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Abstract - Analysis of electroencephalographic (EEG) 

signals usually includes visual inspection of the signal, 

feature extraction, and model generation. Computer-aided 

nonlinear feature extraction from EEG in particular has 

already led to improved descriptive and prognostic models 

of brain states and disorders. However, in this field, there is 

a lack of freely available powerful tools for scientific 

exploration of EEG that would help researchers to compare 

the results of their work with others. Especially, because of 

the great diversity of the proposed methods for EEG 

analysis, there exists a need for a joint framework for 

inspection, extraction and visualization performed on the 

EEG records. The aim of this paper is to introduce such a 

framework, called EEGFrame, with its implementation in 

Java. The framework currently supports the analysis of 

standard EDF records via signal inspection, feature 

extraction, and feature vectors storage for knowledge 

discovery. EEGFrame is the result of refactoring and 

extension of the HRVFrame framework for heart rate 

variability analysis, with added methods for EEG analysis. 

This paper describes the properties and capabilities of the 

framework and discusses its relevance with respect to 

similar work. The main advantage of EEGFrame is its 

support for numerous linear and nonlinear methods 

described in literature. 

I. INTRODUCTION 

Computer models of brain functioning have become 
increasingly complex in recent years. The extraction of 
nonlinear features of neurological time-series, in 
particular, electroencephalography (EEG) and 
magnetoencephalography (MEG) enables ever more 
accurate analysis of diverse brain disorders and states. 
The analysis of EEG/MEG using nonlinear features aids 
medical personnel in better understanding of the 
underlying physiological aspects of the disorder as well 
as for classification of patients and prediction of disorder 
onset [1]. Typical applications include modeling of 
disorders such as epilepsy, coma, schizophrenia, 
Alzheimer's disease, Parkinson's disease, etc., while brain 
functioning during normal or altered conscious states 
include normal wake state, sleep, relaxation and 
meditation [1,2]. Complexity of the time-series is 
particularly pronounced under epileptic seizures, and this 
area of research usually involves creating accurate 
models for early detection of possible seizure [2].  

Most of the features used for EEG/MEG analysis are 
nonlinear due to the inherent nonlinear and non-stationary 

behavior of the time-series. There are a few exceptions, 
mostly covering basic statistical properties of the series. 
Due to a large number of methods available for studying 
variability of biomedical time-series [3], computer-aided 
analysis of EEG/MEG relies on availability of tools for 
feature extraction and data mining. While there already 
exist several tools for such analyses, there are very few 
open-source frameworks that allow researchers to 
experiment with novel models of disorders. Currently, 
there are a few initiatives that try to standardize data 
inputs and outputs. Most of them are based on Matlab 
and/or C/C++ [4,5]. A framework in Python (PyEEG) 
was recently developed that tries to bridge the gap 
between EEG data input and data mining [6]. To our 
knowledge, there is no extensive stand-alone open-source 
framework that would cover the majority of features 
employed in EEG analysis, while at the same time 
enabling data input, feature extraction, EEG visualization, 
and storing feature vectors in a format suitable for data 
mining. 

The aim of this paper is to introduce and describe such 
a framework, which we call EEGFrame. The framework is 
written in Java as a stand-alone application, but with 
embedding possibility, and is intended for use by both 
medical practitioners as well as researchers in the field of 
biomedical engineering. EEGFrame has been developed 
as an offspring of an already existing framework, 
HRVFrame that is used for heart rate variability analysis 
[7]. The extension includes visualization of the EEG 
signals loaded from a standard EDF (European Data 
Format) record, extraction of a number of nonlinear 
features applicable to EEG, and adaptation of frequency 
domain features to cover typical EEG frequency bands. 

The paper is organized as follows. In Section 2, we 
show an overview of the framework, with description of 
input and output data formats. Section 3 describes the 
features that are implemented in the framework. Section 4 
describes the visualization of the EEG records. 
Comparison to similar work and discussion are shown in 
section 5. Conclusion is given in section 6. 

II. OVERVIEW OF THE FRAMEWORK 

A. System overview, input and output  

The main purpose of the EEGFrame framework is to 
extract feature vectors from EEG records and store them 
for further knowledge discovery. The framework currently 



 

Fig. 1.     Overview of the EEGFrame framework 

supports extraction from standard EDF records with plans 
to support EDF+ standard in the future. Additionally, the 
framework enables visual inspection of each EEG record 
with numerous display options to suit the researcher's 
needs. Transformation of signal data from .edf file to a file 
in textual format is also possible through the framework. 
The overview of the system is shown in Fig. 1. 

The framework assumes that the data in EDF format is 
available, and that it has been filtered (the framework does 
not include EEG preprocessing methods). It then enables 
visual inspection of a single record and feature extraction 
from the record, by specifying the extraction parameters. 
The output file is recorded in .csv format that can be read 
by most of the open-source knowledge discovery 
platforms such as Weka [8] or Rapidminer [9]. The output 
file contains feature vectors that contain values for all the 
features that were selected for the analysis. Each new 
feature vector is appended as a row to the end of the file if 
the analysis involves multiple segments. The user can 
always create a new output file. The header of the output 
file contains a list of all the possible features implemented 
in the framework. For those features that are not extracted 
as a part of the feature vector, the symbol "?" is added.  

B. Framework’s internal structure 

EEGFrame consists of several Java packages, Fig. 2. 
Basically, there are two types of packages. There are the 
packages that contain all of the classes intended for data 
transformation and feature extraction. These packages 
start with the label “features”. There are also other 
auxiliary packages that consist of classes used for 
constructing graphical user interface and record 
visualization, data input, data output, and testing of the 
framework. The package “statisticMeasure” is essential 
for functioning of some of the feature extraction classes. 
Likewise, the package “features.linear.frequencyDomain. 
operations” contains several classes needed for frequency 
domain analysis of EEG records (e.g. complex numbers, 
fast Fourier transform). 

The packages consist of public classes with well-
documented and thoroughly tested methods. All of the 
implemented classes with feature extraction methods 

provide reference about the source document(s) that 
describe the mathematical background and rationale for 
the implemented methods. 

III. FEATURE EXTRACTION METHODS 

The framework currently supports extraction of 
roughly 50 time-domain, frequency domain, time-
frequency and nonlinear features. In Table I, a summary 
report of the implemented methods is provided. The 
reference next to the name of the method refers to the 
literature from which the method was implemented. If a 
method allows extraction of several features, a list of the 
features is also included in Table I. If a feature is 
parametric, the parameters that need to be provided are 
shown. Some of the implemented nonlinear methods are 
used for measuring a common or combined property of 
two or more time-series (e.g. mutual dimension, 
synchronization likelihood). We have included these 
methods in a separate package, 
“features.nonlinear.multiSeries”, as to distinguish them 
from the other nonlinear methods that can be applied to 
only a single time-series (i.e. single EEG electrode signal). 

  

 

Fig. 2.     The structure of the framework 
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TABLE I.     METHODS AND FEATURES IMPLEMENTED IN THE FRAMEWORK 

Method [reference] List of features / parameters Package Class 

Mean [10] Single feature features.linear.timeDomain Mean 

Standard deviation [10] Single feature features.linear.timeDomain StandardDeviation 

Fano factor [11] Single feature features.linear.timeDomain FanoFactor 

Autocorrelation coefficient [11] Single feature features.linear.timeDomain 
Autocorrelation- 

Coefficient 

Mean of absolute values of first 

differences [10] 
Single feature features.linear.timeDomain 

MeanOfAbsoluteValues

OfFirstDiff 

Mean of absolute values of second 

differences [10] 
Single feature features.linear.timeDomain 

MeanOfAbsoluteValues

OfSecondDiff 

Mean of absolute values of first 

differences normalized [10] 
Single feature features.linear.timeDomain 

MeanOfAbsoluteValues

OfFirstDiffNormalized 

Mean of absolute values of second 

differences normalized [10] 
Single feature features.linear.timeDomain 

MeanOfAbsoluteValues 

OfSecondDiffNormalize
d 

Spectral analysis [10] 

AlfaPSD, BetaPSD, GamaPSD, DeltaPSD, 

ThetaPSD (5 feat.) / sample frequency,  FFT PSD 

(window) or Burg PSD estimate (AR model order)  

features.linear.frequency SpectralAnalysis 

Spectral entropy [12] 
Single feature / lower and upper frequency limit, 

FFT PSD or Burg PSD estimate 
features.linear.frequency SpectralEntropy 

Approximate entropy [13] Single feature / m factor, r features.nonlinear.entropy ApEn 

Maximum approximate entropy [13] MaxApEn, r for MaxApEn / m factor features.nonlinear.entropy ApEn 

Carnap entropy 1D [14] Single feature features.nonlinear.entropy CarnapEntropy1D 

Corrected conditional Shannon 

entropy [15] 
Single feature / dimension, no. of bins features.nonlinear.entropy 

CorrectedConditional- 

SnannonEntropy 

Rényi entropy [16] Single feature / order features.nonlinear.entropy RenyiEntropy 

Sample entropy [17] Single feature / m factor, r features.nonlinear.entropy SampEn 

Maximum sample entropy [17] MaxSampEn, r for MaxSampEn / m factor features.nonlinear.entropy SampEn 

Detrended fluctuation analysis [18] 

DFAAlphaS, DFAAlphaL (2 feat.)  / minimum 

analyzed segment length, bound for AlphaL, long 

range calculation flag  

features.nonlinear.fractal DFA 

Higuchi's fractal dimension [19] Single feature / kmax features.nonlinear.fractal HiguchiDimension 

Hurst exponent [11] Single feature features.nonlinear.fractal HurstExponent 

Cross recurrence [20] 

CRPRecurrence rate, CRPLmean, CRPDET, 

CRPSh. ent. rec., laminarity (5 feat.) / probe, 

dimension,lag, r 

features.nonlinear. 

multiSeries 
CrossRecurrence 

Mutual dimension [21] 
Single feature / dimension 1, dimension 2, lag 1, 

lag 2, no. of bins 

features.nonlinear. 

multiSeries 
MutualDimension 

Synchronization likelihood [22] 
Single feature / signal indices, dimension, lag, no. 
of bins, recurrence number, ro 

features.nonlinear. 
multiSeries 

SynchronizationLikeliho
od 

Allan factor [11] Single feature / observational window features.nonlinear.other AllanFactor 

Lempel-Ziv complexity [23] Single feature features.nonlinear.other LempelZivComplexity 

Nonlinear forecasting [24] Single feature / dimension, lag features.nonliner.other NonlinearForecasting 

Correlation dimension [25] Single feature / dimension, lag, no. of bins 
features.nonlinear. 

phaseSpace 
CorrelationDimension 

Central tendency measure [26] Single feature / dimension, lag, r 
features.nonlinear. 
phaseSpace 

CTM 

Largest Lyapunov exponent [27] Single feature / dimension, trajectory length 
features.nonlinear. 

phaseSpace 
LyapunovExponent 

Recurrence plot [28] 
AVG number of neighbors, recurrence rate, 
Lmean, DET, Sh. ent. rec., laminarity (6 feat.) / 

dimension, lag, r 

features.nonlinear. 

phaseSpace 
RecurrencePlot 

Spatial filling index [29] Single feature / dimension, lag, no. of bins 
features.nonlinear. 

phaseSpace 
SpatialFillingIndex 

Standard deviations ratio [30] Single feature 
features.nonlinear. 

phaseSpace 
StandardDeviationsRatio 

Haar wavelet standard deviation [11] Single feature / scale features.timeFrequency 
HaarWaveletStandard 

Deviation 

HilbertHuangTransform [31] 

Instantaneous frequencies (IF), amplitudes, 

intrinsic mode functions, max IF, amplitudes for 

max IF (multiple features) / sampling period 

features.timeFrequency HilbertHuangTransform 



IV. EEG SIGNAL VISUALIZATION 

It is important for researchers to have the possibility of 
visual inspection of EEG records. The standard EDF 
format supports the International 10-20 system of 
electrode placements [32]. In this EEG system, it is 
possible to have 21 or more electrodes that measure the 
voltages of the brain's micro-currents. The visualization of 
the signals recorded by such a system can be performed in 
many ways. The standard display is a rectangular grid 
with each rectangle covering exactly 0.2 s times 50 µV. 
Since the number of signals can vary, and not all of them 
are always necessary to include for certain disorders, the 
visualization part includes the options to display only 
specific electrode signals as well as all signals. 
Additionally, several time and amplitude scales can be 
selected, and the user can easily browse through the entire 
record. An example of EEG visualization is shown in Fig. 
3. 

The graphical user interface also allows users to 
display the properties of the records (e.g. date taken, start 
time, length in seconds, number of signals, header length 
in bytes), that are available from the .edf file header. 

V. COMPARISON TO SIMILAR WORK AND DISCUSSION 

In Table II, we compare the currently most popular 
open-source software in EEG analysis community with 
EEGFrame. There are several open-source EEG analysis 
software tools available today. Most of the software is 
based on Matlab/Octave or C/C++, and only a few of 
them are specialized for EEG analysis. One of the 
problems with Matlab based software is that its use 
depends on whether the user has a Matlab license. This 

can be solved to an extent by using Octave instead of 
Matlab (e.g. project BioSig [5]). The other problem is that 
the software is not monolithic or cohesive – i.e. not all of 
the required methods can be easily found and used. This 
severely limits the usefulness and user-friendliness of  the 
large Matlab-based software toolboxes such as EEGLab 
[4]. The main advantage is the large community support 
and extensions that Matlab provides. This includes signal 
analysis and transformations, feature extraction, 
classification, as well as visualization capabilities.  

While no software or framework today contains all of 
the methods that the researchers used in EEG analysis, it 
can be safely concluded that two of the frameworks: 
PyEEG, written in Python, and EEGFrame, written in 
Java, provide the largest number of individual feature 
extraction methods. Both of the frameworks focus on 
nonlinear features. The advantage of EEGFrame, when 
compared with PyEEG lies both in the larger number of 
currently implemented individual features, as well as in 
visualization and data input/output capability. PyEEG is a 
framework that contains only the feature extraction 
methods; it relies heavily on other software (e.g. BioSig) 
for particular application [6]. 

   The principle goal of the researchers in EEG analysis 
is to acquire the best model for a particular brain state or 
disorder. In order to claim that their model is the best 
possible one within the limits of current human 
knowledge, the researchers need to be able to efficiently 
compare their results, particularly, their features or 
features combinations [33], with the work of others. 
EEGFrame facilitates this comparison because it provides 
the researcher with a large number of features' 
implementations that other researchers applied in EEG

 

 

Fig. 3.     Visualization of the EEG record chb01_27.edf from Physionet CHB-MIT database for electrodes FP1-F7, P7-O1, C3-P3, and FP2-F4. The 

user can select any number of signals present in the record for display 

 



TABLE II.     OPEN-SOURCE EEG ANALYSIS SOFTWARE COMPARISON 

Software Purpose 
Implementation 

language 
Type Implemented features 

EEGLab [4] 

Extensive Matlab toolbox for EEG analysis: 

visualization, 3D brain modelling, feature extraction, 

several plugins (NFT, ERICA, BCILAB...) 

Matlab Embedded 

Time/frequency/time-

frequency/independent 

component transformations 

and features / unknown total 

number of features 

BioSig [5] 

Reading and writing routines for many biomedical 
time-series data formats; EEG preprocessing, 

visualization, feature extraction (multivariate 

autoregressive modeling) and classification (via 

Matlab/Octave)  

C/C++, Matlab (or 
Octave) 

Some 
functions 

standalone, 

mostly 

embedded 

Time/frequency/time-

frequency transformations and 
features, unknown total 

number of features 

PyEEG [6] 
Feature extraction framework, feature vector output for 

data mining 
Python Embedded 

Frequency/nonlinear features, 

currently 21 features in total 

EEGFrame 

Signal inspection, feature extraction framework, 

handles .EDF input, feature vector output for data 

mining 

Java 
Stand-alone or 

embedded 

Time/frequency/time-

frequency/nonlinear features, 

currently 49 features in total 

 

analysis. Hence, with the assumption of using the same 
dataset, a researcher can claim that his feature or features' 
combination is superior to the features employed by others 
for a particular problem. 

Batch feature extraction from multiple EEG records is 
currently not possible through the EEGFrame graphical 
user interface. However, adapting the framework for batch 
extraction from several records is not difficult and is 
planned for future versions. Adding more methods to 
EEGFrame, especially other nonlinear ones (e.g. phase 
synchronization, Hjorth mobility and complexity, SVD 
entropy, Fisher information, etc.)  is also planned. 

EEGFrame can be employed both as a stand-alone 
product, and as a part of a larger system. Herein, only the 
feature packages would be integrated with other software. 
The framework is written entirely in Java, which alleviates 
the problems with platform dependencies. Thus, 
EEGFrame can be used on any operating system, provided 
that the Java virtual machine (version 5.0+) is installed on 
the system. EEGFrame is available as open-source, GPL 2 
licensed software for non-commercial biomedical time-
series analysis applications from the following web site: 
http://www.zemris.fer.hr/~ajovic/eegframe/eegframe.html. 

VI. CONCLUSION 

This paper presented a novel feature extraction 
framework from EEG that is implemented in Java. The 
framework currently implements many features used by 
researchers in the domain of EEG analysis and thus 
enables easier comparison of academic work. It can be 
used both as a part of another, larger system, or as a stand-
alone EEG visualization and analysis application. 

For future work, the framework is planned to be 
updated with additional nonlinear features. Also, 
visualization of phase space features as well as batch 
analysis of EEG records is in order. 
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