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Abstract—Many solutions display DICOM images locally or 

in a web browser but require that the full DICOM images be 

transported over the network or on a physical medium. As 

DICOM image size and the number of DICOM images increase, 

their transport over the Internet becomes more difficult.  

Contemporary computer resources used by physicians cannot 

keep up with the ever-increasing amount of new DICOM data, 

which complicates and prolongs diagnosis. This problem is 

exacerbated in the COVID crisis, making it difficult to examine 

patients, communicate between patients and physicians, and have 

physical access to DICOM images and volumetric data. In this 

paper, we present a distributed architecture for remote 

rendering of DICOM images. We propose an innovative web-

based solution hierarchically divided into several levels that can 

be used to manage patient data, DICOM images, and radiology 

reports based on those images. The architecture is organized to 

leverage existing hardware, storage, and telecommunications 

infrastructure. We have approached the solution in such a way 

that the images are stored in healthcare facilities, preferably 

where they were taken, and only the necessary data is securely 

and seamlessly transported to the physicians. Our carefully 

engineered solution shows significant improvements in terms of 

rendering time and speed of data transfer, which is about 110 ms 

for an image with a resolution of 1996 by 2457 pixels, achieving 

seamless user experience for at least Full HD images. 

Keywords—DICOM, remote rendering, hierarchical 

architecture, web application 

I. INTRODUCTION 

DICOM (Digital Imaging and Communications in 
Medicine) is the international standard for medical images and 
related information developed by the American College of 
Radiology (ACR) and the National Electrical Manufacturers 
Association (NEMA). It is divided into 22 parts and is 
republished several times a year [1]. It is used to store, 
exchange, and transmit medical images of different modalities 
(PET, CT, MR, etc.) and is a good basis for PACS (Picture 
Archiving and Communication System) systems. In addition to 
the data format, DICOM describes several layers of the 
ISO/OSI network model – WADO (Web Access to DICOM 
Persistent Objects) [2]. Due to its popularity, DICOM is used 
not only in large medical facilities, but also in dental clinics 
and veterinary practices. Current solutions usually show local 
DICOM images, or may employ a web browser for viewing, 
but require that the full DICOM images be transported over the 
network or on a physical medium, such as CD, DVD, or USB 
drive to a local computer. As network speeds increase and the 

cost of telecommunication services decreases, transporting 
DICOM images over the Internet is becoming easier. At the 
same time, however, DICOM image size and the number of 
DICOM images are increasing, so that transport over the 
Internet is once again becoming a problem. On the other hand, 
the computer resources used by physicians cannot keep up with 
the larger amount of new DICOM data, which complicates and 
prolongs diagnosis and can have serious consequences for 
patient health. This problem is exacerbated in the current 
COVID crisis, making it difficult to examine patients, 
communicate between patients and physicians, and have 
physical access to DICOM images.  

Recently, there have been many approaches to remotely 
render DICOM images and display them on desktop computers 
[3], mobile devices [4], or both [5]. The mobile devices are 
usually underpowered and with limited hardware capabilities. 
An approach using desktop computer viewer often requires 
installation of many software libraries and applications, which 
leads to a slow and unsecure environment. As an alternative to 
desktop application, a web browser-based solution can be used 
[6], [7], [8] which is much more fitting for the task. 

However, web browser-based solutions are currently much 
too slow and underoptimized, mostly due to some improper 
choices regarding system architecture. Therefore, our first task 
was to discover the most appropriate system architecture for 
seamless rendering of DICOM images. After the examination 
of a complex collaborative environment [9], we concluded that 
the solution should be distributed, hierarchical, and should 
export its functionality by using RESTful API. The next step 
was to find a proper way for rendering images. We have 
considered rendering libraries and game engines [10] but found 
that they are too complex inefficient for simple rendering 
algorithms that are required for the task. Therefore, we have 
decided to implement image rendering directly in OpenGL, 
storing data in textures and implementing algorithms that run 
on a GPU [4], [11]. Finally, we had to find a solution for 
storage of DICOM images. Lately, cloud-based or hybrid (edge 
+ cloud) solutions are popular [12]. Our conclusion was that 
this approach is inappropriate for our goals, due to data 
confidentiality requirement, low response time, and high 
quantity of transferred data.  

The main innovation of this work is a web based, 
hierarchical system for rendering DICOM images that is easy 
to install and use. Data confidentiality and high response time 
were also considered. Because of semiconductor shortage on 



the market, we have strived to find an engineering solution 
which leverages existing computer equipment by directly 
implementing algorithms in OpenGL, thus ensuring a high 
level of efficiency and seamless user experience. 

II. SYSTEM ARHITECTURE DESCRIPTION 

The system architecture consists of a database, a backend, 
and a frontend. The database is CockroachDB – Core edition. 
The backend was written in the programming language Go. For 
the frontend, the frameworks: CSS, HTML5, TypeScript, and 
Angular were used. 

The system is designed to be easily portable and consists of 
only two files. One is the database, the other is the backend. No 
installation is necessary, the files only need to be copied and a 
configuration file in YAML format for the backend needs to be 
created. After that, the database and backend can be run. 

The backend has four functions. The function is selected 
via a configuration file, as are other parameters, such as IP 
address, port, secret JWT key, etc., Fig. 1. 

The first function is a web server. It is used to serve 
HTML, CSS, and Javascript files that make up the frontend. 
The Angular CLI tool is used to pack the frontend into several 
production-ready files. When the backend is compiled, these 
files are stored in a virtual file system that resides inside the 
backend executive file. 

The second function is a top-level server that serves 
RESTful API and is intended for serving data that is stored in a 
central location and shared among all facilities and physicians. 
For example, a top-level server is used at the country level. The 
data stored is a list of facilities, physicians and patients, as well 
as various metadata required for the system to function (IP 
addresses of servers, types of DICOM images, etc.). 

The third function is an institutional server that serves the 
RESTful API and is intended for serving data stored at the 
location of a medical facility. These are data from radiology 
reports and a list of DICOM images stored on that facility's 
servers. Metadata such as IP address, MD5 sums of DICOM 
images and storage locations are also stored. 

The fourth function is a node that is used to store and 
render DICOM images. The DICOM images do not necessarily 
have to be stored at that node but should be accessible from 
there on storage systems like NAS or SAN [13]. 

An overview of the entire architecture is depicted in Fig. 2. 
Since there is no direct communication between backend 
servers, neither on the same hierarchy level, nor between 
hierarchy levels, multiple instances of the same backend server 
can run simultaneously. For example, the top-level server will 

 

Fig. 1. Example of the backend configuration file. 

 

Fig. 2. System architecture overview. 

surely be heavily loaded with hundreds of thousands or 
millions of queries per day, and multiple instances will be 
needed to serve all the requests. All instances of the top-level 
server may use the same database, but there may also be 
multiple databases – not necessarily the same number as the 
servers. 

This is possible because of the ease of replication offered 
by the CockroachDB database. It is a good example of a hybrid 
database that uses the best of SQL and NoSQL databases. The 
Postgres-compatible SQL language is used to write queries and 
manipulate data, while NoSQL is used at the storage level 
because it is easy to build a scalable cluster at the local or 
global level. 

Each backend function corresponds to one of the four 
hierarchical levels of a system. User interaction with the 
system begins with loading the frontend (level 1). Due to the 
confidentiality of medical data, the minimum security used is 
the HTTPS protocol, and the HTTP/2 protocol is preferred due 
to its advantages in security, traffic multiplexing, congestion 
control, and compression. The HTTP/3 protocol is also 
supported, although it is still under development [14]. 

The user logs into the system and the top-level server 
generates a JWT token that is later used to access all system 
resources. The JWT token contains the username, the user’s 
permissions, the information about whether the user is a 
physician, which facility the user works for, and the time the 
token was generated. Simplified JWT tokens in decoded and 
encoded forms are shown in Fig. 3. and Fig. 4. The token 
contains all the required data, because otherwise the user’s 
permission would have to be checked every time the RESTful 
API is accessed on a particular server, which would increase 
the load on the top-level server and slow down user interaction 
with the system. Although the secure HTTPS protocol is used, 
there is a theoretical risk that the token could be intercepted 
due to exploits in the protocol implementation [15]. The JWT 
token provides a second layer of protection by using a secret 
key to create a checksum of the payload. Even if someone 
manages to intercept the JWT token and change the data (e.g. 
user permissions), verification of such a key will not be 
successful because the secret key is not transported but stored 
on the backend servers. If someone manages to break into one 
of the backend servers and obtain the secret key, recovery is 
very fast and can be done without shutting down the system.  
 

name: "Toplevel server" 

serverType: "toplevel" 

address: "127.0.0.1" 

port: 8081 

databasePort: 9000 

JWTPassword: "secret" 

debug: true 



 

Fig. 3. A decoded JWT token. 

 

Fig. 4. An encoded JWT token. 

It is necessary to enter a new secret key into the 
configuration files of all the backend servers and send a signal 
SIGUSR1 to the backend servers requesting the backend 
servers to reload the configuration file on the fly. The final 
level of protection is the renewal of the JWT token. The 
session data is not stored on the server or in cookies on the 
client, but all the required data resides in the JWT token, which 
the frontend automatically renews every few minutes. If the 
backend receives a token that is older than a few minutes in 
case of a connection loss or for any other reason, it rejects such 
a request. 

After logging into the system, the user interacts with the 
system at any of the levels 2 through 4. If the user wants to 
view or change patient data, the interaction between the 
frontend and backend takes place on the second level (top-level 
server). If the user wishes to search for radiological findings or 
DICOM images, the interaction takes place on the third level 
(facility). If the user wishes to add or view new DICOM 
images, the interaction takes place on the fourth level 
(rendering node within the facility). Thus, the interaction 
always takes place directly between the frontend loaded in the 
user’s web browser and the backend server where the requested 
data resides. In this way, the servers are relieved of hierarchical 
data transfer. Only the network resources are burdened, but this 
is unavoidable anyway, since all required data must be 
transferred. However, even in this case, care is taken to keep 
the total amount of data transferred over the chargeable 
connection (Internet) as low as possible. For example, 
uploading DICOM images is best done within the facility 
where the images were created. If the image is on an optical or 
USB medium in another facility, it will be uploaded to the 
servers of that facility. In other words, DICOM images are 
stored on the server that is physically closest to them. This 
avoids the transmission of DICOM images over the Internet. 

Transmission over the Internet is not only chargeable, but also 
usually much slower than within a facility. 

The user interacts with the system at the first three levels 
through many small packets containing textual data. The 
servers on the first three levels need only have sufficient 
memory and CPU power. Interaction at the fourth level 
consists of a smaller number, but much larger packets, 
containing binary data or binary data base64 encoded into text 
data. This means that the fourth level servers must also have a 
graphics card. Since the fourth level deals with large amounts 
of data (a few dozen MB up to several GB), the latency of data 
transfer between the frontend and the backend is large. 
Therefore, instead of waiting for a particular operation to 
complete, the backend returns the response to the frontend 
immediately after the operation is successfully started, the 
response to the frontend is returned, and the operation 
continues asynchronously on the backend.  

An example of such an operation is loading a DICOM 
image. When the user wants to view the image, the user selects 
it and issues the command to load the image. The frontend 
forwards this command to the backend. The backend opens the 
DICOM image and allocates memory for the OpenGL 2D 
texture array. These operations take a very short time, and the 
user receives feedback within a few tens or hundreds of 
milliseconds. In the meantime, the backend loads the DICOM 
image into the OpenGL texture. The image is not fully loaded 
into the computer's RAM, and is then transferred to the 
graphics card's memory, but the memory is reserved for one 
layer (a 2D texture). The data from the drive is waited for and 
then the image is transferred to the graphics card's memory.  

The slowness of the hard drive is used here to reduce the 
consumption of working memory, because while the next 
image is being loaded from the hard drive, the first one is 
already stored in the graphics card's memory. Hence, a certain 
small memory buffer is used to load an image that can be very 
large. It may take a few seconds for the entire DICOM image 
to load, but it is assumed that the user will not need to view the 
image immediately. The user first uses the slider to select the 
image layer he wants to preview, and then clicks the button to 
retrieve the image. This process takes a few seconds, and that 
is enough to hide the loading of the image on the backend 
server. This gives the user the impression that the system is 
responsive. The user can set the size of the window in which 
the image is displayed. The window size information is 
transmitted to the backend, which creates a rendering buffer of 
the same size (rendering is done off-screen in RAM). After 
selecting the desired image layer and possibly performing 
some operations on the image, the user sends a request to the 
backend, which activates the OpenGL context. Using OpenGL 
from a specific layer of the 2D texture array, the image is sent 
to a frontend that displays it to the user. An example of 
DICOM radiology image displaying on frontend is depicted in 
Fig. 5. 

When OpenGL is used to display an image on the same 
computer, there is no frequent switching of the OpenGL 
context, while this is not the case in the client-server 
architecture. For each request that comes from the frontend, the  
  

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ

uYW1lIjoiSm9obiBEb2UiLCJpc3N1ZWRfYX

QiOjE1MTYyMzkwMjJ9.9k4Q31i3_WCZpe7z

BlGWgKC0ZYS1hPyY2boYQrJhS1U 

Header: Algorithm and token type 

{ 

  "alg": "HS256", 

  "typ": "JWT" 

} 

Payload: useful data 

{ 

  "name": "John Doe", 

  "issued_at": 1516239022 

} 

Signature: 

HMACSHA256( 

  base64UrlEncode(header) + "." + 

  base64UrlEncode(payload), 

 ) 

 



 

 

Fig. 5. Screenshot of the frontend rendering of a DICOM radiology image.

OpenGL context has to be reactivated. This context switching 
is compensated using hardware acceleration for rendering, so 
that this whole process takes a relatively short time, and the 
user still has the impression that the system is responsive, thus 
achieving seamless rendering. 

Since the operations on an image are not algorithmically 
complex, an integrated graphics card can also be used. The 
most important thing is that the computer has enough working 
memory. Therefore, a timer is used that clears the texture from 
memory when the user is inactive for a certain period of time. 
If the user wants to continue working, he must reload the 
image. This promotes fair use of computer resources, reduces 
the need to purchase new hardware, and extends the life of 
existing hardware. 

III. RESULTS 

Two types of benchmarks were performed on the 
implemented system. The first one is the loading time 
benchmark, where we measured how long it takes to load a 
DICOM image into an OpenGL texture array, as shown in 
Table I. The second benchmark concerns the rendering and 
transport times. The second benchmark measured the total time 
between clicking a button, rendering on a backend, and 
transporting over the network, Table II. 

PC hardware configuration used in both benchmarks 

consisted of: 

TABLE I.  BENCHMARK RESULTS OF DICOM IMAGES LOADING TIMES 

Image Rows Cols Layers File size 
Load 

time 

A 512 512 10 5 MB 0.14 s 

B 512 512 54 27 MB 0.61s 

C 512 512 555 277 MB 5.06 s 

D 1996 2457 84 786 MB 13.49 s 

E 1996 2457 96 898 MB 14.58 s 

 

TABLE II.  BENCHMARK RESULTS OF RENDERING AND TRANSPORT 

TIMES 

Image Image size Total time 

A 40.88 KB 31 ms 

B 56.79 KB 31 ms 

C 76.07 KB 34 ms 

D 1.17 MB 145 ms 

E 1.10 MB 110 ms 

 

• Intel i7-11700, base clock 2.5 GHz, max clock 4.9 GHz, 

8C16T 



• Integrated Intel UHD Graphics 750 

• 64 GB RAM, DDR4-3200, dual channel 

• Samsung SSD 970 EVO 1TB, NVMe 

• OpenZFS 2.0.2 file system 

The second benchmark used Firefox web browser with 
network speed throttling enabled, using the predefined 
"Regular 4G/LTE" profile (4/3 Mbps down/up, 20 ms latency). 
We compared the results with two similar papers [5], [6]. The 
paper [5] uses a portable radiology workstation, transmits 
images over a network, and displays them within a web 
browser. The results do not state the transmission times, but 
qualitatively state that they have achieved near real-time 
response on the WiFi network and that the solution is usable on 
the 3G network. According to [16], the response time of 100 
ms is perceived as instantaneous, so we can take this value as 
the limit of real-time. Near real-time response in this case can 
be characterized as a value in the range of 100 ms to 1 s. In our 
examples, with images A, B and C (resolutions 512x512), the 
response times were about 34 ms, so they are well within the 
real-time limit. With images D and E, we are a little above that 
limit, so we can say with certainty that we achieved a real time 
response for at least Full HD resolution (1920x1080). 

 In the second paper [6], several different experiments with 
several different image sizes, using solutions made in Java, 
Flash, and HTML5, were made. We compare a specific case 
when they used a 512x512x500 resolution image of 250 MB 
and an HTML5 solution. Their solution first saves the selected 
image on a local computer, while with us only the final image 
is downloaded. Therefore, we need to set a frame within which 
we can compare results. The time until the first image is 
displayed includes image transfer, image loading and 
processing, and display. They took 23.19 s to transfer the 
image, did not specify how long it took to load, and processed 
it in 0.0151 s. Thus, from the beginning of the loading process 
to the display of the image, it took about 23.2 s, with an 
unknown loading time. We compare the results with the image 
C, which is slightly larger. Loading took 5.06 s, and processing 
and uploading 0.034 s, which totals about 5.1 s. This is the 
amount that the user would have to wait in case both activities 
are run sequentially immediately after each other, which is 
usually not the case. The user first starts loading the image, 
slides the image he wants to display and clicks on the image 
retrieval button. In this case, the upload time is obscured by the 
user's activity when selecting the image, and the image display 
after clicking on the retrieval button is almost instantaneous. 

IV. CONCLUSION 

In this paper we presented a distributed, hierarchical system 
for remote rendering of DICOM images. Our motivation was 
to create a system which is simple, easy to install and use, and 
which provides functionality without investments in additional 
hardware or telecommunication services. 

The benchmark test of DICOM image loading from disk to 
OpenGL texture array showed that the latency of loading files 
up to several hundred megabytes in size can be successfully 
hidden from the user and thus provides a seamless interaction 
with the system. The benchmark test of file rendering and 
transport of the final image from the backend to the frontend 

showed that the total time is in the range of 100 ms, even for 
images with large dimensions, which is quite satisfactory. 

For future work, we plan to extend the functionality of the 
system with more complex algorithms, e.g., volume rendering 
from OpenGL texture array. We also plan to support images 
loading from encrypted file systems (such as ZFS) for 
increased data security, as well as make further improvements 
to the frontend usability in terms of more advanced image 
viewing and handling functions. 
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