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Abstract

Adulteration of hempseed (H) oil, a well‐known health beneficial nutrient, is

studied in this work by mixing it with cheap and widely used oils such as rape-

seed (R) oil and sesame (Se) and sunflower (Su) oil. Many samples of different

geographic origins were taken into account. Binary mixture sets of hempseed

oil with these 3 oils (HR, HSe, and HSu) were considered. FTIR spectra of pure

oils and their mixtures were recorded, and quantitative analyses were per-

formed using partial least squares regression (PLS) and first‐break forward

interval PLS methods (FB‐FiPLS). The obtained results show that each particu-

lar oil can be very successfully quantified (R2(val) > 0.995, RMSECV 0.9%–2.9%,

RMSEP 1.0%–3.2%). This means that FTIR coupled with multivariate methods

can rapidly and effectively determine the level of adulteration in the adulter-

ated hempseed oil for these studied and frequently used adulterant oils. Also,

the relevant variables selected by FB‐FiPLS could be used for verification of

hempseed oil adulteration.
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1 | INTRODUCTION

Adulteration of high‐priced edible oils like hempseed oil or olive oil is a serious threat to the industry of edible oils and to
consumer's health. Certain analytical methods such as gas chromatography (GC) or liquid chromatography (LC) were
found to be useful in establishing the type and level of olive oil adulteration.1-3 Both macroconstituents (fatty acids as
triacylglycerols) and microconstituents (sterols, tocopherols, etc) can be quantified using chromatographic methods.1,2,4

Other methods were also proposed for detection and quantification of olive oil—using NMR spectroscopy,5 fluorescence
spectroscopy,6 differential scanning calorimetry (DSC),7 and mass spectrometry.8 Most of these previously mentioned
methods are time consuming and expensive, and some of them require well‐trained analysts.2

Fourier transform infrared spectroscopy (FTIR) in combination with multivariate methods has been established as a
very fast and effective tool in classification of adulterated oils, as well as in quantitative prediction of the level of adul-
teration. Regarding the adulteration of extra‐virgin olive oil, this method has been used and described in the litera-
ture.9-14 Olive oil has been tested for adulteration with many cheap adulterants such as sunflower oil, soybean oil,
corn oil, palm oil, and rapeseed oil. Except for adulteration of olive oil, FTIR coupled with multivariate methods has also
been used for authentication of some other high‐priced oils such as coconut oil,15 camellia oil,16 and cod liver oil,17

although these oils are neither produced nor consumed in as high quantities as olive oil. A study of adulteration of veg-
etable edible oils was conducted even with oils used for frying.18 In addition to FTIR spectroscopy, UV‐Vis
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spectroscopy,19 NIR spectroscopy,20 and Raman spectrospopy21 in combination with multivariate methods were also uti-
lized for authentication of vegetable oils and fats.

Our previous work used 1 pure hempseed (H) oil sample (and its mixtures with adulterant oils) and with focus on
the interval ridge regression procedure.22 Therein, it was bespoken that further studies should consider more samples
of different geographic origins. This is what we consider in the current study. The fatty acid composition of hempseed
oil corresponds to the ideal ratio of essential fatty acids (EFAs) required by human body, which is roughly 3:1 of
omega‐6 to omega‐3.23 Hempseed oil also contains γ‐linolenic acid, which is important in treatment and prevention
of atopic eczema, atopic dermatitis, rheumatic arthritis, alcoholism, cardiovascular disorders, and premenstrual syn-
drome.23,24 Due to its significant world production25 and the mentioned health benefits, it is important to carry out
the study on high varieties of both hempseed oils and adulterant oils. In our experiments, hempseed oils will be adul-
terated with cheaper oils such as rapeseed (R) oil, sesame (Se) oil, and sunflower (Su) oil. Each of the 4 mentioned
botanical oils will vary in composition with respect to its geographic origin. Our results obtained in this study denote
good prediction models for each considered adulterant in hempseed oil, even when samples from many different geo-
graphical origins are taken into account.

Considering the high health benefits, high price, and significant world production of hempseed oil, it is of importance
to establish a method for fast and efficient detection and quantification of possible adulterants in this valuable oil. In this
work, hempseed oil, due to its high degree of unsaturation, will be adulterated with low priced oils of also relatively high
degree of unsaturation, such as rapeseed, sesame, and sunflower oil. The level of adulteration will be determined using
FTIR combined with standard PLS procedure and with appropriate variable selection procedure already used in litera-
ture—first‐break forward interval PLS (FB‐FiPLS).26
2 | MATERIALS AND METHODS

2.1 | Sample preparation

Commercial oils used in this study were purchased in the city of Zagreb (Croatia). Table 1 represents all 29 vegetable
oils used in this study. The samples differ with respect to the botanical origin of the oils: hempseed (15 samples),
rapeseed (4 samples), sesame (4 samples), and sunflower oils (6 samples) (Table 1). Each botanical origin of the oils
varies with respect to the brand, producer, and geographic origin (ie, in this case, the country of origin, Table 1).
Supplementary Table S1 shows more details regarding the composition of each pure oil sample, if it was labeled
on the product.

Three binary mixture sets were prepared; HR, HSe, and HSu. There were 60 mixture samples for each of the HR and
HSe binary mixture sets and 90 mixture samples for the HSu mixture set. H oil was adulterated with 5%, 10%, 20%, and
30% of R and Se adulterant oils, and with 10%, 20%, 30%, 40%, 50%, and 60% of Su adulterant oil. Because, for example,
there were 15 hempseed oil samples and 4 rapeseed oil samples, there were altogether 60 different combinations of
binary mixtures with H and R oils. The similar is true for the cases of mixture of H oil with the other 2 adulterant oils.
All different combinations were prepared, where each combination had its own adulteration level, as displayed in Sup-
plementary Table S2.

The HR and HSe binary mixture sets therefore comprise 60 binary mixtures and 19 pure oils, while HSu binary mix-
ture set comprises 90 mixture samples and 21 pure oils. The set of all samples contains 239 oils (210 mixture samples and
29 pure oils).
2.2 | ATR spectral measurements

Attenuated total reflectance (ATR) spectra were recorded in the spectral range of 4000 to 600 cm–1 with a Bruker Vector
22 spectrometer. The acquisition parameters were 4 cm–1 of nominal resolution and 128 scans, thus yielding 1764 spec-
tral variables. The spectrometer was placed in a room with a constant temperature (23°C), and the samples were allowed
to equilibrate to the room temperature before measurement.

A single‐beam spectrum of the corresponding oil sample was collected and corrected against the corresponding back-
ground spectrum of air, so that each spectrum had its own background of the same resolution. One or few oil drops of
each particular sample were placed on the diamond ATR crystal, ensuring that no air bubbles were trapped on the
crystal's surface. The crystal was cleaned between every 2 consecutive samplings with the Kemex cleaning agent



TABLE 1 Vegetable oil samples used in the adulteration study

Bot. origina

(sample no.)
Name‐brand/producer or produced for/town Country of

production
Country
of origin

H (1) CannaBio d.o.o., HR‐32232 Sotin (Vukovar) Croatia Croatia

H (2) Planet Bio, Kranj Slovenia Romania

H (3) OPZ “TOP”, 43000 Bjelovar Croatia Croatia

H (4) Kernnel premium, Myristica d.o.o., 10000 Zagreb Croatia Romania

H (5) Herbio Puls d.o.o., 10410 Velika Gorica, Croatia Croatia

H (6) GEA d.d., Tovarna olja, Sl‐2310 Slovenska Bistrica Slovenia Slovenia

H (7) Biosativa d.o.o., 10000 Zagreb Croatia Netherlands

H (8) Nutri oil, d.o.o., 10410 Velika Gorica Croatia Croatia

H (9) Ekozona, 10000 Zagreb Croatia Romania

H (10) Cannabis Pharma, s.r.o., 41501 Teplice Czech Republic Canada

H (11) Encian Bio konopljino ulje, 10250 Lučko Croatia Romania

H (12) Gardenolo, Jan‐Spider, 33405 Pitomača Croatia Croatia

H (13) Biorganic, Advent d.o.o., 52100 Pula Croatia Canada

H (14) Sun & Seed Ltd, London Great Britain Serbia

H (15) Garden d.o.o., 10000 Zagreb Croatia Romania

R (1) Alnatura GmbH, 64404 Bickenbach Germany France

R (2) Matičnjak Sativa d.o.o., 10000 Zagreb Croatia Croatia

R (3) Rapunzel Naturkost AG, 87764 Legau Germany Germany

R (4) Basic AG, 81677 München Germany Germany

Se (1) BioGourmet GmbH, 71729 Erdmannhausen Germany Germany

Se (2) Ekoland, Natudis, 3840 AJ Harderwijk Netherlands Netherlands

Se (3) ORGANIC OILS SpA, Mugnano (PG), 06132 Italy Italy

Se (4) GEA d.d., Tovarna olja, Sl‐2310 Slovenska Bistrica Slovenia Slovenia

Su (1) S Budget, SPAR Hrvatska d.o.o., 10000 Zagreb Croatia Hungary

Su (2) Tena, Tvornica ulja Čepin d.d., 31431 Čepin Croatia Croatia

Su (3) GEA d.d., Tovarna olja, Sl‐2310 Slovenska Bistrica Slovenia Slovenia

Su (4) Zvijezda d.d., 10000 Zagreb Croatia Croatia

Su (5) ORGANIC OILS SpA, Mugnano (PG), 06132 Italy Italy

Su (6) Davert Muhle, D‐48308 Senden Germany Germany

aBotanical origin of oil.

H, hempseed oil; R, rapeseed oil; Se, sesame oil; Su, sunflower oil.
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(Kemika, Croatia), water, and cyclohexane (Merck, >99.5%), and dried. Dry crystal was checked each time for possible
remains by applying a few scans.

Each particular sample in all sets was measured twice, except for all samples of pure H oils, which were measured 6
times, thus obtaining altogether 538 spectra. The reproducibility of the recorded spectra was ensured.
3 | MULTIVARIATE DATA ANALYSIS

At first, uninformative spectral wavenumbers containing no vibrational band were removed, so that the whole multivar-
iate analysis was carried out in the spectral region of 3200 to 2600 cm−1 and 1900 to 600 cm−1 (in further text designated
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as the “whole spectral region”). ATR intensities (y‐axis in Figure 1) of the wavenumbers represent the predictor (inde-
pendent) variables of the analyzed data sets.

For each of the quantitative prediction methods, the calculations were computed on the whole ATR spectra (predic-
tor variables) of each binary mixture set (HR, HSe, and HSu) and on the set of all samples (ie, altogether 7 different data
sets). For each data set, there is a single response variable measuring the volume fractions of each oil sample. Two thirds
of the samples were taken for calibration (using LOO CV) and one third for validation. The specifics of evaluation are
explained for each quantitative prediction method.
3.1 | Partial least squares regression (PLS)

Partial least squares regression (PLS) is the most often used procedure for quantitative prediction of the adulterated sam-
ples. Using the procedure of highest covariance between the matrix of mean centered spectral variables, X, and matrix
(or a vector) of concentrations, Y, one obtains in several steps the vector of regression coefficients, B, on the training
set, that linearly relates absorbances and concentrations; Y = BX + E. By multiplying this vector B with spectra of test
samples, one obtains the concentration of interest. Dimensionality of the spectral data is reduced from few thousands of
intercorrelated variables to only several completely uncorrelated variables (eg, PLS components) that contain most of the
variance present in the data. Due to that, these procedures are established to be very effective in qualitative and quan-
titative analysis.27

PLS calculations were carried out on the ATR spectra of each binary mixture set (HR, HSe, and HSu) and on the set
of all samples. PLS was computed on the whole spectral region. The optimal number of LVs used for building the model
was determined with minimum RMSECV of leave‐one‐out (LOO) cross‐validation on the calibration set; root mean
square error of calibration (RMSEC) was also computed (see Supplementary materials Equations S1–S2). The upper limit
of number of LVs was initially set to be 20 in each case. Predictive capabilities were estimated by calculating root mean
square error of prediction (RMSEP) (Equation S3) and R2(val) for the test set (Equation S4).

Mean centering of both spectral variables (X) and volume fractions (Y) was done before carrying out PLS. Except
LOO CV, other forms of cross‐validation were also carried out, such as k‐fold CV (with k = 10, 20, 30, and 50), but
although slightly higher RMSECV was obtained, RMSEP for the validation set was not significantly changed (when com-
pared with LOO CV) for all 7 cases studied. Thus, we report only the LOO CV results.
3.2 | FB‐FiPLS procedure

The RMSECV decreases with increasing number of LVs, but at some point, it increases due to over‐fitting. For interval
PLS procedures, the upper limit for the number of LVs is critical, because too many LVs enable selection of artifacts in
spectra specific for the training set. The PLS model built with the number of LVs in the global minimum of RMSECV
generally overestimates the significant number of LVs.28

As in our previous work,26 we employ a modification of interval PLS procedure (FB‐FiPLS) as a means to avoid over‐
fitting. Here, the upper limit of LVs was based on repeated double cross‐validation (rdCV) procedure performed only on
FIGURE 1 ATR spectra (58 spectra) of the whole spectral region for all (29) pure samples of H oil, R oil, Se oil, and Su oil
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the whole spectral region; the procedure is explained in detail in Ref. 28, with the same parameters used as in Ref. 26. In
brief, rdCV leads to a conservative estimate for the optimal number of LVs. In rdCV, each segment has its own mean
square error (MSE), and because there are more segments in inner loop, there is a mean of MSE and standard deviation
of MSE. The smallest number of LVs that are within 2 standard deviations (sdfact = 2) of global minimum of MSE can be
selected. The inner loop performs the cross‐validation on 10 segments. The number of segments in the outer loop was 4.
The optimal number of LVs is based on the highest frequency among all obtained results, in this case 400 obtained
results = 4 outer loops × 100 repetitions. In each repetition, random samples are selected for the inner and outer loops.

The wavenumbers were split into equidistant intervals (ni), numbering from 2 to 50, ie, 49 different ni. For each ni,
procedure began with the first interval of the lowest RMSECV among all other intervals (using already determined upper
limit of the number of LVs). The progress continued in each step by picking that interval, which, when merged with the
formerly selected interval(s), yielded lowest possible RMSECV, and it stopped once the RMSECV of the first k + 1
selected intervals was higher than k selected intervals. Thus, k selected intervals with the corresponding f number of
LVs was the optimal solution for that ni. After optimal solutions for each ni had been determined, the final solution
was selected according to the lowest RMSECV. For that final solution, ni with the selected variable intervals and f num-
ber of LVs, PLS model was built on a training set with calculated values for RMSEC and RMSECV. That final model was
used for fitting the validation set, obtaining RMSEP and R2(val). The rationale for considering only the first k intervals is
that they should contain most chemically relevant information. Thus, a considerable amount of time was saved by
neglecting a larger number of intervals.

PLS and FB‐FiPLS procedures were performed in program R (R version 3.2.2).29
4 | RESULTS AND DISCUSSION

4.1 | Vibrational spectra of the studied oils

ATR spectra of all 29 pure oils are shown in Figure 1. Most of the vibrational bands are already assigned in literature (see
Table 2).22,30 The differences in absorbance of the presented bands between the sampled vegetable oils are visible, even
among several spectra of the same botanical origin of oil. Among all botanical oils, hempseed oils have the highest inten-
sity at 3009 cm−1, which belongs to the band of stretching vibration of C―H on olefinic double bonds, which is expected,
because hempseed oil has the highest degree of unsaturation. Other subtle differences in ATR intensities can be noticed
at 2925 and at 2854 cm−1, which are the bands of antisymmetric and symmetric stretching vibration of methylene and
methyl groups, while the band at 723 cm–1 is assigned to both CH2 rocking and bending of cis‐disubstituted olefins. In
the fingerprint region, note both bending vibrations of aliphatic and olefinic functional groups and C―O stretching
vibrations (Table 2).
4.2 | Quantitative determination of adulteration

Final results of PLS and FB‐FiPLS are displayed in Tables 3 and 4, respectively. On average, FB‐FiPLS attained slightly
lower RMSEP than PLS, and in 3 out of 7 cases, the difference is significant (P < 0.05) (Table S3). Besides RMSEP, FB‐
FiPLS selected much less variables with lower number of latent variables for optimal prediction models. The results
shown are for LOO cross‐validation. In addition, there was no significant difference between LOO and k‐fold cross‐
validation.

Based on sample labels, hempseed oil samples varied mostly in polyunsaturated fats (73%–78%) and omega‐3 fatty
acids (16%–20%). Adulterant oils varied in monounsaturated fats (R oil 57%–62%, Se oil 36%–40%, Su oil 24%–31%)
and polyunsaturated fats (R oil 25%–31%, Se oil 40%–45%, Su oil 59%–67%) (Table S1). Despite that, attained RMSEP
for binary mixtures is satisfactory (RMSEP in range 1.0–3.2) and very similar to that obtained for the adulteration of
extra‐virgin olive oil with sunflower in literature, concerning slightly lower number of samples (RMSEP = 2.1).31 Similar
is also true regarding R2 values.32 Using HPLC data with interval PLS for models with many samples of vegetable oils,
attained RMSEP in literature is even ≈10%,4 while in this work it is 1.0%–3.8%. PLS models on FTIR data of more sam-
ples of extra‐virgin olive oil and many more different adulterant oils (altogether 111 pure oil samples) were also consid-
ered in literature, but that resulted, at best, only in rough predictive capabilities (RMSECV = 8.3%).11

Reproducibility was assessed as the standard deviation (see Supplementary Equation S5 and below) of both cross‐
validated predicted values of the training samples and the predicted values of the test samples. With FB‐FiPLS, the



TABLE 3 Detailed results of PLS, the maximum of 20 LVs for all considered sets

No. of variables f(LV) RMSECV/% RMSEC/% R2(train) RMSEP/% R2(test)

R (bin.) 988 8 1.3995 0.7110 0.9990 1.4406 0.9959

Se (bin.) 988 9 2.2262 0.8794 0.9985 2.3230 0.9909

Su (bin.) 988 10 3.2322 1.2885 0.9976 3.1346 0.9848

H (all samp.) 988 11 3.4452 2.6379 0.9889 3.3151 0.9836

R (all samp.) 988 15 1.5129 0.8396 0.9966 1.6765 0.9873

Se (all samp.) 988 13 2.2604 1.4113 0.9912 1.9539 0.9775

Su (all samp.) 988 14 4.1606 2.4421 0.9893 3.4381 0.9782

TABLE 2 Assignment of vibrational bands of edible oils reported up to date22,30

v/cm−1 Band assignment

3008 Stretching of C―H on cis C═C bond

2962 Antisymmetric stretching of C―H in CH3

2925 Antisymmetric stretching of C―H in CH2

2872 Symmetric stretching of C―H in CH3

2854 Symmetric stretching of C―H in CH2

1746 Stretching of C═O in COOR

1711 Stretching of C═O in COOH

1654 Stretching of cis‐C═C

1465 Scissoring of C―H in CH2 and CH3

1418 Rocking of C―H on cis C═C bond

1397 Bending of C―H on cis C═C bond

1377 Bending of C―H on CH2 and CH3

1238 Stretching of C―O in COOR

1163 Stretching of C―O in COOR, bending of C―H on CH2

1118 Stretching of C―O

1097 Stretching of C―O

1068 C―O and bending cis‐HC═CH of linolenic acid

1033 Stretching of C―O

968 Bending out of plane of trans‐HC═CH

914 Bending out of plane of cis‐HC═CH

723 Rocking of CH2 and out of plane bending of cis‐disubstituted olefins
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attained reproducibility for the binary mixture sets is as follows: 0.687% for R in HR, 0.767% for Se in HSe, and 1.280%
for Su in HSu.

If only a single pure sample of Su oil was used to adulterate only a single pure sample of H oil, a lower RMSEP (of
≈0.6%) would be attained,22 but not much lower in the case of 1‐sample adulteration of R oil (≈0.9%).22 Therefore, the
presented results show that even if many samples and sample mixtures with high variation of geographic origin
concerning both adulterant oil(s) and hempseed oil are taken into account, the quantitative predictions of each compo-
nent are accurate.

The analysis of optimally selected wavenumbers using FB‐FiPLS can be seen below Table 4. Bolded part of
selected ranges depicts first selected interval, which denotes the most important spectral range.26 For R in all



TABLE 4 Detailed results of FB‐FiPLS, the maximum of 20 LVs for all considered sets

No. of variables f(LV) RMSECV/% RMSEC/% R2(train) RMSEP/% R2(test)

R (bin.) 217a 7 0.8825 0.6477 0.9991 1.0018* 0.9981

Se (bin.) 102b 4 1.7912 1.6941 0.9940 1.9271 0.9930

Su (bin.) 276c 5 2.9161 2.7201 0.9887 3.2205 0.9836

H (all samp.) 252d 6 3.3242 3.1583 0.9839 3.4522 0.9813

R (all samp.) 278e 9 1.2312 1.1195 0.9938 1.4179* 0.9910

Se (all samp.) 242f 6 1.9435 1.8169 0.9852 1.6702* 0.9836

Su (all samp.) 147g 7 3.8175 3.6232 0.9760 3.8153 0.9730

*Statistically significant difference (P < 0.05) between PLS and FB‐FiPLS concerning either the paired t‐test or the F‐test (Table S3).

Selected variables:
a1886–1849, 1462–1348, 1308–1232, 1115–1039, 1001–930, 854–820 cm–1.
b1450–1387, 1122–1059, 926–862 cm–1.
c3113–3070, 2625–2602, 1901–1884, 1749–1662, 1483–1308, 1128–1041, 951–908, 862–820 cm–1.
d3078–3039, 2916–2877, 2713–2675, 2632–2602, 1901–1896, 1448–1369, 1286–1248, 1124–1086, 962–883, 760–681 cm–1.
e1716–1672, 1577–1533, 1441–1398, 1352–1221, 1130–1043, 997–910, 864–822, 775–733 cm–1.
f1616–1533, 1489–1406, 1361–1236, 1149–1066, 937–897, 810–769 cm–1.
g1408–1369, 1286–1248, 1124–1045, 1003–924, 760–721 cm–1.
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samples, the most important selected intervals are those that account for the C―O stretching vibrations and linolenic
acid at 1068 cm−1; also important is out‐of‐plane bending vibration of cis‐HC═CH. For Se in all samples, the most
important interval is 1489 to 1406 cm–1. It is known that sesame oil has a relatively high amount of unsaponifiable
matter relative to the other oils and that it contains a high amount of very specific lignans such as sesamin.33 IR
spectrum in literature for sesamin shows very strong bands at approximately 1500, 1489, and 1444 cm–1.34 The bands
are weak in intensity but can be seen in IR spectra of pure sesame oils, and the selected most important interval
corresponds with these bands for sesamin. For sunflower oil, the most important variables are the C―O stretching
vibrations and the vibration for linolenic acid at 1068 cm–1.35 These selected variables could be used for verification
of hempseed oil adulteration.
5 | CONCLUSION

In this study, for the first time, many different samples of hempseed oil were used for establishing quantitative predic-
tion models for assessing adulteration with adulterant oils. The type and level of hempseed oil adulteration can be
accurately determined for each considered binary mixture (RMSECV 0.9%–2.9%, RMSEP 1.0%–3.2%), despite the vary-
ing origin of considered samples and their content from many different European countries and some samples from
outside of Europe.
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