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Abstract - Decision support systems (DSS) are computer 

programs based on artificial intelligence methods that 

contribute to reaching a correct decision in an often-narrow 

domain of interest. Clinical decision support systems (CDSS) 

are such DSSs that may be used by medical professionals in 

clinics and hospitals. They are used for diagnosis, treatment 

protocol recommendations, treatment outcome predictions 

and other tasks. CDSS are constructed based on symbolic and 

machine learning (including deep learning) approaches to 

represent and infer medical knowledge. The aim of this work 

is to provide an overview of past and current methods in 

designing a successful CDSS. The study considers the systems 

that were claimed to be implemented in clinical practice. 

Currently, the development of a CDSS is mostly pursued in 

two directions: 1) a more traditional approach based on rules, 

ontologies, probabilistic models, and the use of standards; 2) 

machine learning based approach. Both approaches may be 

used complementary within a healthcare information system. 

This work seeks to provide an objective view on the 

advantages and limitations of the approaches as well to 

discuss future research avenues that could lead to more 

accurate and trustworthy CDSS and improved healthcare. 

Keywords - decision support system, clinical decision 

support system, healthcare, artificial intelligence, deep learning 

I. INTRODUCTION 

Artificial intelligence (AI) is used nowadays in a variety 
of application domains, with varying levels of success. Its 
application in healthcare is of paramount importance for 
transforming and improving the traditional medical 
workflows. The improvement needs to be made in a sense 
that it would benefit all the stakeholders (i.e. patients, 
medical personnel, clinic) in the process. The application of 
AI in medicine may be performed in different ways. 
According to [1], virtual and physical branches of AI may 
be distinguished. The virtual branch includes any 
informatics approaches, ranging from electronic health 
records (EHR), deep learning (DL), control of health 
management systems, and active guidance of physicians in 
their treatment decisions. The physical branch is best 
represented by robots and other hardware systems used to 
assist patients or a surgeon in a surgery room.  

Clinical decision support system (CDSS) is a well-
known name that refers to the program (virtual AI) that 
implements one or more AI methods into clinical practice 
in order to enhance medical decisions. Medical personnel 
may use CDSS for diagnosis, prevention, treatment 
protocol recommendations, care-coordination, treatment 
outcome predictions, and other tasks [2]. While there has 
been much progress reported in the efficiency of the 

artificial intelligence algorithms on various medical 
problems [3,4], still, the integration of AI solutions in a 
CDSS that performs well in clinical practice is rare and has 
proven to be notoriously difficult [5].  

The development of CDSSs has been proceeding 
gradually, following the course of the improvements in AI 
algorithms, knowledge representation methods, software 
architectures and clinical data availability. While there are 
many AI approaches one could use for developing a CDSS, 
most of them can be classified into one of two classes: 
symbolic and machine learning (ML, including DL). 

In this work, we consider the research approaches that 
were reported to be implemented in clinical practice or that 
were tested in real-clinical settings. We also briefly 
elucidate the principles of the underlying AI methods that 
were used in these systems. Since there has been many 
research works covering different aspects of CDSS in 
recent years, we stipulate the aim of this study as twofold: 
1) a critical synthesis of current literature regarding the 
possibilities and challenges in implementing a successful 
CDSS, and 2) an overview of the best CDSS practices and 
challenges that, when overcome, have the potential to 
significantly improve healthcare.  

Our work is structured as follows. In section II, we 
provide a critical review of the related work, with a focus 
on more general review studies that are related to CDSS. In 
section III, we provide an overview of the successful 
examples of CDSSs in practice. Then, in section IV, we 
delve into the AI technologies that underpin contemporary 
CDSSs. Section V is devoted to open challenges in 
designing and implementing a CDSS. We discuss some of 
the debatable CDSS topics in section VI. Finally, section 
VII concludes the paper.   

II. RELATED WORK 

The topic of our paper resembles several studies in 
recent years that pursue the goal of systematization of 
knowledge about CDSSs or AI methods in healthcare and 
raise awareness about the challenges related to these topics. 
In continuation, we provide a brief critical assessment of 
several recent important scientific review papers that deal 
with CDSSs.  

Castaneda et al. [6] provided a general review paper on 
CDSS in 2015. They stipulated the important role of EHR 
in employing CDSS, however they also pointed out that 
EHR adoption is only the first step towards improving 
patient healthcare, since its use may not lead to improved 
clinical outcomes if it is not supported by models 



constructed on large datasets, possibly derived from 
multiple databases. They consider that, currently, the use of 
CDSS in practice is limited, since they are mostly used to 
generate alerts, reminders and summaries. As a marked 
example of large-scale AI integrated CDSS, they mention 
IBM Watson, but also question its ability to improve 
treatment outcomes. The study also offers a valuable input 
on several real-world CDSS implementations. 

The study of Middleton et al. [2] from 2016 offers a 
holistic 25-year retrospective and a 25-year vision in 
CDSSs. The study is an important source of information on 
evolvement of CDSSs in the USA, which includes 
mentioning of multiple CDSS implementations, some of 
which were used successfully in clinical practice. It 
describes six axes in CDSS development: data, knowledge, 
inference, architecture and technology, implementation and 
integration, and users, and provides elaboration along these 
axes. Several topics that adversely affect CDSSs are also 
discussed. 

A review study by Dwyer et al. [7] from 2018 concerns 
the use of machine learning approaches in governing 
decisions in the field of clinical psychology and psychiatry. 
The review provides an insight into the potential for ML 
methods to augment clinical practice (diagnosis, prognosis 
and treatment) in the field, with description of the principles 
of these methods. The authors admit that there are very few 
successful CDSS implementations available and point to 
several reasons why this is the case, such as: cultural norms 
in clinical practice, validity of diagnostic and prognostic 
labels, representativeness of training data, mechanistic 
understanding of detected patterns, practical 
implementation, and others. Although CDSS 
implementations are not covered, the study is a relevant 
resource for understanding the AI algorithms that can be 
used in clinical psychology and psychiatry.  

Topol [8] presented a recent review study dealing with 
the topic of high-performance medicine, in which he 
highlights the recent advances in AI, especially in DL and 
the applications in various medical domains. The author 
shares his opinion that the clinical practice is only at the 
starting point of using advanced DL approaches. The study 
is highly valuable as a harbinger of DL applications in 
CDSS, as it describes numerous important 
implementations, both of peer-reviewed publications of AI 
algorithms in healthcare and of FDA approvals of AI 
algorithms implementations. The study acknowledges the 
pitfalls of clinical implementations, with the example of 
IBM Watson, which in recent years made several erroneous 
recommendations that could have threatened patient safety. 
The author considers the current lack of prospective studies 
as a downside of DL-based CDSSs. 

The study of Picardi et al. [9] deals with the significant 
topic of assurance in CDSSs. Especially, ML-based black-
box models suffer from the issue of weak interpretation 
capabilities and generally low validity when the whole 
process is not closely controlled. The authors induce an 
assurance case pattern based on an important case study of 
retinal disease diagnosis. They suggest that the assurance 
pattern for a model should describe: a clinical setting 
(context of use), a benchmark (against a gold clinical 
standard), an ML model choices explanation, training and 

validation data sufficient to describe the clinical setting, an 
independent test data, and a thorough ML process 
explanation. 

Kelly et al. [5] focus on key challenges for delivering 
clinical impact with artificial intelligence. Their study 
points to numerous existing challenges, including the ones 
that are inherent to ML methods, implementation and 
logistical difficulties, as well as the existing sociocultural 
barriers of adoption. They conclude that, based on the 
available reports, AI metrics such as accuracy, area-under-
curve, and others often do not reflect clinical applicability, 
and especially any beneficial change in patient care. On that 
topic, they consider that clinicians need to be able to 
understand how the AI algorithms work, to improve patient 
care within a workflow they are familiar with, which is a 
topic often neglected in scientific papers. Regarding AI 
algorithms interpretability, they report that the recent 
European Union’s General Data Protection Regulation 
(GDPR) legislation mandates the right to explanation for 
algorithmically generated user-level predictions that have 
the potential to significantly affect users [10]. 

The review study by Wang and Preininger [11] 
considers the state-of-the-art, challenges and future 
directions of AI applications in healthcare. They 
categorized the studies published in the period 2014 – 2019 
into five separate categories according to the data type 
analyzed. These include multi-omics (genomics, 
proteomics, transcriptomics, etc.), clinical, behavioral, 
environmental, and pharmaceutical research and 
development data. They described each data type category, 
associated challenges and practical implications that have 
emerged over the last years. They stress out that both AI 
models’ and data challenges exist that currently hamper the 
success of developed CDSSs.   

Shu et al. [12] present the applications of AI methods in 
the field of pediatrics. The paper is valuable because of the 
multiple descriptions of AI research papers covering 
several medical branches in pediatrics (e.g. cardiology, 
neurology, radiology), as well as for a discussion on multi-
omics research in CDSSs, including the consideration of 
cloud, clusters, and grid computing for high-precision 
medicine. Nevertheless, the work does not cover many 
successful practical implementations of CDSS, but instead 
focuses more on future perspectives and limitations that 
need to be overcome.  

Krittanawong et al. [13] offer a practical view on DL-
based AI methods applied to cardiology. They focus on 
explaining the properties, benefits and downsides of using 
these methods, and provide a guide to implementation 
options (e.g. hardware considerations, software packages, 
modeling strategies). Their work suggests that the use of 
DL in cardiology is still of limited extent in the number of 
conducted studies and that the studies may suffer from a 
positive publication bias, which remains to be discovered 
by future meta-analysis studies. Their work does not report 
on real-world CDSS implementations of DL.  

III. AN OVERVIEW OF SUCCESSFUL IMPLEMENTATIONS 

OF CLINICAL DECISION SUPPORT SYSTEMS 

According to Wright and Sittig [14], the evolution of 
CDSS architectures may be divided into four phases: 



• Phase 1: Standalone decision support system 

• Phase 2: Decision support integrated into clinical 
systems 

• Phase 3: Standards developed for sharing content 
between clinical decision support systems 

• Phase 4: Web service models for decision support 
systems 

We consider that, from the AI perspective, a fifth 
phase, as a continuation of the fourth phase, may be 
distinguished, which includes big biomedical data 
analytics from the cloud and grid platforms using ML or 
DL approaches. The timeline presented in Fig. 1 illustrates 
some of the significant CDSSs either implemented in real-
time clinical practice or demonstrated to be able to work 
in such a setting. The references for the shown CDSSs may 
be found in the studies [2,8,11,15–19]. The years listed in 
the figure are those of published research. 

From Fig. 1, it can be observed that there is currently 
an abundance of high-quality research into ML and DL- 
 

 

Figure 1. Significant CDSSs implemented in clinical settings or 
proven to work with real-time clinical data. Orange / violet / 

turquoise / red / green entries are for phase 1 / phase 2 / phase 3 / 
phase 4 / phase 5, respectively.  

based approaches, covering a great diversity of medical 
issues. It should be mentioned that only some of the most 
significant recent CDSS research works and 
implementations are depicted in Fig. 1, while there exist 
many others, especially those that use ML or DL methods 
in clinical settings. 

Aside from the clinical implementations of various 
CDSSs, in the last several years (i.e., from 2014), there has 
been a number of US Food and Drugs Administration’s 
(FDA) approvals of proprietary AI algorithms and the 
accompanying platforms in healthcare (especially since 
FDA issued a fast-track approval plan for the AI algorithms 
in 2018). Some of these algorithms may be used for 
personal health assessment (e.g., via smart wearable 
devices), in primary care, or in clinical settings. Although a 
full list is not openly available, according to several 
resources, there are currently more than 50 such AI 
algorithms available [8,20].     

IV. CLINICAL DECISION SUPPORT SYSTEM 

TECHNOLOGIES 

A typical CDSS consists of a user interface (also called 
shell), an inference engine (also called core) and a data 
repository. As we have shown in the previous section, all 
CDSS components may be deployed in different settings, 
depending on the system architecture. The core usually 
implements one or more of the knowledge representation 
and reasoning schemes: symbolic and/or ML (also DL).  

The symbolic (or declarative) approach includes all 
methodologies that deal with the representation of 
knowledge as a collection of symbols, including the 
relations among symbols. Such methodologies include 
formal mathematical logic (e.g., propositional, predicate, 
temporal), rule-based expert systems (they are an efficient 
subset of logic-based systems), imperfect knowledge 
inference systems (e.g. fuzzy rule-based systems, certainty 
factors, etc.), and Bayesian (probabilistic, belief) reasoning 
systems (e.g., Bayesian networks). The symbolic approach 
also includes biomedical computer ontologies, as a specific 
subtype of formal mathematical logic knowledge 
representation scheme (as ontologies are mostly based on 
description logic) [21].  

The most common types of symbolic methods used in 
CDSSs are rule-based systems, ontologies and Bayesian 
networks [2,6]. A rule-based system usually contains an 
external (as a part of data repository) set of IF-THEN rules 
and valid facts. The reasoning may be performed either by 
forward or backward chaining. In forward chaining, the 
core makes the inference by matching the IF side of the 
rules with facts, resolves the conflict set (when more than 
one rule has its IF side satisfied), and activates (triggers, 
fires) the one selected rule, after which the reasoning cycle 
is repeated. Some of the advantages of using rule-based 
systems include:  

• direct natural representation and the use of empirical 
knowledge acquired from an expert in a specific 
(narrow) domain 

• modularity of knowledge collection and its simple 
maintenance 

• efficient execution in narrow domains 



• high interpretability of the automatic reasoning 
process 

On the other hand, there are also some significant 
disadvantages of using rule-based systems: 

• the rules acquired from the experts are heuristic and 
fragmentary (“knowledge nuggets”) and do not 
explain the holistic relations in the process 

• sometimes the rules may be contradictory, which is 
why maintaining consistency in a rule set is important 

• the rules in a classical rule-based system are not 
robust and do not include uncertain and incomplete 
knowledge (this may be mitigated by using imperfect 
knowledge-based systems such as fuzzy rules) 

• rule-based system stops being useful at the edge of the 
domain, while instead, like an expert, it should 
become monotonically weaker at problem solving 

• clarifications, which result from the representation of 
chaining, do not provide causal connections in the 
process (there is no connection of ground or root 
causes with effects) 

Unlike rule-based systems, ontologies are not intended 
primarily for executing actionable decisions. Instead, they 
are used as a mean to store hierarchical classification of 
terms and important relations among terms pertaining to a 
biomedical domain. They can be visualized as rather 
complex (meta)thesauri, covering different aspects of a 
biomedical topic or a more general biomedical knowledge 
domain. Contemporary ontologies use the open world 
assumption (which contrasts some important earlier 
knowledge organization schemes such as Frames [22]), 
under which no negation of a term’s existence may be 
inferred unless its non-existence is explicitly stated. This 
somewhat limits their potential for constructing actionable 
rules [23]. Ontologies are mostly well-developed in the 
fields of biology and bioinformatics; however, they are still 
not well-integrated with other resources in implemented 
CDSSs [6]. Some of the reasons for this include:  

• the complexity of biomedical vocabulary which 

limits the development of large ontologies 

• integration of different ontologies is difficult 

• slowness of the reasoning process for large 

ontologies 
An example study by Gordon and Weng [24] used a 

semi-automated method to acquire data from diverse 
knowledge sources in order to evaluate and improve 
bacterial clinical infectious diseases ontology. 

Bayesian networks may help medical experts in 
reaching accurate decisions [25]. They are based on 
probabilistic relations among nodes that represent variables 
that cover a topic. Both the structure of the network (the 
dependencies among variables) and the probabilities (either 
the a priori or the conditional ones) required by a network 
need to be derived from an expert’s knowledge of a 
problem or from a dataset that representatively describes 
the covered topic. This, as well as the issue of 
interpretability of the reached decisions, severely limits 
their usefulness in CDSSs.    

Machine learning techniques may be used in order to 
reach decisions based on available domain data. They cover 
a range of options, depending on the goal of the medical 
analysis: classification, regression, clustering, semi-
supervised learning, etc. [7]. A simple division of ML 
techniques may be given in two categories: 1) black-box 
techniques, and 2) techniques that provide comprehensible 
models. Black-box ML techniques include support vector 
machines, artificial neural networks, ensembles of models 
(e.g. random forests) and other, nonlinear function-based 
models. Comprehensible models include linear and logistic 
regression models, decision trees and induction rules. 

Deep learning can be considered as a specific subtype 
of machine learning that includes artificial neural network 
architectures consisting of multiple hidden layers with 
various transfer functions. Generally, DL methods are good 
at obtaining low-level feature representations from raw 
data, which enables them to be used out-of-the-box, i.e. 
without the significant human effort put into the 
engineering of higher-level features [11]. On the downside, 
all DL architectures may be considered as black-box 
models, since the distribution of weights in a network does 
not allow for an easy way of understanding why a decision 
is reached. The most common types of DL architectures 
used in CDSSs in the biomedical domain include: 

• Convolutional neural networks (CNN) – by far the 
most common architecture type for biomedical 
imaging applications [8], consisting of multiple 
hidden convolutional and pooling layers 

• Recurrent neural networks (RNN) – used most often 
for physiological time series modeling such as in 
cardiology or neurology, but also in predicting events 
onset [26]. Here, several subtypes of RNNs are used 
often, such as long-short term memory (LSTM) 
networks [27] and gated recurrent unit (GRU) 
networks [26]  

• Deep belief networks (stacked restricted Boltzmann 
machines) [28, 29] 

• Autoencoders – for unsupervised learning tasks, 
including dimensionality reduction and representation 
learning [29] 

V. CLINICAL DECISION SUPPORT SYSTEMS OPEN 

CHALLENGES  

The successful use of CDSSs in practice still suffers 
from some challenges that need to be properly addressed. 
In Table I, we compile a list of some frequently mentioned 
challenges discussed in the literature, which we categorize 
into major and minor ones, depending on our consideration 
about their relevance and the ability to be overcome. In 
continuation, we reflect on the major challenges.   

AI model transparency (comprehensiveness) should be 
sought where possible in CDSSs. Due to the black-box 
nature of most ML and DL models, human needs to be 
present when reaching the final decision [11]. Additionally, 
providing a model interpretation is needed in healthcare, 
which is also enforced by GDPR [5].  

Clinical workflows lack standardization for insertion 
points that can be used by developed CDSSs [2]. While 



current practice inserts a CDSS where needed in the 
physician’s workflow [11], the clinical practice would 
greatly benefit from having a more theoretically well-
founded integration procedure.  

Peer-reviewed randomized control trials need to be 
pursued where possible, since current practice shows that 
higher-accuracy AI systems do not necessarily result in 
better patient outcomes due to clinical inapplicability. 
Several researchers point to the necessity of improving 
patient outcomes as the ultimate goal of using CDSSs 
[5,13] Also, state-of-the-art performance of AI algorithms 
in many health applications is far from perfect, which leads 
to the question of the advanced AI algorithms effectiveness 

in practice. Currently, in some cases, results for DL vs 
simple logistic regression may not be favorable for DL 
[11]. It should be noted that due to the overfitting problem, 
sometimes simpler methods are more efficient and more 
practical [13]. Some of the unfavorable results may stem 
from too few dedicated DL model architectures specifically 
designed for medical images, which is mostly due to too 
few shared medical datasets. In these cases, transfer 
learning from natural images is used, which may be 
suboptimal [11]. 

Logistical problems that are related to data integration 
for efficient model construction abound. Namely, most of 
the healthcare data is not prepared for ML, as there are 
many image archival systems, EHRs, electronic prescribing 
tools and insurance databases available [5]. In this respect, 
unified data formats such as FHIR [30] could be beneficial; 
however, EHR data is still heterogeneous and has 
inconsistent semantic coding, which prevents data 
preparation for ML [11]. 

For efficient external validation of the model used by 
CDSS, site-specific adaptations need to be considered for 
generalizations (external dataset curation). A problematic 
fact reported is that very few (only about 6%) of medical 
studies perform external validation on datasets from outside 
of current institution [5]. The data representativeness is the 
problem of not having appropriate samples to construct a 
widely applicable model (e.g., there were too many light- 
skinned and too few dark-skinned images available for skin 
lesions classification [11]). One of the solutions to this 
problem is to increase the dataset size to include all the 
needed sample variations in a significant amount. 

Scalable sharing of clinical data is a major challenge for 
the fifth CDSS architecture phase, since the abundance of 
medical data prevents previous solutions for data storage 
and sharing. In order to handle this challenge, cloud-based 
solutions seem to be a viable option, but this must be 
pursued on the scale of multiple hospitals in order to ensure 
CDSS validity. Secure and scalable information sharing 
may use blockchain or similar technology [31].  

VI. DISCUSSION 

It is a common assumption that a person working in a 
partnership with an information resource, such as a CDSS, 
is better than the same person unassisted [2,5]. However, a 
physician should take care when interpreting the results of 
CDSS recommendations. Any user, including the physician 
and the patient, needs to understand the CDSS benefits and 
limitations, and needs to be clear about which questions one 
can ask of the CDSS.  

Currently, the development of AI methods by clinicians 
on-site instead of expertly designed models is still 
unsatisfactory due to the complexity of the AI methods in 
CDSS systems, but shows some advancements [32]. 

Explainable AI has seen a recent resurgence as a hot 
research topic in DL [11]; however, its results are still 
unsatisfactory for healthcare. We suggest that a viable 
option would be to use black-box or weakly understandable 
models only for image/signal analysis, and interpretable 
models for all other CDSS considerations (such as, for 
example, medical guidelines-based recommendations).      

TABLE I.  OPEN CHALLENGES FOR CLINICAL DECISION 

SUPPORT SYSTEMS 

Challenge 

type 
Short description Reference 

Major AI model transparency [5, 7, 11, 13] 

Major Standardization of DCSS integration 

into clinical workflow 

[2, 7, 11] 

Major AI algorithms effectiveness [5, 11, 13] 

Major Standardization of EHR data [11, 30] 

Major EHR data are heterogeneous, sparse 

and noisy which hinders analysis 

[11] 

Major Efficient external validation [5, 7] 

Major Data integration from multiple 

sources 

[5] 

Major Secure and scalable sharing of 

clinical data 

[31] 

Major Data representativeness is lacking [7, 11, 13] 

Major Regulation and rigorous quality 

control of AI devices is needed 

[5] 

Minor Currently, too few prospective 
studies 

[5] 

Minor Increasing trend of proprietary 

algorithms development 

[11] 

Minor Positive publication bias in medical 
studies of ML and DL 

[13] 

Minor Adversarial attacks as security risk [5, 11] 

Minor Computationally expensive analysis 

of physiological data 

[11] 

Minor Integrative analysis of physiological 

with other clinical data is lacking 

[11] 

Minor Rapid development of new 

technology – many legacy systems 

[2] 

Minor Behavioral data are heterogeneous, 

difficult to obtain ground truths 

[11] 

Minor Environmental data linking with 

EHR data is needed for precision 
medicine 

[11] 

Minor Heterogeneity of multi-omics data 

impedes its analysis and integration 

[11] 

Minor Large scale knowledge engineering 

and management 

[2] 

Minor Better understanding of human-

computer interaction 

[5] 

Minor Implementation issues: algorithms 

unavailable, too much training 

needed, not commercially viable 

[7] 

Minor Data quality and diversity needs to be 
considered in addition to quantity 

when assessing ML and DL methods 

[13] 

Minor Replication of study should be 
possible – models, data and code 

should be made openly available 

[13] 

Minor Reporting of model results should be 

more elaborate with respect to 
metrics used 

[13] 

 



VII. CONCLUSION 

This study has revealed that the successful 
implementations of CDSSs in practice are still uncommon 
and that there are many challenges that need to be overcome 
before CDSSs become ubiquitous. Since medical 
institutions have always strived to instill the highest level 
of trust in the patients that are admitted and treated there, 
the question of using AI-algorithms guided CDSS to 
improve patient outcomes is still debatable. Nevertheless, 
we consider that future, carefully conducted studies will 
show that the use of accurate and reliable CDSS is possible 
and that clinical practice would greatly benefit from its 
introduction into medical workflows.    
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