
An Overview of Port-Based Network Access Control

M. Mesic
Communication Networks Department

InfoNET projekt d.o.o.
Zelinska 4, HR-10000 Zagreb, Croatia

Phone: (+385-98)463 784, E-mail: milan.mesic@infonet.hr

M. Golub
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, HR-10000 Zagreb, Croatia

Phone: (+385-1)6129 967, E-mail: marin.golub@fer.hr

Abstract - This paper represents a technical overview of a
current state in Port-Based Network Access Control
(PBNAC) for security policy enforcement at network access
layer. It describes architecture and security protocols used by
PBNAC. Architecture components, such as Supplicant,
Authenticator and Authentication Server are discussed. The
paper analyzes security protocols, specially, Extensible
Authentication Protocol (EAP) variants such as EAP over
LANs (EAPOL) and EAP Transport Layer Security (EAP-
TLS) and additionally Remote Authentication Dial In User
Service (RADIUS). The paper also shows current limitations
and future improvements of PBNAC systems.

I. INTRODUCTION

Defining under which conditions two or more network
entities are allowed to communicate is key element of
security policies. Five categories of security incidents that
generate greatest losses are viruses, unauthorized access,
theft of proprietary information, denial of service and
insider network abuse [1]. Weak security policy
enforcement at network access layer is direct cause of three
out of these five categories. In addition of directly allowing
unauthorized access, theft of proprietary information and
insider network abuse, it can also be treated as indirect
possible cause for virus spreading, and in some cases even
denial of service.

To implement security policies at network access layer,
Port-Based Network Access Control (PBNAC) can be
used. PBNAC uses physical port characteristics to allow
network connectivity only to authenticated and authorized
devices and users. Access to systems protected by PBNAC
is controlled by authentication process that determines
whether client accessing protected network entity is
authorized to use its protected services. Client requesting a
service claims its identity, which should be verified by
means of authentication. By referencing the configured
policies for authenticated client through process of
authorization, service can be granted or denied. Although
PBNAC has by now reached stage where it resolves most
of problems addressed in [10] and other initial security
analysis, it is still a very dynamic field.

With existence of publicly available network access
layer equipment, increasing popularity of wireless
networks in form of IEEE 802.11 wireless local area
networks (WLANs) and emerging IEEE 802.16
WirelessMAN, need for adequate network access

protection is growing. Some of security flaws in 802.11
data link protocols can be found in [9]. Examples of wired
network infrastructure that needs access control include
corporate network equipment with ports for connecting
corporate servers and workstations. Without proper access
control, employees could connect their unauthorized end
systems, such as private notebooks, to corporate network.
Most corporate ports are open and according to [1],
security events perpetrated by insiders are about as often as
by outsiders. Wireless networks without proper access
control allow whole range of passive and active attacks. It
is often practically impossible to dimension wireless
network range to both prevent its publical availability and
keep its required service levels to authorized organization
members.

II. ARCHITECTURE OF PBNAC SYSTEMS

Devices considered in this article connect to other
devices through points of attachment. Point of attachment
to network is considered to be one logical network entity to
which can connect only one other point of attachment. In
case of shared media networks, like shared Ethernet LAN
segment, or wireless LAN, for each network association,
one point of attachment per device is created. This means
that PBNAC considers point-to-point connections, on
shared media networks usually enforced by means of
suitable encryption.

Each point of attachment has two parallel logical entities
associated with it. They are controlled port and
uncontrolled port. Uncontrolled port allows exchange of
network packets between network access entities
regardless of the authorization state of the point of
attachment. Uncontrolled port is used for PBNAC
authentication and authorization purposes, thus only
PBNAC protocol messages can pass through it.

Controlled port allows exchange of network packets
only if the current state of the point of attachment is
authorized. Controlled port is used for general network
traffic. To avoid frequent use of term point of attachment
through this article, just term port is used instead. Terms
controlled port and uncontrolled port are used for
controlled and uncontrolled entities associated with point
of attachment.

Each port adopts none, one or both of two possible roles:
authenticator and supplicant. Authenticator port wishes to

enforce authentication before allowing access to services
that are accessible via that port. Supplicant port wishes to
access the services offered by the authenticator port. One
port can adopt both authenticator and supplicant role,
allowing two-way authentication. One final component of
PBNAC architecture is authentication server.
Authentication server processes authentication credentials
that authenticator receives from supplicant and indicates to
authenticator whether the supplicant is authorized to
connect to authenticator port. Each PBNAC component is
now discussed.

A. Supplicant

Supplicant is most easily and accurately described
through its state machine. PBNAC components state
machines are important for analyzing their operation and
limitations. Without considering special case and timeout
related states, supplicant can be in following states:
disconnected, connecting, authenticating and authenticated.
Supplicant transitions through its states as function of
following inputs: Extensible Authentication Protocol
(EAP) messages from authenticator, higher layer input,
user actions and time (time is used for various timeouts,
and is not considered in this article).

Supplicant is in disconnected state when port is
inoperable, user explicitly logs off, or system initializes.
From this state supplicant transitions to connecting when
port becomes operable. In connecting state supplicant
attempts to connect to authenticator. If no response is
received, PBNAC unaware authenticator is assumed, and
supplicant transitions to authenticated state. If EAP-fail or
EAP-success is already received and accepted from higher
layer logic, supplicant transitions to authenticating state. In
authenticating state supplicant has received EAP-request
message from authenticator and higher layer logic decides
to respond to authenticator and transition to authenticated
state is made.

B. Authenticator

Without considering special case and timeout related
states, authenticator has same states as supplicant does.
Difference is in meaning of some of its states and in
transitions between them as described here. Disconnected
state is entered when supplicant explicitly logs off. In
connecting state authenticator is ready to establish
communication with a supplicant. If higher layer logic is
ready to send EAP-request message, authenticator
transitions to authenticating state. In authenticating state,
authentication procedure is started.

In authenticating state, if excessive timeouts occur,
transition to disconnected state is made. In authenticating
state, if authentication server returns reject message,
transition to connecting state is made. In authenticating
state, if authentication server returns accept message,
transition to authenticated state is made. In authenticated
state authenticator has successfully authenticated the
supplicant.

C. Authentication server

Although authenticator can authorize supplicants locally
and allow them access to its services, authentication server

Figure 1 - Architecture of PBNAC system

is usually used. This allows greater scalability by allowing
adding authenticators and supplicants without the need to
configure policies on each of the authenticators. Secondly,
when authentication server is used, authenticator doesn’t
need to understand every possible authentication protocol
used by PBNAC system and can act as a conduit for
relaying authentication protocol packets between
supplicant and authentication server.

Authentication server usually communicates with
authenticator through some higher layer protocol. This
allows locating authentication server outside of the
network segment where communication between
authenticator and supplicant happens. For authentication
server to be accessible to authenticator and vice versa,
communication between them usually isn’t controlled by
PBNAC. When controlled ports are used for
communication between authenticator and authentication
server, port must be in authorized state.

III. PBNAC PROTOCOLS

Authentication in PBNAC systems consists of
exchanging protocol messages between supplicant and
authentication server. Extensible Authentication Protocol
(EAP) is used for this communication. In this framework,
authenticator can mostly be considered as a relay that
accepts messages from supplicant, forwards them to
authentication server, and vice versa. On receiving
authentication process result messages, authenticator

grants or denies access to supplicant by opening or closing
its controlled port.

Between supplicant and authenticator, EAP packets are
encapsulated in EAP over LANs (EAPOL) protocol
packets. Between authenticator and authentication server,
EAP packets are encapsulated in Remote Authentication
Dial In User Service (RADIUS) protocol packets. Each of
mentioned protocols is now discussed.

A. EAP

EAP is an embedding protocol that can transport
different authentication mechanisms. It typically runs
directly over data link layers, and doesn’t require IP. EAP
provides great flexibility by allowing implementations of
different authentication methods on authentication server,
with authenticator that can act as a pass-through for
methods implemented on authentication server. Different
authentication methods can use EAP as a universal layer
for transporting its authentication messages through
different network devices, because of its universal
implementation on those network devices. Only EAP
framework needs to be implemented, with possibility that
authentication server makes actual authentication
decisions. Minimal requirements for authenticator are
relaying EAP messages and enforcing received
authentication decisions on its ports.

Authentication process starts with authenticator sending
a Request packet to supplicant. There are different types of
Request packets, for requesting different information from
client. Possible types are Identity request, MD5-challenge,
etc. Supplicant replies with Respond packet of same type
as authenticator request packet. After initial Request –
Respond pair of packets, authenticator may request more
information from client by sending additional Request
packets. This process continues this way as long as
authenticator requires more information from supplicant to
make its authentication decision based on authentication
method implemented in EAP framework. This
conversation continues until authenticator can make its
authentication decision by sending either EAP Failure
packet when supplicant can’t be authenticated or EAP
Success packet when successful authentication has
occurred.

All EAP implementations must support initial
authentication mechanisms as defined in [3]. These
mechanisms are MD5-Challenge, One Time Password
(OTP) and Generic Token Card (GTC). MD5-Challenge is
analogous to the PPP CHAP protocol with MD5 as the
specified algorithm for challenging supplicants. Similarly,
One Time Password uses OTP challenge for
authentication. GTC sends displayable message in its
Request packets, and Response packets contain
information read by a user from the token card device and
entered as ASCII text.

In addition to initial set of authentication methods, many
different open standard and proprietary EAP
implementations are developed. Most often implemented
are EAP-MSCHAPv2 for challenge-response based
authentication, EAP-TLS for cryptographic based
authentication with PKI certificates, and PEAP and EAP-
TTLS for tunneling based authentication with tunnel
protected EAP communication.

TABLE I

INITIAL SET OF EAP MESSAGE TYPES

Code Message Type Type name

1 Identity Request

2 Notification

4 MD5-Challenge

5 One Time Password (OTP)

6 Generic Token Card
(GTC)

254 Expanded Types

1 Request

255 Experimental use

1 Identity Response

2 Notification

3 Nak

4 MD5-Challenge Response

5 One Time Password (OTP)

6 Generic Token Card
(GTC)

254 Expanded Types

2 Response

255 Experimental use

3 Success - -

4 Failure - -

EAP authentication methods are subject to different
security threats, and should include methods for mitigating
those threats where required. When used on wireless LAN
networks and over the Internet, but also on links, media
and devices with possibility of attacker gaining access to
authentication traffic, user identities should be protected
when required. Although Identity Request and Response
messages are included in initial set of EAP messages, they
are optional, and actual identity exchange can be realized
over protected channel established according to specific
method. To avoid man in the middle attacks where a rogue
authenticator forwards authentication messages between
supplicant and legitimate server, mutual authentication
should be used, and also cryptographic binding between
the tunneling protocol and tunneled authentication method.
Similar methods can also be used when supplicant
connects to untrusted network with possibility of
connecting to a rogue device. To protect against
modification of authentication packets, integrity and replay
protection are recommended. This is especially important
for result indication packets, which are without adequate
integrity and replay protection easily spoofed. Password
authentication algorithms such as EAP-MD5 and similar
are vulnerable to dictionary attacks, and when avoiding of
this attacks is required, dictionary attack resistant methods
are preferred.

Figure 2 – Possible EAP communication

B. EAPOL

EAP over LANs (EAPOL) is encapsulation that carries
EAP packets between supplicant and authenticator.
EAPOL packet begins with Ethernet type and protocol
version fields according to standard assigned numbers.
Following these fields, EAPOL specific information is
included. There are five different EAPOL packet types. In
addition to EAPOL EAP packet that actually caries
encapsulated EAP authentication, there are additional
EAPOL packet types that carry specific signaling and
keying information. To initiate EAP authentication and to
terminate authenticate session, supplicant uses EAPOL-
Start and EAPOL-Logoff packets respectively. To send
specific SNMP traps as Alerting Standards Forum (ASF)
alert, EAPOL-Encapsulated-ASF-Alert is used. Finally,
EAPOL-Key packet type allows transmission of key
information between the authenticator and the supplicant.
Initially, as [2] defines, two key descriptor types are used:
RC4 and IEEE 802.11.

Most security problems that can be related to EAPOL
can be, and usually are solved by using adequate
authentication method in EAP layer. However there are
some implementation considerations inherently related to
EAPOL.

When there is a possibility that more than one supplicant
can access one authenticator’s port, protection should be
provided for avoiding case where unauthenticated
supplicant uses open port based on connectivity granted to
another authenticated supplicant. This can usually be
achieved with cryptographic separation of each association
between supplicant and authenticator.

Supplicant may try to send EAP messages with
multicast and broadcast destination address, which could
interfere with authentications occurring on other ports or
segments. To prevent this, EAP messages with destination
address other than authenticator port to which supplicant is
connecting should be discarded, and non routable.

C. RADIUS

Remote Authentication Dial In User Service (RADIUS)
is an authentication, authorization and accounting protocol
that can be used in EAP authentication framework through
its support for EAP as defined in [4] to forward EAP
packets to and from the authentication server with
implemented RADIUS server. To achieve effective
PBNAC implementation, guidelines from [6] should be
followed. RADIUS messages are called attributes and are
comprised of variable length Type-Length-Value 3-tuples.
EAP messages are encapsulated within EAP-Message
RADIUS attribute, allowing flexibility of avoiding need of
implementing separate RADIUS attribute for each
authentication method.

On receiving EAP Response message from supplicant,
authenticator may authenticate supplicant locally, or act as
a pass-through and encapsulate EAP Response message
into EAP-Message attribute of Access-Request RADIUS
packet. Authentication conversation can continue this way
with EAP messages traveling between authenticator and
authentication server encapsulated within EAP-Message
attribute of RADIUS Access-Request, Access-Challenge,
Access-Accept and Access-Reject packets. In addition to
EAP-Message attribute, Message-Authenticator attribute
must also be used to provide authentication and integrity
protection of RADIUS packets. For this purpose HMAC-
MD5 algorithm is used.

To mitigate most of security vulnerabilities associated
with use of RADIUS for encapsulating EAP messages,
IPsec should be used. In original RADIUS specification [5]
a shared secret was defined for hiding attributes, and for
authentication computation. This method is not sufficient
for security vulnerabilities to which RADIUS is subject to.
IPsec covers all functions of shared secret along to many
other security issues. IPsec resolves privacy issues,
spoofing and hijacking, dictionary attacks (to which shared
secret is especially vulnerable), known plaintext attacks
and replay attacks. Man in the middle attacks can’t be
completely mitigated, as within RADIUS, security can
only be provided on a hop-by hop basis, even when IPsec
is used. To protect against man in the middle attacks,
specific EAP methods should provide their own per-packet
protection and authentication mechanisms for end-to-end
protection.

D. EAP-TLS

EAP Transport Level Security (TLS) defined in [7] is
often implemented and robust EAP authentication method
that provides mutual authentication, integrity-protected
ciphersuite negotiation and key exchange between two
endpoints. TLS protocol defined in [8] is composed of two
layers: TLS record protocol and TLS handshake protocol.
TLS record protocol provides private and reliable
encapsulation for TLS handshake protocol that allows
supplicant and authentication server to authenticate each
other and to negotiate an encryption algorithm and
cryptographic keys for application protocol. TLS
handshake protocol allows mutual authentication by using
asymmetric cryptography. Shared secret negotiation is
unavailable to eavesdroppers, and secure from man in the
middle attacks. When supplicant and authentication server
first start communicating, they agree on a protocol version,

select cryptographic algorithms, optionally authenticate
each other, and use public-key encryption techniques to
generate shared secrets. Both sides should be implemented
in a way that handshake protocol never selects algorithms
or key sizes that are not compliant with adequate security
policies related to devices in considered system.

Actual goals of TLS handshake protocol are achieved
starting with hello messages that establish security
enhancement capabilities and key exchange between
supplicant and authentication server. Following this hello
messages certificates are exchanged (mutually or one-way)
and with cipher specification messages ciphersuite is
negotiated and agreed.

When using EAP-TLS authentication method for
authenticating supplicants that initially don’t have network
connectivity, and get network connectivity only after
successful authentication, problem of certificate authority
(CA) certificate revocation lists reachability can arise. In
this case, certificate revocation lists should be checked
after connecting to the network.

IV. PBNAC IMPLEMENTATION

We have implemented PBNAC system for

authenticating members of Microsoft Windows domain for
one of our enterprise customers. System was implemented
in a way to allow high availability of authentication
services, with all critical components working in hot
standby mode. Cisco Catalyst switches were used as
authenticators, authenticating connected Microsoft
Windows domain computers and users through 802.1x
EAP encapsulation framework. Catalyst switches
communicated with Cisco Secure Access Control Servers
(ACS) used as authentication servers, through RADIUS
encapsulated EAP messages. Two ACSs were used to
achieve high availability. We added additional scalability
element with Microsoft Active Directory domain
controllers used as integrated identity stores. ACSs and
domain controllers communicated through Lightweight
Directory Access Protocol (LDAP). As EAP-TLS
authentication protocol was used in our PBNAC
framework, Certification Authority (CA) was needed.
Microsoft CA configured as enterprise root CA was used
for this purpose.

On Microsoft Windows domain additional
authentication phase was needed. By blocking network
access prior to port authentication, 802.1x breaks the
machine-based group policy model. What is needed is the
ability of a Windows workstation to authenticate itself,
under its own identity, independent of the requirement for
an interactive user session. This is achieved with machine
authentication, used at boot time by Windows operating
systems to authenticate and communicate with Windows
domain controllers in order to pull down machine group
policies. After establishing communication with domain
controller and pulling down machine group policies, user
can log on to domain, and finally through second phase
PBNAC authentication, authenticate himself as user.

Microsoft Active Directory and CA inherently deal with
machine certificates in a way that doesn’t allow using
EAP-TLS for machine authentication. User certificates are
written to Active Directory while enrolling, allowing EAP-
TLS to be easily employed for user authentication.

Figure 3 – Network of implemented PBNAC elements

 Machine certificates are just deployed on supplicants, in

their system store, without saving them to Active
Directory. This doesn’t allow ACS to use EAP-TLS
methods for authenticating machines. To mitigate this
problem, special certificate templates were designed, and
used to add additional capabilities not inherent to machine
certificates. This allowed writing machine certificates to
Active Directory, and ACS could use them as elements of
identity store for machine authentication, together with
inherently possible EAP-TLS user authentication.

V. CONCLUSION

This paper presents an overview of current state of Port

Based Network Access Control and analyzes it from
security and implementation perspectives. Although
cryptographic assumptions used to implement PBNAC
exist for many years, and provide powerful tool for
achieving ultimate network access control, there are still
open problems. Security incidents continue to generate
great losses, with network access control flaws still among
categories on top of the list.

Cryptographic assumptions are highly unlikely cause for
breaking network access control. Increasing complexity of
protected and protection systems, with many components
linked through many interfaces open possibility of
breaking complete network access control system by
breaking its inadequately implemented part. This makes
complete PBNAC systems often as weak as its weakest
component or weakest link between components.

In addition to implementation security, with
standardization of PBNAC systems as its important part,
there are still possible improvements. To provide greater
flexibility, supplicants may be selectively granted access to
particular network resources according to a more detailed
security policy, this way extending simple grant/deny
authentication decision. Network ports are also very
convenient for controlling other security policy elements.
In addition to authentication based authorization decisions,
security policy compliance of supplicants can also be
enforced through PBNAC systems.

Our implementation used five different categories of
components, with greatest diameter of four different
protocol hops. Described problems indicate that non-
standardization still exist in field of PBNAC systems.
Although most interfacing protocols are well defined and
standardized, while combining them in larger chains as in
our implementation, certain incompatibilities may arise.

As we have shown, to achieve certain functionalities of
PBNAC, considerable customization efforts are required.
Although this can be tolerated for more exotic and rarely
implemented authentication methods, for general purpose
authentication methods, system wide perspective of
PBNAC should be considered, allowing easier
implementations with fewer points of possible
implementation failures that could lead to security flaws.
Further work should focus on interoperability and
functionality issues. Complete PBNAC authentication
framework should be considered as one system containing
many elements. Interfaces between these elements are well
standardized, but functionality of every element should be
considered from system wide perspective with PBNAC in
focus.

REFERENCES

 [1] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R.

Richardson, 2005 CSI/FBI Computer Crime and Security
Survey, 10th annual, CSI, 2005.

 [2] LAN/MAN Standards Committee of the IEEE Computer
Society, IEEE Std 802.1X™- 2004, IEEE, New York,
2005.

 [3] Network Working Group of The Internet Society, Request
for Comments: 3748, Extensible Authentication Protocol
(EAP), The Internet Society, 2004.

 [4] Network Working Group of The Internet Society, Request
for Comments: 3579, RADIUS (Remote Authentication
Dial In User Service) Support For Extensible
Authentication Protocol (EAP) , The Internet Society,
2003.

 [5] Network Working Group of The Internet Society, Request
for Comments: 2865, Remote Authentication Dial In User
Service (RADIUS) , The Internet Society, 2000.

 [6] Network Working Group of The Internet Society, Request
for Comments: 3580, IEEE 802.1X Remote Authentication
Dial In User Service (RADIUS) Usage Guidelines, The
Internet Society, 2003.

 [7] Network Working Group of The Internet Society, Request
for Comments: 2716, PPP EAP TLS Authentication
Protocol, The Internet Society, 1999.

 [8] Network Working Group of The Internet Society, Request
for Comments: 2246, The TLS Protocol Version 1.0, The
Internet Society, 1999.

 [9] N. Cam-Winget, R. Housley, D. Wagner, J. Walker,
Security Flaws in 802.11 Data Link Protocols,
Communications of the ACM, 2003.

[10] A. Mishra, W. A. Arbaugh, An Initial Security Analysis of
the IEEE 802.1X Standard, 2002.

