSSD, pNN20 and HRV 
triangular index. They are elaborated in 
subsection 3.1. Classification algorithms are 
briefly explained in subsection 3.2. 
 
3.1. Statistical and geometric measures 
 

SDNN (Standard Deviation of the NN 
interval) is the simplest statistical HRV feature to 
calculate. NN stands for time interval between 
consecutive normal sinus heart beats. In most 
heart rhythms, NN interval is equivalent to the 
R-R interval. The standard deviation reflects all 
the cyclic components responsible for variability 
in the period of recording. It can be calculated 
for 24 hours long-term recordings and for short-
term, five minutes recordings [13]. In our case, 
we used it to calculate the standard deviation of 
the short-term (five minutes) recording of R-R 
intervals.  

RMSSD is the square root of the mean 
squared differences of N successive NN (or R-R) 
intervals. Thus, it can be calculated using the 
expression: 
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where xi denotes the length of an R-R interval 
with index i.  

pNN20 is the ratio of the number of interval 
differences of successive NN (or R-R) intervals 
that are greater than 20 ms and the total number 
of NN (or R-R) intervals. In the work [9], it is 
concluded that the enhanced discrimination 
between a variety of normal and pathological 
conditions is obtained by using pNN thresholds 
as low as 20 ms or less.  

HRV triangular index (HTI) is a geometric 
measure of HRV. It measures the integral of the 
density distribution. When approximated, it 
calculates the number of all NN (R-R) intervals 
divided with the total number of NN intervals in 

the modal bin of the histogram. Obviously, HRV 
triangular index is dependent on the length of the 
bin, i.e. sampling frequency of the ECG record. 
If the bin size is different from the most common 
sampling frequency, it should be noted [13].  

It was recommended that in order to have a 
representative HRV triangular index, at least a 20 
minutes long R-R interval recording should be 
analyzed. This was not pursued in our work due 
to an increased demand on the extraction time 
and because other features do not have such 
recommendations. 
  
3.2. Classification algorithms 
 

With the advantage of using the Weka system, 
we were in position to examine the possibilities 
of successful classification of records by using 
many classification algorithms. In the end, it was 
decided that the following four algorithms should 
be used: C4.5 decision tree, Bayesian network 
classifier, random forest (RF) and Repeated 
Incremental Pruning to Produce Error Reduction 
(RIPPER).  

C4.5 (J48 in Weka) is the landmark decision 
tree algorithm developed by [11]. C4.5 was used 
with error based pruning (default) and a 
minimum amount of five instances per leaf. Five 
instances per leaf are used instead of the standard 
two in order to ensure that only relevant leaves 
are taken into consideration. This improved 
stability and reliability of the method, but 
reduced the classification accuracy by a small 
degree.  

Bayesian network is a known probabilistic 
graphical model classifier based on the Bayesian 
theorem and its implications [5]. The network is 
constructed using several parameters, including 
the type of estimator and search method. Simple 
estimator based on maximum likelihood and hill 
climbing search methods were employed.  

Random forest is a state-of-the-art classifier 
developed by [2]. It is composed of a number of 
decision trees that choose their splitting attributes 
from a random subset of attributes at each 
internal node. The best split is taken among these 
randomly chosen attributes and the trees are built 
without pruning. Based on the bootstrap 
sampling procedure, random forest ensures at the 
same time the smallest obtainable bias and very 
low data variance which gives them optimal 
classification results. They are widely used in 
various classification problems, especially in 
domains with large numbers of attributes and 
instances. The only negative side of random 



forest is that its model is not clearly any single 
tree. It is a majority vote from the whole 
ensemble, thus virtually disabling any explicit 
rule-based interpretation (although particular 
trees in the forest can still be analyzed).  We 
include random forest in our work for the 
purpose of exploring the upper limits of 
classification accuracy for our feature set.  

RIPPER [3] is a rule-based classifier intended 
for successful separate-and-conquer based 
strategy over the feature space. It is an algorithm 
with excellent results over a variety of 
representative datasets. The main advantages of 
using this procedure are a clear set of 
classification rules and its speed. Its accuracy is 
in every way comparable to the landmark 
decision tree algorithm C4.5. RIPPER was used 
with default parameters in Weka system.  
 
4. Experimental results 
 

The output results from Weka system include 
standard statistical measures. We used total 
classification accuracy for four patient classes 
and total classification accuracy (positive 
prediction), sensitivity and specificity for two 
patient classes’ case. Several analyses were 
performed.  

First, classification algorithms on all four 
patient record types were employed. The number 
of feature vectors per record type is 125 because 
five feature vectors per record were used. These 
five feature vectors contain features for 
representative time intervals T = {1, 2, 5, 10, 20} 
between two R peaks. The results are given and 
discussed in subsection 4.1.  

Second, we used classification algorithms on 
all four patient record types with a single value 
for T = 1. We give and discuss the results in 
section 4.2.  

Third, we evaluate the features in two-class 
classification case, with T = {1, 2, 5, 10, 20}. 
Herein, one class of patients has a normal heart 
rhythm and the other class includes patients with 
a heart disorder. Analysis is performed on the 
following combinations: normal-arrhythmia, 
normal-supraventricular arrhythmia, normal-
congestive heart failure. The results are presented 
in subsection 4.3.  

Fourth, we evaluate the extracted features 
themselves, as elaborated in subsection 4.4.  

In all four subsections, for classification 
purposes, a 10-fold cross-validation technique 
has been used in order to randomize the input 
samples and obtain representative classification 

accuracy. 
 
4.1. Four classes’ classification, five 

intervals 
 

Classification results for four patient classes 
in the case of a set of five intervals are presented 
in Table 2. All the methods worked very well and 
 
Table 2. Four classes classification results,  
             T = {1, 2, 5, 10, 20} 
�

Classification 
algorithm 

Classification accuracy, 
% 

C4.5 89.4 
Bayesian network 96.2 
Random forest (5 trees) 99.8 
RIPPER 93.6 

 
achieved high classification accuracy. C4.5 gave 
worst results due to the rigorous limitation to the 
minimum number of instances in the leaves. 
However, this limitation may be justified, 
because a stable and reliable classifier is 
requested, i.e. one that would never overfit. 
Random forest of only five trees achieved almost 
perfect classification of instances. Here are some 
of the rules obtained by RIPPER algorithm 
which cover most of the samples: 
 
1. (HRV_triangular_index >= 20.52381) and 
(spatial_filling >= 3.30398) and 
(approximate_entropy1 >= 1.432138) => 
signal_type=Atrial_arrhythmia (72.0/0.0) 
2. (HRV_triangular_index >= 8.781818) and 
(RMSSD <= 0.068436) and (pNN20 >= 0.082692) 
and (approximate_entropy3 <= 1.223611) => 
signal_type=Normal (70.0/0.0) 
3. (RMSSD <= 0.075541) and (approximate_entropy4 
<= 1.107562) and (approximate_entropy2 >= 
1.065076) => signal_type=Congestive_heart_failure 
(54.0/0.0) 
 5. => signal_type=Supraventricular_arrhythmia 
(125.0/0.0) 
 
As we can see, explicit and understandable rules 
are obtainable from the dataset with high 
accuracy. The total number of rules for RIPPER 
in this analysis was 14. 
 
4.2. Four classes’ classification, one 

interval 
 

Classification results for four patient classes 
in the case of one interval are presented in Table 
3. We decided to present results for T = 1 



because we established no significant difference 
in classification results with the choice of 
interval. The results from Table 3 have clearly 
much lower accuracy than in the case of a set of 
intervals given in Table 2. 
 
Table 3. Four classes classification results,  
             T = 1 
�

Classification algorithm Classification accuracy, 
% 

C4.5 56 
Bayesian network 58 
Random forest (40 trees) 69 
RIPPER 52 

 
It is also obvious that the number of learning 
samples (instances) is five times lower, thus 
reducing the classification power of all the 
algorithms. The results were still in the range far 
above random choice (25%), with random forest 
displaying the best fitting. Only four rules were 
constructed with RIPPER algorithm and these do 
not separate samples acceptably. 
 
4.3. Two classes' classification 
 
Classification results for two patient classes in 
the case of a set of five intervals are presented in 
Table 4. Results in the two classes’ case show an 
increase in classification accuracy compared to 
the four classes’ case, as expected. General 
observation is that the best results are achieved 
when discerning between normal heart rhythm 
and arrhythmia. Nevertheless, the results for the 
other two record pairs follow close behind, all of 
them showing classification accuracy higher than 
90%. As an example, a set of rules that give 

perfect classification in the case of normal heart 
rhythm and arrhythmia is given here: 
 
1. (HRV_triangular_index <= 20.421053) and 
(spatial_filling <= 7.682874) => signal_type=Normal 
(100.0/0.0) 
2. (HRV_triangular_index <= 12.615385) => 
signal_type=Normal (20.0/0.0) 
3. (approximate_entropy1 <= 1.290091) => 
signal_type=Normal (5.0/0.0) 
4. => signal_type=Atrial_arrhythmia (125.0/0.0) 
 
5.4. Feature evaluation 
 

It is important to determine which of the 
extracted 11 features contribute in the greatest 
extent to the quality of the obtained results. 
Because of the difficulty in establishing objective 
contribution of a particular feature to the 
classification accuracy, we opted for a rather 
simple, but justifiable approach. As a test bench, 
we use feature vectors obtained from four classes 
of patients. We analyzed classification results 
when the features were allowed only in pairs. 
Hence, 55 feature pairs were formed out of the 
11 features and their classification accuracy was 
calculated.  

Algorithm used in the classification procedure 
was C4.5, the same one that was employed in 
previous analyses. In Table 5, 12 feature pairs 
that had total classification accuracy of 50% and 
above are presented. We can conclude from 
Table 5 that HTI appears in most of the pairs 
with the best classification accuracy, thus making 
this feature the optimal choice for the analysis. 
Other two features that we observed to have 
demonstrated good classification capabilities 
were pNN20 and D2. 

 
Table 4. Two classes classification results T = {1, 2, 5, 10, 20} 
�

Records Algorithm Total classification accuracy, 
% 

Sensitivity, 
% 

Specificity, 
% 

C4.5 91.2 91.9 90.6 
Bayesian network 98.8 97.6 100.0 
Random forest (3 trees) 100.0 100.0 100.0 

Normal and 
Arrhythmia 

RIPPER 100.0 100.0 100.0 
C4.5 96.0 97.5 94.6 
Bayesian network 92.4 91.3 92.7 
Random forest (9 trees) 100.0 100.0 100.0 

Normal and 
Supraventricular 
arrhythmia 

RIPPER 97.6 99.2 96.1 
C4.5 95.6 93.2 98.3 
Bayesian network 95.6 92.5 99.1 
Random forest (20 trees) 100.0 100.0 100.0 

Normal and 
Congestive 
heart failure 

RIPPER 96.4 96.0 96.8 

�



Table 5. Top 12 ranking feature pairs 
�

Pair number Feature pairs Classification  
accuracy, % 

10 SFI, HTI 58 
19 D2, HTI 55 
34 ApEn1, HTI 55 
40 ApEn2, HTI 55 
45 ApEn3, HTI 55 
49 ApEn4, HTI 55 
54 RMSSD, HTI 55 
27 CTM, HTI 54 
52 SDNN, HTI 54 
55 pNN20, HTI 52 
33 ApEn1, pNN20 50 
39 ApEn2, pNN20 50 

 
5. Conclusion 
 

We have demonstrated the efficiency of using 
the combination of 11 features taken from HRV 
statistical, geometric and non-linear measures. 
Features that were established to contribute the 
most to successful classification were: HRV 
triangular index, correlation dimension D2 and 
pNN20. Among the employed classifiers, the 
highest score was obtained from random forest 
classifier, which was expected. Nevertheless, all 
the algorithms gave high classification results, 
especially in the case of two classes of records, 
where the results were high above 90%.  

In the case where there was not enough 
learning material (only one interval analyzed), 
the classification results were mostly not 
satisfactory. This suggests that a combination of 
several intervals should be analyzed at the same 
time to obtain favorable results. Further work 
should be directed towards introduction of non-
linear features combinations in a real patient 
monitoring system. 
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