
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Seamless Remote Rendering of DICOM Images

Krešimir Jozić

Industrial Applications

Siemens Energy

Zagreb, Croatia

kresimir.jozic@siemens-

 energy.com

Alan Jović

Faculty of Electrical Engineering

and Computing

University of Zagreb

Zagreb, Croatia

alan.jovic@fer.hr

Željka Mihajlović

Faculty of Electrical Engineering

and Computing

University of Zagreb

Zagreb, Croatia

zeljka.mihajlovic@fer.hr

Abstract—Many solutions display DICOM images locally or

in a web browser but require that the full DICOM images be

transported over the network or on a physical medium. As

DICOM image size and the number of DICOM images increase,

their transport over the Internet becomes more difficult.

Contemporary computer resources used by physicians cannot

keep up with the ever-increasing amount of new DICOM data,

which complicates and prolongs diagnosis. This problem is

exacerbated in the COVID crisis, making it difficult to examine

patients, communicate between patients and physicians, and have

physical access to DICOM images and volumetric data. In this

paper, we present a distributed architecture for remote

rendering of DICOM images. We propose an innovative web-

based solution hierarchically divided into several levels that can

be used to manage patient data, DICOM images, and radiology

reports based on those images. The architecture is organized to

leverage existing hardware, storage, and telecommunications

infrastructure. We have approached the solution in such a way

that the images are stored in healthcare facilities, preferably

where they were taken, and only the necessary data is securely

and seamlessly transported to the physicians. Our carefully

engineered solution shows significant improvements in terms of

rendering time and speed of data transfer, which is about 110 ms

for an image with a resolution of 1996 by 2457 pixels, achieving

seamless user experience for at least Full HD images.

Keywords—DICOM, remote rendering, hierarchical

architecture, web application

I. INTRODUCTION

DICOM (Digital Imaging and Communications in
Medicine) is the international standard for medical images and
related information developed by the American College of
Radiology (ACR) and the National Electrical Manufacturers
Association (NEMA). It is divided into 22 parts and is
republished several times a year [1]. It is used to store,
exchange, and transmit medical images of different modalities
(PET, CT, MR, etc.) and is a good basis for PACS (Picture
Archiving and Communication System) systems. In addition to
the data format, DICOM describes several layers of the
ISO/OSI network model – WADO (Web Access to DICOM
Persistent Objects) [2]. Due to its popularity, DICOM is used
not only in large medical facilities, but also in dental clinics
and veterinary practices. Current solutions usually show local
DICOM images, or may employ a web browser for viewing,
but require that the full DICOM images be transported over the
network or on a physical medium, such as CD, DVD, or USB
drive to a local computer. As network speeds increase and the

cost of telecommunication services decreases, transporting
DICOM images over the Internet is becoming easier. At the
same time, however, DICOM image size and the number of
DICOM images are increasing, so that transport over the
Internet is once again becoming a problem. On the other hand,
the computer resources used by physicians cannot keep up with
the larger amount of new DICOM data, which complicates and
prolongs diagnosis and can have serious consequences for
patient health. This problem is exacerbated in the current
COVID crisis, making it difficult to examine patients,
communicate between patients and physicians, and have
physical access to DICOM images.

Recently, there have been many approaches to remotely
render DICOM images and display them on desktop computers
[3], mobile devices [4], or both [5]. The mobile devices are
usually underpowered and with limited hardware capabilities.
An approach using desktop computer viewer often requires
installation of many software libraries and applications, which
leads to a slow and unsecure environment. As an alternative to
desktop application, a web browser-based solution can be used
[6], [7], [8] which is much more fitting for the task.

However, web browser-based solutions are currently much
too slow and underoptimized, mostly due to some improper
choices regarding system architecture. Therefore, our first task
was to discover the most appropriate system architecture for
seamless rendering of DICOM images. After the examination
of a complex collaborative environment [9], we concluded that
the solution should be distributed, hierarchical, and should
export its functionality by using RESTful API. The next step
was to find a proper way for rendering images. We have
considered rendering libraries and game engines [10] but found
that they are too complex inefficient for simple rendering
algorithms that are required for the task. Therefore, we have
decided to implement image rendering directly in OpenGL,
storing data in textures and implementing algorithms that run
on a GPU [4], [11]. Finally, we had to find a solution for
storage of DICOM images. Lately, cloud-based or hybrid (edge
+ cloud) solutions are popular [12]. Our conclusion was that
this approach is inappropriate for our goals, due to data
confidentiality requirement, low response time, and high
quantity of transferred data.

The main innovation of this work is a web based,
hierarchical system for rendering DICOM images that is easy
to install and use. Data confidentiality and high response time
were also considered. Because of semiconductor shortage on

the market, we have strived to find an engineering solution
which leverages existing computer equipment by directly
implementing algorithms in OpenGL, thus ensuring a high
level of efficiency and seamless user experience.

II. SYSTEM ARHITECTURE DESCRIPTION

The system architecture consists of a database, a backend,
and a frontend. The database is CockroachDB – Core edition.
The backend was written in the programming language Go. For
the frontend, the frameworks: CSS, HTML5, TypeScript, and
Angular were used.

The system is designed to be easily portable and consists of
only two files. One is the database, the other is the backend. No
installation is necessary, the files only need to be copied and a
configuration file in YAML format for the backend needs to be
created. After that, the database and backend can be run.

The backend has four functions. The function is selected
via a configuration file, as are other parameters, such as IP
address, port, secret JWT key, etc., Fig. 1.

The first function is a web server. It is used to serve
HTML, CSS, and Javascript files that make up the frontend.
The Angular CLI tool is used to pack the frontend into several
production-ready files. When the backend is compiled, these
files are stored in a virtual file system that resides inside the
backend executive file.

The second function is a top-level server that serves
RESTful API and is intended for serving data that is stored in a
central location and shared among all facilities and physicians.
For example, a top-level server is used at the country level. The
data stored is a list of facilities, physicians and patients, as well
as various metadata required for the system to function (IP
addresses of servers, types of DICOM images, etc.).

The third function is an institutional server that serves the
RESTful API and is intended for serving data stored at the
location of a medical facility. These are data from radiology
reports and a list of DICOM images stored on that facility's
servers. Metadata such as IP address, MD5 sums of DICOM
images and storage locations are also stored.

The fourth function is a node that is used to store and
render DICOM images. The DICOM images do not necessarily
have to be stored at that node but should be accessible from
there on storage systems like NAS or SAN [13].

An overview of the entire architecture is depicted in Fig. 2.
Since there is no direct communication between backend
servers, neither on the same hierarchy level, nor between
hierarchy levels, multiple instances of the same backend server
can run simultaneously. For example, the top-level server will

Fig. 1. Example of the backend configuration file.

Fig. 2. System architecture overview.

surely be heavily loaded with hundreds of thousands or
millions of queries per day, and multiple instances will be
needed to serve all the requests. All instances of the top-level
server may use the same database, but there may also be
multiple databases – not necessarily the same number as the
servers.

This is possible because of the ease of replication offered
by the CockroachDB database. It is a good example of a hybrid
database that uses the best of SQL and NoSQL databases. The
Postgres-compatible SQL language is used to write queries and
manipulate data, while NoSQL is used at the storage level
because it is easy to build a scalable cluster at the local or
global level.

Each backend function corresponds to one of the four
hierarchical levels of a system. User interaction with the
system begins with loading the frontend (level 1). Due to the
confidentiality of medical data, the minimum security used is
the HTTPS protocol, and the HTTP/2 protocol is preferred due
to its advantages in security, traffic multiplexing, congestion
control, and compression. The HTTP/3 protocol is also
supported, although it is still under development [14].

The user logs into the system and the top-level server
generates a JWT token that is later used to access all system
resources. The JWT token contains the username, the user’s
permissions, the information about whether the user is a
physician, which facility the user works for, and the time the
token was generated. Simplified JWT tokens in decoded and
encoded forms are shown in Fig. 3. and Fig. 4. The token
contains all the required data, because otherwise the user’s
permission would have to be checked every time the RESTful
API is accessed on a particular server, which would increase
the load on the top-level server and slow down user interaction
with the system. Although the secure HTTPS protocol is used,
there is a theoretical risk that the token could be intercepted
due to exploits in the protocol implementation [15]. The JWT
token provides a second layer of protection by using a secret
key to create a checksum of the payload. Even if someone
manages to intercept the JWT token and change the data (e.g.
user permissions), verification of such a key will not be
successful because the secret key is not transported but stored
on the backend servers. If someone manages to break into one
of the backend servers and obtain the secret key, recovery is
very fast and can be done without shutting down the system.

name: "Toplevel server"

serverType: "toplevel"

address: "127.0.0.1"

port: 8081

databasePort: 9000

JWTPassword: "secret"

debug: true

Fig. 3. A decoded JWT token.

Fig. 4. An encoded JWT token.

It is necessary to enter a new secret key into the
configuration files of all the backend servers and send a signal
SIGUSR1 to the backend servers requesting the backend
servers to reload the configuration file on the fly. The final
level of protection is the renewal of the JWT token. The
session data is not stored on the server or in cookies on the
client, but all the required data resides in the JWT token, which
the frontend automatically renews every few minutes. If the
backend receives a token that is older than a few minutes in
case of a connection loss or for any other reason, it rejects such
a request.

After logging into the system, the user interacts with the
system at any of the levels 2 through 4. If the user wants to
view or change patient data, the interaction between the
frontend and backend takes place on the second level (top-level
server). If the user wishes to search for radiological findings or
DICOM images, the interaction takes place on the third level
(facility). If the user wishes to add or view new DICOM
images, the interaction takes place on the fourth level
(rendering node within the facility). Thus, the interaction
always takes place directly between the frontend loaded in the
user’s web browser and the backend server where the requested
data resides. In this way, the servers are relieved of hierarchical
data transfer. Only the network resources are burdened, but this
is unavoidable anyway, since all required data must be
transferred. However, even in this case, care is taken to keep
the total amount of data transferred over the chargeable
connection (Internet) as low as possible. For example,
uploading DICOM images is best done within the facility
where the images were created. If the image is on an optical or
USB medium in another facility, it will be uploaded to the
servers of that facility. In other words, DICOM images are
stored on the server that is physically closest to them. This
avoids the transmission of DICOM images over the Internet.

Transmission over the Internet is not only chargeable, but also
usually much slower than within a facility.

The user interacts with the system at the first three levels
through many small packets containing textual data. The
servers on the first three levels need only have sufficient
memory and CPU power. Interaction at the fourth level
consists of a smaller number, but much larger packets,
containing binary data or binary data base64 encoded into text
data. This means that the fourth level servers must also have a
graphics card. Since the fourth level deals with large amounts
of data (a few dozen MB up to several GB), the latency of data
transfer between the frontend and the backend is large.
Therefore, instead of waiting for a particular operation to
complete, the backend returns the response to the frontend
immediately after the operation is successfully started, the
response to the frontend is returned, and the operation
continues asynchronously on the backend.

An example of such an operation is loading a DICOM
image. When the user wants to view the image, the user selects
it and issues the command to load the image. The frontend
forwards this command to the backend. The backend opens the
DICOM image and allocates memory for the OpenGL 2D
texture array. These operations take a very short time, and the
user receives feedback within a few tens or hundreds of
milliseconds. In the meantime, the backend loads the DICOM
image into the OpenGL texture. The image is not fully loaded
into the computer's RAM, and is then transferred to the
graphics card's memory, but the memory is reserved for one
layer (a 2D texture). The data from the drive is waited for and
then the image is transferred to the graphics card's memory.

The slowness of the hard drive is used here to reduce the
consumption of working memory, because while the next
image is being loaded from the hard drive, the first one is
already stored in the graphics card's memory. Hence, a certain
small memory buffer is used to load an image that can be very
large. It may take a few seconds for the entire DICOM image
to load, but it is assumed that the user will not need to view the
image immediately. The user first uses the slider to select the
image layer he wants to preview, and then clicks the button to
retrieve the image. This process takes a few seconds, and that
is enough to hide the loading of the image on the backend
server. This gives the user the impression that the system is
responsive. The user can set the size of the window in which
the image is displayed. The window size information is
transmitted to the backend, which creates a rendering buffer of
the same size (rendering is done off-screen in RAM). After
selecting the desired image layer and possibly performing
some operations on the image, the user sends a request to the
backend, which activates the OpenGL context. Using OpenGL
from a specific layer of the 2D texture array, the image is sent
to a frontend that displays it to the user. An example of
DICOM radiology image displaying on frontend is depicted in
Fig. 5.

When OpenGL is used to display an image on the same
computer, there is no frequent switching of the OpenGL
context, while this is not the case in the client-server
architecture. For each request that comes from the frontend, the

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ

uYW1lIjoiSm9obiBEb2UiLCJpc3N1ZWRfYX

QiOjE1MTYyMzkwMjJ9.9k4Q31i3_WCZpe7z

BlGWgKC0ZYS1hPyY2boYQrJhS1U

Header: Algorithm and token type

{

 "alg": "HS256",

 "typ": "JWT"

}

Payload: useful data

{

 "name": "John Doe",

 "issued_at": 1516239022

}

Signature:

HMACSHA256(

 base64UrlEncode(header) + "." +

 base64UrlEncode(payload),

)

Fig. 5. Screenshot of the frontend rendering of a DICOM radiology image.

OpenGL context has to be reactivated. This context switching
is compensated using hardware acceleration for rendering, so
that this whole process takes a relatively short time, and the
user still has the impression that the system is responsive, thus
achieving seamless rendering.

Since the operations on an image are not algorithmically
complex, an integrated graphics card can also be used. The
most important thing is that the computer has enough working
memory. Therefore, a timer is used that clears the texture from
memory when the user is inactive for a certain period of time.
If the user wants to continue working, he must reload the
image. This promotes fair use of computer resources, reduces
the need to purchase new hardware, and extends the life of
existing hardware.

III. RESULTS

Two types of benchmarks were performed on the
implemented system. The first one is the loading time
benchmark, where we measured how long it takes to load a
DICOM image into an OpenGL texture array, as shown in
Table I. The second benchmark concerns the rendering and
transport times. The second benchmark measured the total time
between clicking a button, rendering on a backend, and
transporting over the network, Table II.

PC hardware configuration used in both benchmarks

consisted of:

TABLE I. BENCHMARK RESULTS OF DICOM IMAGES LOADING TIMES

Image Rows Cols Layers File size
Load

time

A 512 512 10 5 MB 0.14 s

B 512 512 54 27 MB 0.61s

C 512 512 555 277 MB 5.06 s

D 1996 2457 84 786 MB 13.49 s

E 1996 2457 96 898 MB 14.58 s

TABLE II. BENCHMARK RESULTS OF RENDERING AND TRANSPORT

TIMES

Image Image size Total time

A 40.88 KB 31 ms

B 56.79 KB 31 ms

C 76.07 KB 34 ms

D 1.17 MB 145 ms

E 1.10 MB 110 ms

• Intel i7-11700, base clock 2.5 GHz, max clock 4.9 GHz,

8C16T

• Integrated Intel UHD Graphics 750

• 64 GB RAM, DDR4-3200, dual channel

• Samsung SSD 970 EVO 1TB, NVMe

• OpenZFS 2.0.2 file system

The second benchmark used Firefox web browser with
network speed throttling enabled, using the predefined
"Regular 4G/LTE" profile (4/3 Mbps down/up, 20 ms latency).
We compared the results with two similar papers [5], [6]. The
paper [5] uses a portable radiology workstation, transmits
images over a network, and displays them within a web
browser. The results do not state the transmission times, but
qualitatively state that they have achieved near real-time
response on the WiFi network and that the solution is usable on
the 3G network. According to [16], the response time of 100
ms is perceived as instantaneous, so we can take this value as
the limit of real-time. Near real-time response in this case can
be characterized as a value in the range of 100 ms to 1 s. In our
examples, with images A, B and C (resolutions 512x512), the
response times were about 34 ms, so they are well within the
real-time limit. With images D and E, we are a little above that
limit, so we can say with certainty that we achieved a real time
response for at least Full HD resolution (1920x1080).

 In the second paper [6], several different experiments with
several different image sizes, using solutions made in Java,
Flash, and HTML5, were made. We compare a specific case
when they used a 512x512x500 resolution image of 250 MB
and an HTML5 solution. Their solution first saves the selected
image on a local computer, while with us only the final image
is downloaded. Therefore, we need to set a frame within which
we can compare results. The time until the first image is
displayed includes image transfer, image loading and
processing, and display. They took 23.19 s to transfer the
image, did not specify how long it took to load, and processed
it in 0.0151 s. Thus, from the beginning of the loading process
to the display of the image, it took about 23.2 s, with an
unknown loading time. We compare the results with the image
C, which is slightly larger. Loading took 5.06 s, and processing
and uploading 0.034 s, which totals about 5.1 s. This is the
amount that the user would have to wait in case both activities
are run sequentially immediately after each other, which is
usually not the case. The user first starts loading the image,
slides the image he wants to display and clicks on the image
retrieval button. In this case, the upload time is obscured by the
user's activity when selecting the image, and the image display
after clicking on the retrieval button is almost instantaneous.

IV. CONCLUSION

In this paper we presented a distributed, hierarchical system
for remote rendering of DICOM images. Our motivation was
to create a system which is simple, easy to install and use, and
which provides functionality without investments in additional
hardware or telecommunication services.

The benchmark test of DICOM image loading from disk to
OpenGL texture array showed that the latency of loading files
up to several hundred megabytes in size can be successfully
hidden from the user and thus provides a seamless interaction
with the system. The benchmark test of file rendering and
transport of the final image from the backend to the frontend

showed that the total time is in the range of 100 ms, even for
images with large dimensions, which is quite satisfactory.

For future work, we plan to extend the functionality of the
system with more complex algorithms, e.g., volume rendering
from OpenGL texture array. We also plan to support images
loading from encrypted file systems (such as ZFS) for
increased data security, as well as make further improvements
to the frontend usability in terms of more advanced image
viewing and handling functions.

REFERENCES

[1] NEMA, “DICOM.” http://dicom.nema.org/ (accessed Jul. 29, 2021)

[2] M. Mustra, K. Delac, and M. Grgic, “Overview of the DICOM
standard,” in Proceedings of the 50th International Symposium ELMAR
2008, 2008, vol. 1, pp. 39–44.

[3] B. F. Tomandl, P. Hastreiter, C. Rezk-Salama, K. Engel, T. Ertl, W. J.
Huk, R. Naraghi, O. Ganslandt, C. Nimsky, and K. E. Eberhardt, “Local
and Remote Visualization Techniques for Interactive Direct Volume
Rendering in Neuroradiology,” RadioGraphics, vol. 21, no. 6, pp. 1561–
1572, Nov. 2001.

[4] M. Zhang, “Server-Aided 3D DICOM Image Stack Viewer for Android
Devices,” International Journal of Digital Content Technology and its
Applications, vol. 6, issue 1, pp. 208–217, Jan. 2012.

[5] K. Thilagavath and M. Kavitha, “Sparkmed: A framework for
Multimedia Medical Data Integration of Adaptive Mobile Object in
Heterogeneous Systems,” International Journal of Science and Modern
Engineering (IJISME), vol. 1, no. 12, pp. 1–4, 2013.

[6] Q. Min, X. Wang, B. Huang, and L. Xu, “Web-Based Technology for
Remote Viewing of Radiological Images: App Validation,” J. Med.
Internet. Res., vol. 22, no. 9, e16224, Sep. 2020.

[7] A. Arbelaiz, A. Moreno, L. Kabongo, H. V. Diez, and A. García Alonso,
“Interactive Visualization of DICOM Volumetric Datasets in the Web -
Providing VR Experiences within the Web Browser:,” in Proceedings of
the 12th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications, Porto, Portugal, 2017,
pp. 108–115.

[8] B. Blazona and Ž. Mihajlović, “Visualization Service Based on Web
Services,” CIT. Journal of Computing and Information Technology, vol.
15, no. 4, pp. 339–345, 2007.

[9] N. T. Karonis, “High-Resolution Remote Rendering of Large Datasets
in a Collaborative Environment,” Future Generation Computer Systems,
vol. 19, pp. 909–917, Aug. 2003.

[10] G. Wheeler, S. Deng, N. Toussaint, K. Pushparajah, J. A. Schnabel, J.
M. Simpson, and A. Gomez, “Virtual interaction and visualisation of 3D
medical imaging data with VTK and Unity,” Healthcare Technology
Letters, vol. 5, no. 5, pp. 148–153, Oct. 2018.

[11] S. Belyaev, V. Chukanov, and V. Shubnikov, "Bump Mapping for
Isosurface Volume Rendering," Journal of Image and Graphics, vol. 5,
no. 2, pp. 68-71, December 2017. doi: 10.18178/joig.5.2.68-71

[12] S. Sondur, K. Kant, S. Vucetic, and B. Byers, “Storage on the Edge:
Evaluating Cloud Backed Edge Storage in Cyberphysical Systems,” in
2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS), Monterey, CA, USA, Nov. 2019, pp. 362–370.

[13] RedHat, “Whatis network-attached storage?,”
https://www.redhat.com/en/topics/data-storage/network-attached-storage
(accessed Jul. 29, 2021)

[14] IETF, “Hypertext Transfer Protocol Version 3 (HTTP/3) draft-ietf-quic-
http-34,”https://datatracker.ietf.org/doc/html/draft-ietf-quic-http
(accessed Jul. 29, 2021)

[15] J. Ćurguz, “Vulnerabilities of the SSL/TLS Protocol,” in Proceedings of
the 6th International Conference on Computer Science, Engineering and
Information (CS & IT), May 2016, pp. 245–256.

[16] R. B. Miller, “Response time in man-computer conversational
transactions,” in Proceedings of AFIPS Fall Joint Computer Conference,
December 9–11, 1968, pp. 267–277.

