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ABSTRACT Predictive maintenance (PdM) uses statistical and machine learning methods to
detect and predict the onset of faults. PdM is often used in industrial IoT settings in the energy
sector, where research works usually consider specific types of faults depending on the application.
However, since PdM is mainly data-driven and needs to work in real time, the public availability
of datasets is required in order to build efficient and effective models applicable across multiple
domains. Unlike methods, the publicly available datasets obtained from sensors in the energy sector
have not been properly reviewed or categorized. In this work, we consider five subsectors of the
energy sector: wind, solar, oil & gas, diesel & thermal, and electrical power grid. We provide a
detailed description of the properties of the publicly available PdM datasets in these subsectors.
The review of the datasets is conducted on a number of scientific and commercial repositories: IEEE
DataPort, UCI Machine Learning Repository, Kaggle, EDP, and Mendeley Data. The datasets are
graded into three categories according to objective criteria. We also provide references to significant
related research work that uses the considered datasets. The observed challenges in using the
datasets in this field are thoroughly discussed. We find that there is a troublesome scarcity of
publicly available datasets in the energy sector, more so of data coming from real, non-simulated
sources. Three datasets, 3W (oil & gas), EDP-WT (wind), and OREC (wind) stand out as highly
valuable for researchers in this field.

INDEX TERMS Datasets, deep learning, machine learning, predictive maintenance (PdM), energy
sector.

I. INTRODUCTION

PREDICTIVE maintenance (PdM) aims to success-
fully estimate the period in which in-service equip-

ment maintenance should be performed to avoid its
potential failure and the associated consequences. PdM
encompasses many data-driven methods, mostly from
statistics and machine learning, in order to achieve the
goal of efficient fault detection and prediction [1]. The
advantages of using PdM include: 1) expenditure savings
through the lower cost of maintenance due to knowing
in advance when to buy a certain spare part or piece
of equipment, 2) energy savings through optimizing the
exploitation of non-renewable sources (oil & gas) and
renewable sources, and 3) a safer work environment

achieved by detecting a fault and stopping production
before failure happens. According to a study that con-
sidered 268 European companies from various sectors,
PdM decreased costs by 12%, improved availability by
9%, extended the lifetime of an aging asset by 20% and
reduced safety, health, environmental and quality risks
by 14% [2].

PdM is broadly considered to be an important part
of Industry 4.0 [3]–[5]. It has been a part of industrial
development for many years, mostly in the context of
sensor networks [6], [7] and later, the Internet of Things
(IoT) [8], [9]. It is often applied to industrial IoT (IIoT)
signal data acquired under various levels of control [10],
[11]. Fig. 1 depicts the number of published research
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papers in the field of PdM in the industrial context
from 2013 to 2022 according to the Web of Science
Core Collection database. The number of papers that
explicitly mention IoT with PdM is also shown. It can be
observed that the field is becoming increasingly popular
and that the use of IoT in PdM is growing steadily.

Still, there are some challenges for PdM that can be
observed from the related work, such as: 1) the methods
are data-driven [12], which means that without adequate
data the models are unsuccessful; 2) the industry itself
is mostly closed, therefore, proprietary data, especially
labeled data, are usually not shared, which limits the
research works; 3) the optimal PdM models require close
collaboration between the academic sector and industry
due to the significant domain knowledge and artificial
intelligence requirements posed to such models, which is
not often the case.

Currently, from the perspective of data science,
researchers observe a lack of available high-quality
datasets in the field of PdM that would allow them
to construct wide-spread and applicable PdM models
[13]. This problem seems to be pronounced in the IoT-
supported energy sector, which leads to suboptimal
smart solutions and increased costs and impacts on the
environment. Namely, the research work in the energy
sector mainly focuses on a specific application and a
specific dataset [14], [15]. The developed models are
not applicable to other PdM datasets from the same
subsector or from different subsectors due to significant
differences in the datasets’ properties. This statement
holds even when recent approaches from deep learning,
such as transfer learning, are used [16] because the
datasets are too specific.

As stated earlier, most PdM approaches are data-
driven, meaning that they are dependent on provided
data. Due to the importance of high-quality data avail-
ability topic, in this paper, we present a detailed survey
of the PdM datasets in the energy sector. We show
that there is indeed a scarcity of publicly available PdM
datasets in this field, especially the non-simulated ones.
The contributions of this review work are the following:

• a detailed description of the properties of the pub-
licly available predictive maintenance datasets in
the IoT-supported energy sector,

• a reference list of significant research works that use
the considered datasets along with applied methods
and PdM tasks,

• a categorization (rating) of the datasets based on a
small set of objective criteria,

• a generalized data-driven pipeline for predictive
maintenance,

• a discussion of the observed challenges related to
the datasets in this field.

Unlike other research that focuses on various applicable
machine learning methods and constructed models, the
focus of this work is on the elaboration of the datasets

FIGURE 1. Published papers in the field of predictive maintenance in an
industrial context, compared with an explicit mention of IoT, from Web of
Science Core Collection database

that can be used by researchers to build high-impact and
versatile PdM machine learning models in the energy
sector. We consider that this kind of work is important
for future considerations, methods and datasets alike, in
this growing field.

The remainder of this paper is structured as follows.
In Section II, we review the related work in the field of
PdM. In Section III, we explain the precise methodology
of the review. Section IV deals with a detailed descrip-
tion of the reviewed datasets, their properties and the
corresponding research work. Section V presents a data-
driven pipeline for PdM. We discuss the encountered
challenges in Section VI and conclude the paper in
Section VII.

II. RELATED WORK
Numerous research works in the field of predictive
maintenance are focused on maintenance methods, the
application of machine learning (ML) and deep learning
(DL) methods, as well as types of failures in specific
application domains. However, hardly any attention was
given to the review of datasets on PdM.

Data-driven methods are the most common choice
for achieving PdM. The authors in [17] classify six ML
and DL algorithms in specific industrial applications and
compare five performance metrics for each classification
algorithm. Furthermore, they list the most common
challenges in practice, which also include the challenges
of data acquisition. Similarly, the paper [4] gives a review
of not only methods but also architecture and provides
a list of 13 crucial targets for PdM in Industry 4.0
that are applicable to Small and Medium Enterprises
(SME). The authors observed that most papers focused
on increasing the remaining useful life (RUL) of the
system or detecting anomalous events, while the most
common choice of technology for applying PdM is ML
and DL. In comparison, the paper [18] gives a deeper
insight into common ML methods applied to four types
of industrial maintenance approaches: corrective, pre-
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ventive, condition-based, and PdM. Likewise, in [1], the
authors focus on four mainstream DL-based methods for
Intelligent Predictive Maintenance (IPdM). In there, all
methods were compared in terms of data characteristics,
model performance, and application scenarios.

Nowadays, PdM often utilizes the IoT for real-time
data acquisition in order to efficiently prepare the
maintenance works. The application of IoT in PdM
was surveyed in a recent paper [19] using scientometric
analysis to point out the most common keywords, cited
authors, contributing countries, and cited journals. The
authors also presented the applications of PdM in indus-
tries, including the energy sector, along with the main
benefits of PdM, which are safety, security, reliability,
and efficiency. Contrary to the considered benefits, the
authors in [20] presented the main challenges in the IoT-
Enabled PdM. Those challenges include the selection
of the components that would benefit most from PdM,
the proper design of the IoT infrastructure, the devel-
opment of the algorithms and methods, and lastly, the
exploitation of IoT-enabled monitoring to really ensure
that PdM brings added value. One of the innovative
uses of IIoT as the main tool is a new paradigm called
Hybrid Self-Corrective Maintenance (Hybrid-SCM) [21].
The paradigm was proposed after reviewing PdM indus-
try case studies. The Hybrid-SCM combines Condition-
based Maintenance (CbM) with Self-Corrective Mainte-
nance (SCM) to create a subsystem that can learn about
its condition by itself and take corrective actions when
necessary.

Other research papers focus on specific use-cases of
PdM, such as PdM for motors [22], [23], wind turbines
[14], [24], [25], hydraulic cylinders [26], power trans-
formers [15], etc. In these papers, the focus is on the
applications of different data analysis methods in the
corresponding fields. We will now review some of these
papers.

As summarized in [22], different approaches can be fol-
lowed for applying PdM in motors. All of them included
ML methods, where the most common one was Random
Forest (RF), combined with different motor features,
e.g., vibration, acoustical and speed oscillations, motor
current, etc. A similar review was done for induction
motors [23], with emphasis on the types of faults. The
most common faults were bearing faults, which also had
the best detection accuracy. In wind turbines (WT) for
the energy sector, SCADA systems usually collect data
that can be used for power prediction, fault detection,
optimal control settings, performance evaluation, and
necessary maintenance. Since the number of offshore
wind turbines has been growing, research has focused on
PdM and fault diagnosis techniques focused on windings
and insulation failures [25]. Furthermore, in [14], the
emphasis was on predicting the RUL for offshore wind
turbine power converters. The authors reviewed the ex-
isting methods and proposed a novel methodology using

a digital twin framework for implementing PdM. Under-
standing the types of failures and how often they might
occur in wind turbines showed how the growing size
of WT generators brings new maintenance problems,
even though they seem to be more robust and reliable
[24]. On the other hand, hydraulic cylinders are widely
used in different industries as mechanical actuators,
and they are affected by a variety of factors, such as
fluid contamination, fluid leakage, worn piston rods, or
internal corrosion. In [26], the results of using various
sensors to diagnose these faults are reviewed. Another
approach to using RUL was shown in [15], where winding
hot-spot temperature usually determined the remaining
life of the power transformer, an important unit used in
electric power generating stations.

Another field of research in PdM is the use of various
signal processing and analysis techniques, such as Fast
Fourier Transform, Wavelet Transform, and Artificial
Neural Network (ANN). This line of work is important
because PdM is mainly based on industrial time series,
which are affected by noise and artifacts. In a recent
work [27], a review of processing methods was done for
current, vibration, and acoustic signal analysis for PdM.
Paper [28] focused only on the vibration signal analysis
due to its low cost and better results compared to others,
especially when using features with a higher dimension,
as opposed to stationary signal processing techniques,
such as the ones described in [29].

To our knowledge, there is only one paper that gives
an overview of the datasets available for a specific in-
dustry. This paper [30] presented a summary of datasets
from wind industry-related resources. The study also
offered a review of research papers that made use of these
datasets. The research topics range from evaluating wind
potential to predicting wind speed and the consequent
output power. The listed datasets were grouped into
three domains: open datasets of wind turbine capacity
and wind farm projects, wind resources, and wind farm
monitoring. While interesting for the wind subsector,
this study did not consider a broader perspective on the
available PdM datasets in the energy sector. Neverthe-
less, the paper was motivational for this study.

Our review of the literature did not find any research
work that would provide a more general overview of the
available datasets for PdM. Review papers in the field of
PdM are focused on the review of maintenance methods,
signal processing methods, and types of failures in a
specific application.

III. REVIEW METHODOLOGY
An overview of the review methodology for selecting
datasets is depicted in Fig. 2. The datasets were reviewed
in a number of scientific and commercial repositories,
namely IEEE DataPort, UCI Machine Learning Repos-
itory, Kaggle, EDP, and Mendeley Data. The keywords
used for searching the datasets were: fault, fault detec-
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FIGURE 2. Review methodology for selecting datasets

tion, predictive maintenance, oil well, oil and gas, wind
turbine, wind power, solar power, photovoltaic farm,
boiler, diesel engines, electric grid, electric power, and
transmission line.

A. INCLUSION CRITERIA
A dataset had to meet certain criteria in order to be
included in the review: 1) the dataset had to have
logs containing information about faults, anomalies, or
maintenance so that it could be used for PdM; 2) the
dataset had to be related to the energy sector and its five
considered subsectors: wind, solar, oil & gas, diesel and
thermal power, electrical power grid; 3) the dataset had
to be IoT-related and not be for general industrial use
(such as hydraulics, gearboxes, bearings, etc.) due to the
significant expansion of the published scientific papers
related to IoT; 4) the data had to be in the format of a
time series (images or graphs were not considered). Only
the datasets that satisfy all of the criteria are selected
and reviewed in this paper.

B. DATASET GRADING
For evaluating the quality of the considered datasets
for PdM, we devised a grading system, where each
dataset was graded as class I, II, or III, with class I
being the highest grade and class III being the lowest
grade. Several simple and objective criteria were used
for grading the datasets, as follows. A class I graded
dataset can not contain data from simulations. Also, for
accessibility reasons, if the dataset was not open-access,
but required significant effort (aside from registration),

it can not be graded as class I. The grade of the dataset
is lowered if it has a relatively small number of instances
(less than 1,000), predictive variables (only 1), or fault
events (5 or fewer). The motivation for using these
thresholds is that ML and DL models may not work
properly if the above criteria are not met. If a dataset has
missing or limited documentation describing the data, or
if the licence information is not available, the dataset is
graded as class III. The grading criteria are summarized
in Table 1.

TABLE 1. Criteria expressions for class affiliation

Class Data source, No ins, No vars, No faults, Access, Doc
& licence

I Real AND ≥1000 AND >1 AND >5 AND Easy AND
Complete

II Simulated OR <1000 OR =1 OR ≤5 OR Hard AND
Complete

III {[Simulated AND (<1000 OR =1 OR ≤5)] OR Hard}
OR Missing

To sum up, only datasets that contain data from
a real source, have more or equal to 1,000 instances,
more than 1 predictive variable, more than 5 faults,
have complete documentation and licence information
and easy access to the data, can be graded as class I
datasets. Simulated datasets, or datasets with a number
of instances, variables or faults under the threshold, or
datasets that have a harder access to data (aside from
the registration process) are graded as class II. Datasets
that are both simulated and have a number of instances,
variables or faults under the threshold, or hard access,
or missing documentation and licence information are
graded as the lowest class: class III. To promote future
datasets, the criteria were intentionally devised in such
a way that a newly published high-quality dataset that
is not yet cited in relevant literature can still be graded
as class I.

IV. DATASETS
After taking into account all of the criteria in the
inspected repositories, 15 datasets were selected and are
considered in this review.

Table 2 shows the main properties of the obtained
datasets. For each dataset, the type of data is listed. For
wind turbines, the datasets are usually in SCADA sys-
tem format together with meteorological (MET) data.
On the other hand, other data are collected from a
variety of sensors (e.g., temperature, pressure, vibration,
voltage, and current sensors) that are specific to each
dataset. We also list the usage licences. Most licences are
CC-BY, which allows users to freely distribute, remix,
adapt, and more, as long as the creator is properly
credited. This type of licence also allows commercial use
of datasets. Whether a dataset contains documentation
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describing the data is noted in the Doc column, as
is information about whether the dataset is simulated
in the Sim column. To better understand the datasets
from a data science viewpoint, the table also shows the
granularity of the data, the number of instances (No

ins), the number of variables (No vars), the number of
faults (No faults) and the name of the repository where
the dataset is provided. The last column contains the
grades (I, II or III) for each dataset.

Table 3 shows the properties of 26 published journal
and conference papers from the Web of Science Core
Collection (WoSCC) database where research work was
done on one of the considered datasets. The statistical,
ML and DL methods used in each paper were listed. The
last described property is the type of PdM task done.
Exploratory data clustering searches for feature clusters
correlated to faulty states. Fault prediction refers to
predicting a fault in advance, while fault detection tries
to detect whether a fault is happening in a specific
instance. Fault type classification focuses on differen-
tiating types of faults, while predicting decay state
focuses on estimating the actual decay state of a specific
component so proper decisions can be made later. Not
all the datasets had published papers that reported their
use, i.e., only 10 of the 15 datasets included in this review
were cited in published articles indexed in WoSCC. In
the selected articles, the most commonly used statisti-
cal method was principal component analysis (PCA).
Among the ML methods, RF was used in 50% of the
articles studied. After RF, the second and third most
frequently used methods were Support Vector Machine
(SVM) and Decision Tree (DT). Most of the published
papers used more than one ML method, either in an
ensemble or for cross-comparison of models. Less than
50% of the included papers used both statistical and ML
methods. DL methods (e.g., CNN, LSTM) were used
only occasionally, despite their recent popularity in the
AI community.

The EDP-WT dataset [31] has the most papers (six
of them), and the second dataset, 3W [32], has five
published papers in WoSCC. In both cases, a high
number of papers correlates with the highest grading
of the dataset, class I. The Naval Propulsion Plant
dataset (1&2) has the same number of published papers
as dataset 3W, although in this case the papers were
authored by only three different research groups that
used similar ML methods.

More detailed properties of the considered datasets
are described below.

A. EDP-WT
The EDP Wind Turbine dataset is part of the EDP-WT
Failure Detection Challenge, which evaluated predictive
capabilities for detecting early failures in WTs. The
components monitored are the gearbox, generator, gen-
erator bearing, transformer, and hydraulic group [31].

The inspection, repair, and replacement costs of these
parts can be found in the documentation and are used to
assess the savings and predictive power of the algorithm.
According to the ranking of the proposed methods on the
challenge, the highest savings achieved was 76,000=C.

The dataset includes 2 years of SCADA data (10-
minute period) from 5 WTs (Wind Farm 1) located in
the West African Gulf of Guinea and the meteorological
mast, including fault detections and event logs. These
datasets are also already split into training and test
datasets (80/20 ratio). The training dataset is from 2016
(a full year) and the test dataset consists of nine months
of data, from January 2017 to September 2017, with
a minimal number of records missing. All datasets are
only available to registered users of the EDP Open Data
Platform where the process of registering is simple.

Some of the SCADA signals (81) are the average
temperatures of various WT components (e.g., gearbox,
oil in hydraulic group, and generator bearing), average
rotor speed, total active power, average nacelle direction,
etc. Some of the signals from the meteorological mast
(40) are maximum, minimum, and average wind speed,
wind direction, pressure, and humidity from multiple
sensors. The dataset contains 28 faults altogether. On
the other hand, the WT logs show various remarks for
the five WTs over the course of two years. Examples
of ∼ 100 different remarks include: pause pressed on
a keyboard, hot generator, pause over RCS, high wind
speed, oil leakage in the hub, etc. However, there is
no documentation available for all the values (codes)
in the log records. These logs may carry some useful
information about the data, but the information is
not necessary for application of PdM, so the lack of
documentation does not lower the grade of the dataset.

B. WT-IIOT
WT-IIoT dataset comes from a single unknown WT.
The dataset is available on the Kaggle domain and
originates from the Microsoft Azure Predictive Mainte-
nance Template [33]. The data could be used to classify
fault modes based on various SCADA components. The
problem is that while the fault log and maintenance
documentation are provided (tables fault_data and sta-
tus_data), the dataset lacks a full description of the
variables and status/fault codes. Licence information is
also not included. Out of the provided data, the status
data have the longest recorded time span from January
2014 to December 2015. The shortest is SCADA data
from April 2014 to April 2015. There are some missing
values, such as when SCADA timestamps don’t match
fault timestamps, simply because at certain times there
are no faults happening.

Some of the 64 SCADA variables are: reactive power,
blade angle, nacel position, and temperatures of the var-
ious systems (e.g., bearing, rotor, and stator). The mete-
orological variables are limited to minimum, maximum,
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TABLE 2. The Overview of the Main Properties of the Obtained Datasets

Dataset Data Licence Doc/Sim Granularity No ins No

vars No faults Repository Grade

Wind Power

EDP-WT [31] MET,
SCADA

CC BY-SA Y / N 10 min 5.2 · 105 121 28 EDP Open
Data I

WT-IIoT [33] SCADA not defined N / N 10 min 49,029 64 553 Kaggle III

OREC [34] MET,
SCADA

documented Y / N 1 s & 10
min

1.5 ·108 &
2.5 · 105

603 &
711 N/A dataPOD I

Wind turbine
PMSG [35]

current ODbL Y / Y 1 kHz 4.2 · 105 2 40 Kaggle II

Solar Power

Fault Detection in
PV Farms [36]

current,
voltage

CC BY-SA Y / Y - 700 31 575 Kaggle III

GPVS-Fault [37] current,
voltage

CC BY Y / Y 10 kHz 2.2 · 106 14 16 Mendeley
Data II

Oil & Gas Industry

3W [32] temperature,
pressure

CC BY Y / N 1 Hz 5.0 · 107 8 1,387 Kaggle I

Valhall OP [10] sensor data documented Y / N sensor de-
pendent ∼ 1 · 108 live

stream N/A Kaggle II

Diesel and Thermal Power Plants

Naval Propulsion
Plant [38], [39]

sensor data CC BY-NC Y / Y - 11,934 &
3.5 · 105

18 &
30

11,934 &
3.5 · 105

UCI ML
Repository II

3500-DEFault [40] vibration,
pressure

CC BY Y / Y 15 kHz 3,500 97 3,250 Mendeley
Data II

EDP - Inside a
Boiler [41]

sensor data CC BY-SA Y / N 5 min 5.8 · 105 114 2 EDP Open
Data II

Simulated Boiler
Fault Data [42]

sensor data CC BY Y / Y - 27,280 7 25,520 IEEE Dat-
aPort II

Electrical power grid

Transmission line
faults [43]

current,
voltage

CC0: Public
Domain

Y / Y 1 kHz 1.2 ·104 &
7861 11 5,496 Kaggle II

Transformer and
PAR transients
[44]

current,
voltage

CC BY Y / Y 10 kHz 7.3 · 107 4 7.3 · 107 IEEE Dat-
aPort II

Transients in IS-
PARs [45]

current CC BY Y / Y - 60,552 4 60,552 IEEE Dat-
aPort II

and average wind speed. The status_data table contains
9 variables, the most useful variable for applying PdM
being the status text describing the current operating
state of WT. Other variables include main status, sub
status, full status, T, service, fault message, and value 0,
which could be useful if additional documentation were
provided to describe each categorical value. In the fault
data, there were five types of faults represented through
553 fault events, even though what they represent is
unknown.

C. OREC

OREC (Offshore Renewable Energy Catapult) is the
UK’s leading technology innovation and research cen-
tre for offshore renewable energy. OREC’s Levenmouth
Demonstration Turbine (LDT) is located off the coast
of Fife in Scotland and is the world’s most advanced
open access offshore wind turbine (7 MW, Samsung)
dedicated to research and development. The OREC’s
data collection consists of a meteorological and a LDT
SCADA dataset provided at 1-second and 10-minute in-
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TABLE 3. Datasets in Articles

Dataset Published work Statistical methods ML methods PdM task

EDP-WT

Menezes et al. 2020 [30] PCA - Exploratory data
clustering

Garan et al. 2022 [46] high correlation fil-
ter, PCA, ICA DT, feature selection Fault prediction,

RUL

Wisdom and Yar 2021
[47]

Statistical Process
Control (SPC) LSTM, MLR, XGBoost Fault prediction

Latiffianty et al. 2022
[48] CUSUM LoMST Fault detection

Tidriri et al. 2021 [49] - DT, RF, MLP, SVC
Fault prediction
and type
classification

de Sa et al. 2020 [50] - Soft Label SVM, Hard Label
RF, NSGA-II Fault detection

OREC
Chatterjee and Dethlefs
2020a [51] - LSTM, XGBoost Fault prediction

Chatterjee and Dethlefs
2020b [52] - Attention-based CNN, de-

confounder Fault prediction

Fault Detection in PV
Farms

Ghoneim et al. 2021 [36] - RF, LR, NB, AdaBoost,
CN2 rule induction

Fault detection and
type classification

GPVS-Fault
Bakdi et al. 2021 [53] KLD, PCA, KDE - Fault detection

Wali and Khan 2022
[54] - RF, SHAP Fault type classifi-

cation

3W

Marins et al. 2021 [55] PCA RF Fault detection and
type classification

Li et al. 2021 [56] Rademacher com-
plexity

TF-IDF, knowledge graph
embedding Fault prediction

Soriano-Vargas et al.
2021 [57] z-score Isolation Forest Fault detection

Turan and Jäschke 2021
[58]

t-test, PCA, LDA,
QDA

DT, LR, SVM, RF, Ad-
aBoost

Fault prediction
and type
classification

Carvalho et al. 2021 [59] z-score, LDA, QDA 1NN, GNB, ZR, RF Fault detection

Naval Propulsion Plant
(1&2)

Coraddu et al. 2015 [60] - SVR, RLS Predicting decay
state

Coraddu et al. 2016 [61] - SVR, RLS Predicting decay
state

Cipollini et al. 2018a
[62] - ANN, RLS, SVR, RF, RRE,

KNN
Predicting decay
state

Cipollini et al. 2018b
[63] - ANN, RLS, SVR, RF, RRE,

KNN, GKNN, OCSVM
Predicting decay
state

Tan et al. 2021 [64] - Isolation Forest Predicting decay
state

Simulated Boiler Fault Data Shohet et al. 2020 [65] - KNN, DT, RF, SVM Fault detection

Transmission line faults Jamil et al. 2015 [66] correlation
coefficient ANN Fault detection and

type classification

Transformer and PAR
transients

Bera et al. 2018 [67] t-test Extremely Randomized
Trees, RF, MLP, LR, SVM

Fault type classifi-
cation

Bera et al. 2020 [68] - SVM, RF, DT, GBC Fault detection and
type classification

Transients in ISPARs Bera and Isik 2021 [69] -
Minimum Redundancy Max-
imum Relevance, RF, XG-
Boost, NB, SVM, NN, KNN

Fault detection and
type classification
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tervals, respectively [34]. The collection can be searched
through the POD (Platform for Operational Data) ser-
vice, where a small data sample can also be retrieved.
To gain full access to the data, a POD registration is
required, where the customer must specify how the data
will be used. The terms and conditions agreement is
extensive (24 pages) and differs for each dataset.

The large number of available variables can be fil-
tered by functional groups (cooling system, machinery
enclosure, met mast, general, alarms, etc.), measured
variables (temperature, pressure, rotation, etc.), units,
and data types. After specifying the variables and time
interval, a small fee is charged to cover the cost of data
retrieval, depending on the size or complexity of the
query. It is charged only after the responsible person
has received the query.

All data are available as of January 2017 and are
updated every month, except for LDT Substation data,
which are available as of September 2017. Therefore,
the estimated number of the meteorological mast and
SCADA entries is 1.5 · 108 and 2.5 · 105 for 1-s and
10-min data, respectively. Since data access is limited,
the number of missing values is unknown. Some of
the SCADA signals (573) are: yaw brake pressure, yaw
motor temperature state, mainframe and hub tempera-
tures, generator export energy, and rotor speed. Some
of the signals from the meteorological mast (14 for 1-Hz
measurements and 66 for 10-minute measurement inter-
vals) are: wind speed at different heights, wind direction,
pressure, and temperatures at different heights. The
alarm log contains ten columns, some of which include:
the time the alarm started and ended, the downtime,
the reference number indicating the event code, and
the source of the stoppage. The alarm log could be
used as a target variable when applying PdM. Some of
the SCADA signals from the LDT substation (16 for
1 Hz measurements and 72 for 10-minute measurement
intervals) include: power factor, reactive power, voltage,
and current. A detailed description of the SCADA,
meteorological and all other variables is available on
site. In addition, documentation is included with the
SCADA records explaining the WT status codes and
abbreviation entries. Event codes and their descriptions
are also available on the LDT Alarm Log Record page.

D. WIND TURBINE PMSG
Permanent Magnet Synchronous-based Generator
(PMSG) are commonly used as wind generators in wind
turbines. They recurrently interrupt their operation due
to stator faults. These faults usually occur between turns
(turn-to-turn fault) or between a turn and the machine
housing (turn-to-ground fault) [70]. The most common
type of internal fault is the leakage current of the coils
through connections caused by faults in the insulation
of the components. The objective of the dataset is to
enable evaluation of the effects of the fault severity due

to different positions of the fault in the stator coil and
the number of turns [35].

The dataset comes from simulating a mathematical
model of PMSG using Simulink/MATLAB. There are
several parameters varied for the simulation:

1) types of operation: normal, turn-to-turn, turn-to-
ground

2) generator load [%]
3) switching frequency of the power converter [kHz]
4) percent of faulty turns [%]
5) fault resistance: range from 0 (total insulation

break) to ∞ (no faulty).

The dataset contains instances representing current
signals from normal stators and faulty stators in the
range of 1% to 10% of faulty turns of type 1 and type
2. The data were saved in .mat format, with the file
name containing event information (switching frequency,
type of fault, and fault resistance). Each file contains
two variables: Is measures current values, and tempo
measures time steps. The dataset includes 42 events, 40
of which are of the faulty type and 2 of the normal type.
Since this is a simulated dataset, there are no missing
data.

E. FAULT DETECTION IN PV FARMS
This dataset consists of measurements on a simulated
250-kW PV system created using Simulink/MATLAB
[36]. The purpose of the dataset is to evaluate the effects
of faults happening on various locations and various
conditions on PV systems. The PV system consists of
88 parallel strings, each including seven series modules.
Each module has 128 cells, a maximum power of 414.801
W at 72.9 V, a current of 5.69 A, an open-circuit voltage
of 85.3 V, and a short-circuit current of 6.09 A.

The data were split into training (600 instances) and
test (100 instances) datasets. There are four defined
states:

1) free-of-fault (16.67%)
2) string fault, tested on string 1 (25.50%)
3) string to ground fault, tested on string 1 (24.83%)
4) string-to-string fault, tested between strings 1 and

2 (33%)

There are 12 attributes, 6 of which are currents mea-
sured by 2 ammeters at the top and bottom of the
strings 1, 2, and 3 during simulation, total average
DC voltage, total average DC power, total average
current, temperature, radiation, and class. For each
current measurement, an average, maximum, minimum,
and variance value were extracted, giving a total of 30
features. The temperature, radiation, and fault resis-
tance measurements ranged from 10°C to 35°C, 100 W2

to 1,000 W2, and 1 Ω to 2,000 Ω. The total simulation
time was 0.4 s, and it was assumed that a fault occurs
at 0.2 s. In the training dataset, all measurements were
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made after the fault occurred in the period from 0.2 s
to 0.4 s.

F. GPVS-FAULTS
The Grid-connected Photovoltaic System Faults
(GPVS-Faults) dataset is the result of laboratory ex-
periments on faults in a PV microgrid application [37].
The data were obtained from sensor measurements and a
virtual Phasor Measurement Unit (PMU). Experiments
ran for approximately 10 to 15 seconds, with faults
manually inserted halfway through the experiments.
Each experiment was run in two modes: Limited Power
Mode (IPPT) and Maximum Power Mode (MPPT).

There are 16 data files corresponding to seven types
of faults (inverter fault (F1), feedback sensor fault
(F2), grid anomaly (F3), PV array mismatch (F4, F5),
MPPT/IPPT controller fault (F6), and boost converter
fault (F7)) and one fault-free experiment. The faults
have different severities and occur at different locations.
The data files are available in both .mat and .csv
formats. Each data file contains 14 variables: time, PV
array current and voltage measurements, DC voltage
measurements, phase A, B, and C current and voltage
measurements, and positive-sequence estimated current
and voltage magnitude and frequency. A more detailed
description of the individual faults and the experimental
setup can be found in the documentation [53].

Unlike other simulated experiments, the exact times-
tamp of fault occurrence is not known, the high-
frequency measurements are noisy, and there are tem-
perature and insolation disturbances and variations dur-
ing and between scenarios. Different modes (MPPT or
IPPT) have adverse effects on detecting low-magnitude
faults. The challenge is to detect the faults before they
cause total failure.

G. 3W
The 3W dataset consists of data collected by the Brazil-
ian company Petrobras on naturally flowing offshore
wells [32]. The goal of this dataset is to evaluate the
effects of different types of events using eight process
variables. The name 3W was chosen because the dataset
is composed of instances from 3 different sources (real,
simulated, and hand-drawn) that contain adverse events
in oil Wells. The eight types of events are:

1) Abrupt Increase of Basic Sediment and Water
(BSW)

2) Spurious Closure of the Downhole Safety Valve
(DHSV)

3) Sever Slugging
4) Flow Instability
5) Rapid Productivity Loss
6) Quick Restriction in the Production Choke (PCK)
7) Scaling in Production Choke (PCK)
8) Hydrate in production line

The adverse events are characterized by eight process
variables: pressure at the permanent downhole gauge
(P-PDG), pressure (P-TPT) and temperature at the
temperature/pressure transducer (T-TPT), pressure up-
stream of production choke (P-MON-CKP), tempera-
ture downstream of production choke (T-JUS-CKP), gas
lift flow rate (QGL), pressure (P-JUS-CKGL) and tem-
perature downstream of gas lift choke (T-JUS-CKGL).

The data were collected from 21 different wells, with
the oldest event occurring in April 2012 and the most
recent in June 2018. The data are divided into folders
according to the event type, and there are a total of
1,984 instances with a total of 15,872 variables. There
are two types of instance labeling. Each instance was
labeled with a single code representing one of the adverse
events or normal operation, a total of nine different
codes. The second labeling was done at the observation
level, so that each instance has up to three periods:
normal, faulty transient, and faulty steady state. Only
the following units were used: Pascal [Pa], standard
cubic meters per second [m3/s], and degrees Celsius
[◦C]. The source of each instance was specified in the
name of the file. All instances were obtained at a fixed
sampling rate of 1 Hz. There are several difficulties
with the actual data described in the documentation:
missing variables (31.17%), frozen variables (9.67%) and
unlabeled observations (0.01%). Some events are less
frequent than others, so for some adverse events, most of
the available data are simulated and hand-drawn events.
Although there are difficulties with the data, the dataset
is not degraded to a lower class due to the large amount
of high quality data and the well-written documentation.
Rather, this dataset stands out among all others as
the only one that has labeled transition periods that
facilitate the implementation of PdM by using domain
knowledge specific to each type of failure.

H. VALHALL OP
The data were collected from a single compressor on the
Aker BP’s oil platform (OP), located in the North Sea
in the Valhall field [10]. The dataset includes time series
data, maintenance history, process and instrumentation
diagrams for Valhall’s first (of four) stage natural gas
compressor and associated process equipment: a first
stage suction cooler, a first stage suction scrubber, and
first stage discharge coolers. The gas compressor is used
to compress and treat the gas to meet the required
export pressure and specifications. Only the first stage
compressor was selected because it is a subsystem with
clearly defined boundaries.

The dataset is available as part of the Open Industrial
Data Project with the goal of analyzing changes in the
provided time series data due to maintenance history.
The project is the result of a collaboration between Aker
BP, one of Europe’s largest independent oil companies,
and Cognite, a Nordic software company. A live data
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stream is provided on a subscription basis and is free
of charge. Full access is available to registered users via
Cognite’s Asset Data Insight, a web-based visualization
tool for analyzing, monitoring and planning data, and
an API key. SDK installation is required to retrieve data
from multiple data sources and make it available as one
complete dataset. The terms of use are specified in a
document available upon registration. Depending on the
variable and time interval selected, some values may be
missing. In reviewing the data, it was found that the
majority of the data prior to 2013 has significant gaps.
Some examples of time series that can be accessed with
Asset Data Insight from Cognite are valve position, valve
temperature, compressor suction pressure, compressor
discharge flow, and motor vibrations.

I. NAVAL PROPULSION PLANT (1 & 2)
These two datasets include data necessary for applying
predictive maintenance for naval propulsion systems,
specifically to gas turbines. The data were simulated
using a numerical simulator of a naval vessel (frigate)
in Simulink/MATLAB.

The first data edition is characterized by a gas turbine
(GT) propulsion plant [38]. The various blocks that
make up the complete simulator (propeller, hull, GT,
gear box, and controller) have been developed and fine-
tuned on several similar real propulsion plants in their
previous works [71], [72]. Measurements of 16 features
that indirectly represent the state of the system sub-
jected to performance decay have been acquired and
stored in the dataset through the parameter space. Some
of these features are lever position, ship speed, GT shaft
torque, GT and gas generator rate of revolutions, GT
compressor inlet and outlet air temperature and pres-
sure, and fuel flow. In addition, the degradation coeffi-
cients of the compressor and turbine are also calculated.
Each possible degradation state can then be described by
a combination of the compressor degradation coefficient,
the turbine degradation coefficient, and the ship’s speed
(which is a linear function of lever position). The range
of compressor and turbine degradation was sampled with
a uniform grid of 0.001 precision to achieve good granu-
larity of representation. The ship speed was investigated
by sampling the range of possible speed from 3 knots to
27 knots with a granularity of representation of 3 knots.

The second dataset edition is characterized by a
COmbined Diesel ELectric And Gas (CODLAG) propul-
sion plant [39]. The blocks describing the behavior
of the main components of the system are the GT,
the GT compressor, the hull and the propeller. Each
entry contains a 25-feature vector and additional five
degradation coefficients: propeller thrust and torque
decay state coefficients, GT compressor and turbine
state coefficients, and hull decay state coefficient. Both
datasets are simulated and there are no missing values.
The stated licence for the second edition is CC BY-NC,

meaning that any commercial use is prohibited.

J. 3500-DEFAULT
The objective of this dataset is to diagnose diesel engine
faults and support predictive maintenance, which was
achieved by analyzing the variation of cylinder pressure
curves and crankshaft torsional vibration response [40].
The engine chosen as a case study is the MWM Acteon
6.12TCE diesel engine with a four-stroke cycle. The
database includes a total of 3500 different fault scenarios
for 4 different operating conditions: normal (no fault,
250 scenarios), pressure reduction in the intake mani-
fold (250 scenarios), compression ratio reduction in the
cylinders (1500 scenarios), and reduction in the amount
of fuel injected into the cylinders (1500 scenarios). The
dataset is simulated and does not contain missing values.
In all scenarios, the engine rotation frequency was set at
2500 RPM because it had the lowest joint error rate
in the estimation of the mean and maximum pressures
of the combustion cycle between the experimental data
(according to the data provided by the manufacturer)
and the simulated data during the validation phase of
the thermodynamic and dynamic models. However, this
high rotation frequency is not characteristic of naval
ships

The dataset has 97 variables. The first 84 columns
correspond to a feature vector. The last 13 columns
refer to the severity (up to 50%) of the engine oper-
ating variables. The adopted feature vector was selected
from the thermodynamic model and obtained from the
processing of signals such as pressure and temperature
inside the cylinder and the torsional vibration of the
engine flywheel. The vector was created by estimating
the mean and maximum pressure values from the six
pressure cylinder signals (12 variables) and obtaining
spectral information from the torsional vibration curves
(72 variables). The cylinder and vibration signals were
simulated at a sampling frequency of 15 kHz for 1.008 s,
giving a total of 15120 samples for each channel signal.
The spectral variables include the first 24 harmonics (the
first 24 half orders of the engine) of torsional spectrum
frequency, amplitude, and phase.

K. EDP - INSIDE A BOILER
The EDP Boiler Dataset contains three years of data
recorded at two boilers (X and Y) used in a thermal
power plant as part of an EDP challenge to predict
the onset of slag formation [41]. Therefore, previously
detected slagging events with different corresponding in-
tensity levels are included. There is a minimum number
of missing values. Years are anonymized (e.g., "xxx0" is
the first year of data, "xxx1" is the second year of data,
etc.). This dataset is only available to registered users
of the EDP Open Data Platform.

The dataset includes 141 variables, the description
of which is included in the dataset documentation.
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Some of the variables are boiler furnace pressure, drum
temperature, reheated steam temperature at inlet and
outlet, main steam pressure, and so on. The documen-
tation states that the data were recorded every minute.
However, the records indicate a sampling frequency of 5
minutes. The task of the EDP challenge was to success-
fully predict the next slagging event. A total of 2 slagging
events are labeled. The EDP challenge is scored based
on the total predicted savings and costs caused by true
and false positive predictions. Savings from true positive
predictions can be as high as 350,000 =C, depending on
how early the slagging event was predicted.

L. SIMULATED BOILER FAULT DATA
The dataset consists of data simulated for the Viessmann
Vitorond 200 Gas Fired Boiler VD2 Series 380 using
Simulink/MATLAB based on the Simscape boiler model
[42]. The purpose of the dataset is to evaluate three
types of faulty states under varying conditions. The data
consist of five simulated variables:

1) fuel flow rate [kg/s],
2) ambient air condition [K],
3) heating hot water return temperature [K],
4) heating hot water supply temperature [K],
5) boiler loop flow rate [kg/s].

The variables are usually monitored by building au-
tomation systems (BAS). The model was validated by
replicating the test conditions of ANSI/AHRI Standard
1500 - Performance Rating of Commercial Space Heating
Boilers, comparing the outputs with published manufac-
turer data. The data were split into one normal state
and three faulty states: excess air (15-50%), fouling of
the heat exchanger (1-46%), and scaling of the water-
side heat exchanger element (1-46%). All faults were
simulated with a step size of 5%. Different iterations
were performed by changing the gas fuel rate (1-4 kg/s),
water mass flow rate (3-12.5 kg/s), and combustion
temperature (283-303 K). A total of 27,281 simulations
were performed using a factorial sampling method. Since
the dataset was simulated, there are no inconsistencies
or missing data. An IEEE DataPort subscription is
required for full access to the dataset.

M. TRANSMISSION LINE FAULTS
Transmission lines are the most important part of the
power grid. In this dataset, fault detection on transmis-
sion lines is studied because quick detection and clas-
sification of faults can help keep the power grid stable
[43]. The complete dataset is located on Kaggle, under
the title Electrical Fault Detection and Classification.
The dataset comes from measurements made on a power
system simulated with Simulink/MATLAB. The system
consists of two 400 kV generators located at each end of
the transmission line. The length of the transmission line
is 300 km and the model was simulated for various types

of faults at different locations along the transmission line
length with different values of the fault resistance.

There are two datasets present, each having six input
variables: three voltages of the respective three phases
and three currents of the respective three phases. Both
are normalized with respect to the pre-fault values of
the voltages and currents, respectively. The first dataset,
detect_dataset.csv, deals with the fault detection prob-
lem and contains 12,001 instances. All instances are
binary labeled, with 0 representing the No-fault state
and 1 representing the Fault is present state. The
second dataset, classData.csv, addresses the problem
of classifying the type of fault. Instead of one, there
are four output variables, each corresponding to the
fault condition of each of the three phases, and one
output for the ground line. The output is either 0 or
1 and represents the absence or presence of a fault
on the corresponding line A, B, C, or G (where A,
B, and C represent the respective three phases of the
transmission system and G represents ground). There
are ten possible fault types, but only five of them are
present in the dataset, along with a no-fault state. This
dataset contains 7861 instances. Both datasets contain
5,496 fault events. Since the dataset was simulated, there
are no inconsistencies or missing data.

N. TRANSFORMER AND PAR TRANSIENTS
This dataset consists of 3-phase differential currents
from internal faults and six other transient cases in a
5-bus interconnected system for phase angle controllers
(PAR) and power transformers [44]. PARs are a special
class of transformers used to control active power flow
in parallel transmission lines. In systems using parallel
transmission lines, detecting and classifying the type
and location of faults is important to enable a timely
reaction and contain the failure locally. These types of
faults cannot be predicted in advance, so this dataset can
be used to implement supervisory system control. The
dataset was created using PSCAD/EMTDC software
to simulate power transformers and indirect balanced
phase angle regulators (ISPAR) with the same voltages
at the transmit and receive ends and with two trans-
former units. By varying different system parameters,
100,908 transient cases are simulated. The simulation
was performed for three types of internal faults and six
types of transient disturbances. The internal faults are:

1) power transformer internal faults (36720 files),
2) ISPAR series transformer internal faults (36720

files),
3) ISPAR exciting transformer internal faults (14688

files),

where each has 11 types of faults defined (e.g., phase A
to Ground, Phase AB to Ground, Phase AB,...) together
with turn-turn fault and winding-winding fault case.
The six types of transient disturbances are:
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1) capacitor switching: 180 files,
2) external faults with current transformer (CT) sat-

uration: 7920 files,
3) ferroresonance: 720 files,
4) magnetizing inrush: 1800 files,
5) non-linear load switching : 360 files,
6) sympathetic inrush: 1800 files.
Each text file has 726 rows and 4 columns: time, phase

A of the differential current, phase B of the differential
current, and phase C of the differential current. In each
text file, time starts at 0.05 s and ends at 0.1225 s.
The internal faults and transients occur 15.0 s after the
start of each simulation case for the internal faults and
transients. In the text files, there are 3-phase differential
current samples from 15.0 s (0.05 s) to 15.0725 s (0.1225
s), forming 726 rows. An IEEE DataPort subscription is
required for full access to the dataset.

O. TRANSIENTS IN ISPARS
This dataset consists of simulated data for internal
faults and transient cases for ISPARs [45]. Similarly
to the dataset Transformer and PAR transients, these
types of faults cannot be predicted in advance, but
classifying the type and location of faults in a timely
manner is important to minimize the effect on the
whole network. One possible implementation of this
dataset is supervisory system control. The data were
simulated using PSCAD/EMTDC software. The inter-
nal faults are simulated on the primary and secondary
sides of the exciting and series units. They include
the faults that occur inside the enclosure and at the
locations of CTs. Basic internal faults include short
circuits and phase faults, turn-turn faults, and winding-
winding faults. Transients include magnetizing inrush,
sympathetic inrush, external faults with CT saturation
and overexcitation conditions.

The variable inputs to the simulations were the per-
centage of turns shorted, fault resistance, faulty unit,
fault type, fault inception time, phase shift: forward &
backward, and PAR tap positions. This resulted in a
total of 60,552 fault cases, of which 46,872 were internal
faults and 13,680 were transient faults. The dataset
consists of 12 files. Files fault_location contain measure-
ments of phase A, B, and C for the internal fault cases.
Each row represents one cycle and consists of 167 sam-
ples. File fault_location_target contains information on
the location of the fault (series or exciting unit). The files
called transients contain measurements for phases A, B,
and C for the transient fault cases. The type of transient

fault is marked in the file fault_transient_target. Since
the dataset was simulated, no inconsistencies or miss-
ing values are present. The dataset also includes files
fault_transient for which no documentation is provided.

The total run time of the simulation is 10.2 s, the
switching time is 10.0 s, and the duration of faults is 0.05
s (3 cycles). An IEEE DataPort subscription is required
for full access to the data.

V. DATA-DRIVEN PIPELINE FOR PREDICTIVE
MAINTENANCE
As mentioned earlier, data-driven approaches are the
most common choice for achieving efficient PdM. A typ-
ical data-driven PdM pipeline for the reviewed datasets
is shown in Fig. 3. Any data-driven method starts with
the acquisition of data from a repository. The next step
is data preprocessing, where the data are processed and
transformed so that they can be efficiently processed by
a statistical, ML or DL model. Common preprocessing
activities include data transformation (normalization),
data cleaning (removing noise, outliers, missing or frozen
variables), and data reduction [73].

The following step is feature extraction. In some cases,
the dataset consists of already extracted features (e.g.,
EDP-WT [31]) such as minimum, maximum, mean,
and standard deviation of the signal. In other cases,
the dataset contains time series coming from different
sensors (e.g., 3W [32]). After feature extraction, a rec-
ommended step is feature selection, which is used to
reduce the dimensionality of the dataset by selecting the
most relevant features and eliminating the redundant
and irrelevant ones. The final step is the training of
one or more models (model development) and validation
(evaluation of model performance). The best model is
selected based on its performance metrics related to
the goal. The goal is to predict/detect/classify faulty
conditions or predict the RUL of a system or a machine
part.

After getting the information about fault diagnosis
or RUL, maintenance can be scheduled, and/or spare
parts can be ordered. Scheduling maintenance according
to these predictions reduces the number of unnecessary
equipment checks, extends the lifetime of aging assets,
and resolves equipment problems before faults occur,
thus increasing the safety of the work environment [2],
[46].

VI. DISCUSSION
The main challenge in this study was the small number
of datasets with maintenance logs or recorded faults

FIGURE 3. Common data-driven pipeline for PdM
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that are publicly available. Without maintenance logs
or recorded faults, it is impossible to implement PdM
because the existing approaches are mainly data-driven.
Most of the datasets originating from the energy in-
dustry focus on predicting the generated power output,
such as the Yalova WT dataset [74] and the La Houte
Bourne Wind Farm [75], or the profitability of a plant,
such as the Russian Oil Well dataset [76]. Some datasets
were made with the intent of gathering information that
can help address maintenance and energy management
problems, such as the Sunlab Faro dataset [77], where
labs were set up to test the performance and reliability
of PV modules under different weather conditions and
installation techniques, and the Container Vessel dataset
[78], where data could be used to incorporate decision
strategies to reduce human intervention to improve
the shipboard energy management system in real time.
However, none of these datasets contained any type
of anomaly, fault, or maintenance logs, making them
useless for the PdM problem.

The datasets included in this review can be divided
into two groups depending on the source of the data:
simulated or real-life. More than 50% of the datasets
contained data simulated using MATLAB or collected in
an artificial environment (e.g., an experimental setup).
These datasets could be useful in obtaining a proof-
of-concept, but depending on the setup, the results
could vary significantly from real-life data. In Table 4,
a comparison of real-life and simulated datasets is given
in terms of advantages and disadvantages for PdM.

TABLE 4. Comparison of real-life and simulated datasets

Real-life dataset Simulated dataset

Advantages

• real measured data • balanced dataset

• varying conditions of faults

Disadvantages

• small number of faults
• simulation does not ade-

quately describe the real sys-
tem

• imbalanced dataset • small number of variables

• data need preprocessing

• inconsistent data labeling

The listed advantages and disadvantages of datasets,
together with other remarks on good practices, are fur-
ther discussed along several topics: quality of data, data
labeling, data collection, and evaluating PdM solutions.
Afterwards, the results of the new grading system are
analyzed and guidelines for creating new PdM datasets
are given. In the end, we discuss the direction of future
research.

A. QUALITY OF DATA
The main concern when analyzing datasets is data
quality. When working with real-life datasets, many
problems can occur during the process of measuring and
recording data, such as broken sensors or inconsistent
labeling. Most real-life datasets need to go through pre-
processing (removing noise, missing or frozen variables,
and outliers), which is not the case with simulated
datasets.

Another point in data quality is the dataset size,
such as the number of events, number of variables,
and number of instances. When applying PdM, it is
important to have a good number of faulty events that
are the focus of observation. The problem is that real-
life datasets mostly contain a small number of fault
events, due to the nature of machines that rarely fail. For
example, the EDP - Inside a Boiler dataset [41] contains
only 2 faulty events, whereas the EDP-WT [31] contains
28 of them. This problem also leads to imbalanced
datasets, where the simulated datasets usually have an
equal number of instances with faults and normal states.
To address this problem, data would need to be collected
from real sources over longer periods of time, not just
months, but years. Such a long period of data collection
presents several challenges, such as storage, speed of
data analysis, and the cost of constantly updating and
annotating the data.

Simulated datasets, aside from usually being bal-
anced, also have the possibility to vary different condi-
tions that can lead to a fault. In this way, the behaviour
of the system can be studied more thoroughly, allowing
the construction of a better PdM model. On the other
hand, the main problem with simulated datasets is
that they can never describe a real system completely
accurately. When building a simulation model, the focus
is usually on simulating specific parts of the system
or processes, not the whole system. This is one of the
reasons why most of the simulated datasets have a
small number of variables, such as Transformer and PAR
transients (4 variables) [44], Transients in ISPARs (4
variables) [45], and Wind Turbine PMSG (2 variables)
[35].

Considering all the listed advantages and disadvan-
tages, the 3W dataset [32] stands out in several ways.
This dataset contained more faults (1387 instances) than
other similar datasets, and it was also the only dataset
that contained data from three different sources: real
(428 instances), simulated (939 instances), and hand-
drawn (20 instances). Nevertheless, some faulty events
were more prevalent than others, which can lead to
the aforementioned class imbalance problems in machine
learning PdM models [79].

Depending on the quality of the data, some of the
listed problems can render a dataset unusable in the
worst case.
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B. DATA LABELING
Almost all of the datasets included just two types of
data labels: normal and faulty. The 3W dataset is unique
in being the only dataset that includes not only data
from a faulty state, but also labels of the transition
periods for each type of fault. Knowing the transition
period for different types of faults is important because
it allows for the prediction of faults and the detection of
anomalies before they occur. For many types of faults in
different systems, there is a lack of domain knowledge
that could indicate how early a faulty state can be
detected. Another important problem is the time period
over which a prediction of a faulty state is considered
useful. For example, if a correct prediction is made
minutes or hours rather than days or months before
a fault event occurs, does that make a difference in
terms of reducing maintenance costs? In the EDP-WT
Dataset Challenge [31], the authors set a fixed transition
period of 60 days before a fault event. If the fault
event was correctly predicted between 2 and 60 days
before the fault event, it was considered a true positive,
meaning savings were achieved. The problem with a
fixed transition period is that the dataset includes many
types of faults occurring on five different components
(gearbox, generator, bearings, transformer, hydraulic
group), which means that each fault is unique and should
be treated differently.

C. DATA COLLECTION
The data for all real-life datasets were gathered using
a variety of sensors integrated into the systems under
consideration. The most common sensors measured tem-
perature, pressure, current, voltage, and vibration. We
note that although all of the sensors can be integrated
into a system in an IoT setting, the datasets considered
do not include information about the protocols used.
Among the non-simulated datasets, the Valhall OP
dataset [10] stands out as the only dataset whose data
are being directly live-streamed via Open Industrial
Data (OID) project. Free access to the data is the result
of a collaboration between Aker BP and Cognite, whose
goal is to accelerate innovation in data-intensive fields.
On the other hand, three out of four datasets in the wind
subsector use data gathered from SCADA systems. If we
compare IoT and SCADA systems, we could say that
IoT is a natural extension and evolution of SCADA, with
one of the common concepts being machine-to-machine
(M2M) communication [80].

D. EVALUATION OF PDM SOLUTIONS
To evaluate ML models used for PdM in the obtained
dataset cases, authors typically use common metrics
such as accuracy, precision, and recall [52], [55], [58],
[81]. The EDP-WT dataset [31] and EDP - Inside a
Boiler dataset [41] stand out as the only datasets that
include costs for replacement, repair, and inspection for

each component. The authors also included a formula for
calculating total prediction savings to evaluate solutions
for PdM. In this way, the benefits of using PdM models
are clearly visible [82], [83].

E. GRADING RESULTS AND GUIDELINES FOR NEW PDM
DATASETS
Finally, after analyzing all criteria, only three datasets
in Table 2 were graded as class I (EDP-WT, OREC, and
3W). In contrast, two datasets were graded as class III
because of various problems, such as missing documenta-
tion or license information, or a relatively small number
of instances or faulty events. These problems make it
difficult to implement PdM. Among the datasets that
were graded as class II, many are of good quality and
can be used for PdM, but the datasets are simulated.

When creating a new dataset for the PdM use case,
the focus should be on getting real-life data, because
simulated datasets can never accurately describe the
real system. The most important point is recording
a larger number of fault events, which can be done
by gathering data for a longer period of time on one
system or gathering data from multiple instances of the
same system. The data should be preprocessed (frozen
or missing variables removed) and the data labeling
should be done consistently. Documentation describing
variables, types of faults, and system components must
be provided. If possible, it is recommended to include the
cost of specific faults or maintenance, to better evaluate
different PdM solutions. Expert knowledge of specific
faults is encouraged and can be included in data labeling,
such as adding labels for transition states, not labeling
only faulty or normal states.

F. FUTURE RESEARCH
Some of the datasets obtained through search, but not
elaborated in this review, were datasets that did not
include time series, instead, they consisted of images.
Those datasets are: PV cell anomaly detection dataset
[84] that contains infrared images of PV cells with
different types of anomalies, Vibration time-frequency
images of wind turbine planetary gearboxes [85] that
contains a total of 160 vibration time-frequency maps,
and Frequency occurrence plots for motor fault diagnosis
based on image recognition [86] that has 150 three-
second sampling motor current signals.

In addition to the inspected PdM datasets that are
specific to the energy sector, there are also PdM datasets
that are for general use, meaning the focus of the dataset
is on a specific part of a machine that is widely used in
different types of industries, such as Intelligent bearing
fault diagnosis dataset [87], Gearbox Fault Diagnosis
[88], Composed fault dataset (COMFAULDA) [89], and
Microsoft Azure Predictive Maintenance dataset [90].
While the focus of this work was on energy sector
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datasets, for further research, some of these datasets
could also be considered.

VII. CONCLUSION
Predictive maintenance is an important part of Indus-
try 4.0 and has the potential to improve maintenance
processes and reduce costs and environmental impact
in the energy sector. One of the keys to applying
PdM to the energy industry is the availability of high-
quality datasets that would allow researchers to build
models with broader applicability. In this paper, exist-
ing datasets and their properties were examined, their
advantages and limitations were highlighted, and an
objective grading was proposed. A total of 15 datasets
were included and described for five subsectors of the
energy sector: wind, solar, oil & gas, diesel & thermal,
and electrical power.

Less than half of the datasets received had data that
came from real sources. The datasets included data
collected by a variety of sensors, with temperature,
pressure, current, and voltage being the most common.
The Valhall OP dataset [10] went a step further than
other datasets in that it provided a live stream of
data that was freely available. Whereas non-simulated
datasets are the most valuable, they often contain a
small number of faults because machines rarely expe-
rience them. Unlike other datasets that use two labels
for data: normal and faulty, the 3W dataset [32] stands
out as the only one that introduces a new label, the
transition period. Knowing the transition period of a
fault can help understand how early a fault can be
detected.

A grading system was devised to evaluate the quality
of each dataset. According to the criteria, two datasets
were graded as class III, ten datasets were graded as class
II, and only three datasets (EDP-WT, OREC, and 3W)
were graded as class I, standing out as highly valuable
for PdM research in the energy sector.

From our review of the field, it can be concluded
that many more high quality datasets need to be made
available to achieve a wider dissemination of effective
predictive maintenance models. Future work will include
exploration of other datasets mentioned earlier in the
discussion that either contain PdM data that are not
specific to the energy sector or contain other data
formats, such as images instead of time series.
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