This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3288808

Tipping the Balance: Imbalanced Classes in Deep
Learning Side-channel Analysis

Stjepan Picek!, Annelie Heuser?, Alan Jovic?, Shivam Bhasin*, Francesco Regazzoni

5

1Faculty of Science, Radboud University,
Postbus 9010, 6500 GL Nijmegen, Netherlands.
2Univ Rennes, CNRS, Inria, IRISA, Rennes, France
3Faculty of Electrical Engineering and Computing,
University of Zagreb, Unska 3, 10000 Zagreb, Croatia
“Temasek Laboratories, Nanyang Technological University,
50 Nanyang Drive, Research Techno Plaza, BorderX Block, 9th Storey, Singapore 637553
5University of Amsterdam, The Netherlands and Universita della Svizzera italiana, Switzerland
Email: stjepan.picek @ru.nl, jannelie.heuse @irisa.frjalan.jovic @fer.hr |sbhasin @ntu.edu.sgiregazzoni @alari.ch

Machine learning, and more recently, deep learning, have
become a standard option for profiling side-channel analysis
(SCA) to evaluate the worst-case security. Machine learning-
based SCA has advantages over previous approaches like
the template attack [1]], especially in practical settings where
the number of training traces is limited. The advantages of
deep learning-based approaches are even more pronounced as
such techniques can break protected implementations without
feature selection and by using relatively small models (neural
networks), [2]. However, the use of popular device leakage
models brings in the issue of imbalanced datasets. For in-
stance, Hamming weight or distance model follows a binomial
distribution resulting in significantly more training samples in
central classes. Further, evaluating the performance of machine
learning-based SCA with standard machine learning metrics
like accuracy can be misleading. Unfortunately, this problem
is not trivial to circumvent by “just” using the SCA metrics
as the training process with them is difficult.

This work was originally published in IACR Transactions
on Cryptographic Hardware and Embedded Systems 2019 [3]].
Since then, multiple works have explored the influence of
class imbalance on the performance of machine learning (and,
most dominantly, deep learning). Before this work, it was not
uncommon to report only the accuracy metric and, based on
it, estimate the attack performance. Following this work, side-
channel metrics are almost exclusively used when assessing
SCA performance. There are multiple attempts to further
reduce the impact of class imbalance through, e.g., custom
loss functions or data augmentation.

1. BACKGROUND
A. Machine Learning

The capability of a system to acquire its knowledge by
extracting patterns from data is known as machine learning.
Machine learning algorithms can be divided into several
categories based on their learning style. The most popular
machine learning algorithms in SCA follow the supervised
learning paradigm. Today, the most popular machine learning

algorithms are various types of neural networks like multilayer
perceptron (MLP) and convolutional neural network (CNN).
Before, other common techniques included random forest
and support vector machines. For a survey on “traditional”
machine learning in SCA, we refer readers to [4], while
for a more recent overview of deep learning-based SCA, we
recommend [5]. A common metric to assess the performance
of machine learning algorithms is accuracy. Furthermore, pre-
cision, recall, F, G-mean, Matthew’s correlation coefficient,
and Cohen’s kappa score are widely used in machine learning
when dealing with imbalanced datasets.

B. Side-channel Analysis

The side-channel analysis (SCA) considers attacks that do
not aim at the weaknesses of an algorithm but is imple-
mentation [6]. SCA shows that even for theoretically secure
algorithms, observing the unintentional physical or side chan-
nel leakages (e.g., timing, power, electromagnetic emanation)
from their implementations could lead to the potential recovery
of secret information. More precisely, the core idea of SCA
is to compare some secret data-dependent predictions of the
physical leakages and the actual (measured) leakage to identify
the data most likely to have been processed. In practice,
SCA requires the ability to model the leakage (to come up
with the predictions for data) and to have a good comparison
tool (so-called distinguisher) to extract the secret information
efficiently. In the context of machine learning-based SCA,
the two most common leakage models are the Hamming
Weight (HW) or Distance (HD) and the Identity (ID) leakage
models. For the HW leakage model, the adversary assumes the
leakage is proportional to the sensitive variable’s Hamming
weight. This leakage model results in nine classes for a single
intermediate byte for the AES cipher. The HD leakage model
results from value updates in a register. A typical approach
for AES is to compute the value update to the final output
from the S—-box input of the last round in the state register.
Like the HW leakage model, the HD leakage model results in
nine classes for a single intermediate byte for the AES cipher.
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HW and HD model a binomial distribution where the central
classes are much more populated than the corner classes. For
the ID leakage model, an adversary considers the leakage as
an intermediate cipher value. This leakage model results in
256 classes for a single intermediate byte for the AES cipher.

C. Profiling SCA

Profiling SCA represents the strongest SCA type since
it assumes that an adversary has access to a clone device.
Moreover, the adversary can control all the inputs, such as
random plaintexts and keys, to the clone device and observe
the corresponding leakage. With this knowledge, the adversary
builds a model of a device during the training phase. Then, in
the attack phase, the adversary collects only a small number
of traces from the attack device with an unknown secret key.
By comparing the attack traces with the characterized model,
the secret key is revealed. Due to the divide and conquer
approach, where small parts of the secret key can be recovered
independently, the attack becomes practical. Machine learn-
ing techniques were adopted for profiling attacks, with the
statistics of the unknown leakage distribution automatically
learned from the profiling set. Informally, the main advantages
of simpler machine learning techniques over deep learning are
fewer hyperparameters, which means less tuning effort. At the
same time, they commonly require feature engineering and are
less powerful than deep learning when dealing with protected
targets.

D. Machine Learning-based SCA

As commonly done in machine learning-based SCA, we
follow the supervised learning paradigm where the goal is
classification into a finite number of discrete classes (labels).
In SCA, the label is derived from the key and input through
a cryptographic function (e.g., the S-box operation) and a
leakage model. The objective of a learning algorithm Alg is
to learn a parameterized function fg. To train the machine
learning model fy, the learning algorithm Alg has access to
the dataset drawn from a certain distribution. As we assume
supervised learning, the dataset is partitioned into disjoint
subsets denoted as the training set (size ), validation set
(size V), and test set (size Q).

Profiling Phase. In the profiling phase, the goal is to
train a model f by adjusting its parameters €. This is done
by evaluating the performance on the training dataset and
minimizing the error as recorded by a loss function. During
the training, a machine learning model is tested based on how
well it generalizes on the unseen examples from the validation
set.

Attack Phase. In the attack phase, the goal is to predict
labels y based on previously unseen (attack) traces and the
trained model fg. The SCA metrics (e.g., key rank and
guessing entropy) are used to assess the test outcomes. More
formally, with @ traces in the attack phase, an attack outputs
a key guessing vector g in decreasing order of probability
where g; denotes the most likely and g|i| the least likely key
candidate. The position of the correct key in the key guessing
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vector is called a key rank. To avoid the effects of randomness
due to specific choices of attack traces, it is possible to run
multiple independent evaluations and then average the results,
which is the guessing entropy metric.

E. Datasets

The experiments consider three datasets representing AES-
128 processing. The 50 most important features for all datasets
are selected using the Pearson correlation coefficient.

1) DPAcontest v4: The DPAcontest v4 dataset provides
measurements of a masked AES software implementation.
Still, in this work, we consider the mask to be known, making
the implementation unprotected, and thus can easily turn it into
an unprotected scenario. The measurements consist of 4 000
features around the S-box part of the algorithm execution.

2) AES_RD: The second dataset is a software AES imple-
mentation protected with the random delay countermeasure.
Each measurement consists of 3 500 features.

3) AES_HD: The third dataset represents a hardware AES
unprotected implementation. Each measurement consists of
1250 features.

II. IMBALANCE PROBLEM IN SCA

A. Hamming Weight (Distance) Leakage Model

A common option to mount a side-channel attack on AES is
to consider the Hamming Weight (or Distance) of the S-box
output. Indeed, those leakage models work on a range of
devices, even when not many details about the underlying
implementations are known:

y(p, k) = HW(s-box[p XOR kJ), (D)
where p denotes the plaintext and & the key. Then, considering
i.i.d. values for plaintexts p, the labels y follow a binomial
distribution B(n,t) where ¢ 0.5 and n 8 for AES.
Figure [I] gives the resulting numbers of class occurrences.
There is a large imbalance among various labels (and thus, the
expected number of measurements belonging to each label).
The consequences for successful SCA become clear if we
consider the performance of a well-performing algorithm vs.
an algorithm that always predicts the most occurring class. For
a well-performing algorithm, we would hope to reach accuracy
better than random guessing (which equals 11.1% since we
have nine classes). Moreover, even lower accuracy is often
sufficient for a successful attack as the attack performance
is evaluated over a number of measurements (accumulating
the probabilities). On the other hand, an algorithm that would
always predict the label to be equal to HW = 4 would have
an accuracy of 27.34%. Naturally, an algorithm that always
predicts the same HW label would never be able to break the
target, despite the good accuracy result. Thus, the question
is, can we make the algorithm perform better by considering
some different metric or providing a similar (same) number
of measurements for each label?
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Fig. 1: The distribution of class labels for AES with the
HW/HD leakage models.

B. Fighting the Imbalance

There are two main approaches to improve the model
performance and avoid overfitting to the majority class when
dealing with imbalanced datasets:

« Data-level methods: modify the measurements by balanc-

ing distributions (i.e., data augmentation).

« Algorithm-level methods: modify classifiers to remove (or

reduce) the bias towards majority classes.

Here, we provide details on the most common approaches and
methods.

1) Cost-sensitive Learning and Weight Balancing: In this
approach, the importance of a class is equal to its weight, de-
termined as the combined weight of all the instances belonging
to that class. Balancing the classes before classification can be
made by assigning different weights to instances of different
classes so that the classes have the same total weight.

2) Data Resampling Approaches: Data resampling tech-
niques can usually be divided into undersampling and over-
sampling. In undersampling, the number of instances for a
majority class is reduced to become the same or similar
to the minority class. In an imbalanced multiclass setting,
undersampling reduces the number of instances in all classes
except the one with the smallest number of instances. In
oversampling, the number of instances in the minority class
is increased to become equal or similar to the majority class.
In an imbalanced multiclass setting, oversampling increases
the number of instances of all classes except the one with
the highest number of instances. Oversampling may lead to
overfitting when samples from the minority class are repeated;
thus, synthetic samples could be used to prevent it.

a) Random Undersampling: Random undersampling un-
dersamples all classes except the least populated one. While
a simple technique, its main drawback is that it removes the
measurements from the other classes.

b) Random Oversampling with Replacement: Random
oversampling with replacement oversamples the minority class
by generating instances selected randomly from the initial set
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of minority class instances with replacement. All minority
classes are oversampled to reach the number of instances equal
to the highest majority class.

c) Synthetic Minority Oversampling Technique
SMOTE: SMOTE is a resampling method that oversamples
by generating synthetic minority class instances. The process
works by taking each minority class instance and introducing
synthetic instances along the line segments joining any/all
of the k£ minority class’ nearest neighbors (using Euclidean
distance).

d) Synthetic Minority Oversampling Technique with
Edited Nearest Neighbor: SMOTE + ENN combines oversam-
pling used by SMOTE and data cleaning by Edited Nearest
Neighbor (ENN) method. ENN cleaning method works by
removing from the dataset any instance whose class differs
from the classes of at least two of its three nearest neighbors.

III. EXPERIMENTAL RESULTS

The experiments are conducted for the random forest,
support vector machines, multilayer perceptron, convolutional
neural network, and template attack. The number of attack
traces for all three datasets equals 25000. For AES_HD and
DPAcontest v4, we evaluate with 1000, 10000, and 50000
measurements in the profiling phase while for AES_RD, we
consider 1000, 10000, and 25000 profiling measurements.
The results indicate that machine learning metrics designed
to fight imbalance do not help much, except in the easiest
cases. Next, when comparing techniques for data resampling,
SMOTE performs the best, followed by random oversampling,
class weight balancing, and SMOTE+ENN. Hence, we provide
detailed results for SMOTE and imbalanced datasets with
various machine learning approaches. In Figure 2} we provide
results with random forest and support vector machine. For
DPAcontest v4, all results indicate good performance, which
means that imbalance is not always a problem (even when
considering a small training dataset). Moreover, SMOTE does
not seem to provide advantages in such cases. Already for
the AES_RD dataset, the problem becomes more difficult for
machine learning due to the random delay countermeasure.
There, we see a clear advantage when balancing data with
SMOTE and having a larger training dataset. Similar results
are obtained for AES_HD since this dataset does not have
a countermeasure. Still, due to the hardware platform, SNR
is much lower (making it in a way to behave like a hiding
countermeasure in the amplitude domain). Again, we notice
that SMOTE significantly improves the performance, and a
larger training dataset gives better results. Also, the random
forest seems to be a better option than support vector machines
for the more difficult datasets.

When considering deep learning (MLP and CNN), we again
notice that DPAcontest v4 is an easy dataset with no need to
balance it (Figure E[) On the other hand, for AES_RD and
AES_HD, we can notice how balancing the dataset provides
better attack performance. This is especially pronounced for
AES_HD as there, without balancing the dataset, we cannot
break the target with the allocated number of attack traces,
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Fig. 2: Performance of imbalanced dataset and balanced one with SMOTE for a) DPAcontest v4, b) AES_RD, and c) AES_HD.
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Fig. 3: Performance of imbalanced dataset and balanced one
with SMOTE for a) MLP v4 and b) CNN. DPAcontest v4.
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Fig. 4: Performance of imbalanced dataset and balanced one
with SMOTE for a) MLP v4 and b) CNN. AES_RD.

while after balancing it, we require “only” around 10000
measurements. Here, CNN needs fewer measurements than
MLP in most cases.

IV. PERSPECTIVES AND LONG-TERM IMPACT

This work [3|] is one of the first works examining the
benefits of data augmentation for SCA and the first work
discussing how machine learning metrics are not suitable to
assess the side-channel performance. As such, this work has
motivated several directions for further research. Already Cagli
et al. discussed the relevance of data augmentation for de-
feating targets protected with hiding countermeasures [7[]. The
authors used shifting and addition transformation to generate
synthetic measurements. While they worked in the Hamming
Weight leakage model, they did not report issues due to class
imbalance, indicating data augmentation prevented overfitting.
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Fig. 5: Performance of imbalanced dataset and balanced one
with SMOTE for a) MLP v4 and b) CNN. AES_HD.

Later, Robissout et al. investigated how to introduce an online
evaluation metric developed for the SCA context and how
to use it to perform early stopping on existing CNNs found
in the literature [8|]. This work was motivated by the fact
that accuracy can be misleading and should be (potentially)
completely removed from the training phase evaluation. Zhang
et al. proposed a novel Cross Entropy Ratio (CER) metric to
evaluate the performance of deep learning models for SCA [9].
The authors showed that the new metric works stable even
when the training data is imbalanced. Finally, the authors
adapted the CER metric to a new loss function, called the
CER loss function, designed specifically for deep learning-
based SCA. The proposed loss function is a good alternative
to standard loss functions in deep learning-based SCA for
imbalanced data. Kerkhof et al. continued the direction of the
design of custom loss functions for SCA [10]. The proposed
loss function, the Focal Loss Ratio, was designed to enable
deep learning models to learn from noisy or imbalanced data
efficiently. Ito et al. discussed the reasons for the negative
effect of data imbalance in classification for deep learning-
based SCA and introduced the Kullback-Leibler divergence
as a metric to measure this effect [11]. Furthermore, the
authors proposed a technique to solve dataset imbalance at
the inference phase (corresponding to data augmentation at
the training phase), utilizing a likelihood function based on
the key value instead of the HW/HD.
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V. DISCUSSION

Our work [3]] selected for the Top Picks in Hardware and
Embedded Security 2021, demonstrates how misleading it
can be to use machine learning metrics to assess the side-
channel analysis performance. Our results show that none
of the common machine learning metrics (including those
recommended for the imbalanced scenarios) provide adequate
performance. Moreover, the results show that both traditional
machine learning and deep learning are susceptible to imbal-
ance problems occurring due to the binomial distribution of
Hamming Weight/Distance leakage models. The results sug-
gest that balancing the dataset by data augmentation provides
good results. More recent results also show the applicability
of custom loss functions for deep learning-based SCA.
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