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Context-level 
learned models

Notably:

● NNLM - Neural Network Language Model

● SENNA - Semantic/syntactic Extraction using a Neural 

Network Architecture 

● Word2Vec (CBOW, Skip-gram)

● GloVe - Global Vectors for Word Representation
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Example: “breakable”, “biased” → “unbreakable”, 

“unbiased”
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Notably:

● MorphoRNN - Morphological Recurrent Neural 

Network

● BPE - Byte Pair Encoding

● FastText
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Notebly:

● CWE - Character-enhanced Word Embedding 

model

● Methods based on CNNs
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Train vs inference

Multiple words used to calculate vector representation

Same word - multiple meanings

Example: “I can see the can.”



Contextualized 
models

Notably:

● ELMo - Embedding from Language Models

● GPT - Generative Pre-Training

● BERT - Bidirectional Encoder Representations 

for Transformers

● XLNet
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Conclusions

● No silver bullet

● Context-level learned models
○ Fast and efficient

○ Unable to handle OOV

● Subword-level learned models
○ Morphological structure

○ Better OOV 

● Character-level learned models
○ More complex structures

○ Eliminates OOV

● Contextualized models
○ Different meanings for same words

○ Price to pay
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