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ABSTRACT – In this paper, an efficient method based on 
genetic algorithms is developed to solve the multiprocessor 
scheduling problem. To efficiently execute programs in parallel 
on multiprocessor scheduling problem must be solved to 
determine the assignment of tasks to the processors and the 
execution order of the tasks so that the execution time is 
minimized. Even when the target processors is fully connected 
and no communication delay is considered among tasks in the 
task graph the scheduling problem is NP-complete. Complexity 
of scheduling problems dependent of number of processors (P), 
task processing time Ti and precedence constraints. This 
problem has been known as strong NP-hard intractable 
optimisation problem when it assumes arbitrary number of 
processors, arbitrary task processing time and arbitrary 
precedence constraints. We assumed fixed number of 
processors and tasks are represented by a directed acyclic 
graph (DAG) called “task graph”. 
 
Keywords – DAG, parallel processing, multiprocessor 
scheduling, genetic algorithms, optimisation, heuristics. 

I. INTRODUCTION 

     The telecommunication networks are one of good 
example parallel and distributed systems and can be 
considered as parallel call and service processing systems 
where scheduling tasks in that system can be done with 
genetic algorithms. A major challenge in parallel processing 
is task scheduling. In the static scheduling a parallel 
program, is represented by a directed acyclic graph (DAG). 
DAG consists of: 
- a collection of “vertices” V={Ti}, i=1,2,...,N,  and where 

V is a set of v nodes, representing the tasks; 
- a collection of “edges”, E={eij}, each connecting some 

two vertices and a directed, representing the precedence 
relationship among the computational tasks. An edge goes 
from one of the vertices towards the other.  

Here we can draw a graph in which a directed edge says 
we have to do one task before the other. Let us assume that 
the task Tj cannot execute until Ti completes if i<j. This 
problem can be reformulated as graph problems. The 
general problem of multiprocessor scheduling can be stated 
as scheduling a set of partially ordered computational tasks 

onto a multiprocessor system so that a set of performance 
criteria will be optimised. Task scheduling is the process of 
deciding which instructions will be run by which processor, 
and in which order.  We assume that the multiprocessor 
system is uniform (homogenous) and nonpreemptive etc. the 
processors are identical, and a processor completes the 
current task before executing a new one. Task execution 
time can be nonuniform. Every processor can communicate 
with each other and every has own memory. In this paper 
we deal with the scheduling problem where number of 
processors is fixed. 

Other problem which can be discussed is find the 
minimum number of processors in order to execute tasks in 
a time not exceeding the length of the critical path of task 
graph. Complexity of scheduling problems dependent of 
number of processors (P), task processing time Ti and 
precedence constraints. Example, when number of 
processors is arbitrary, task processing time is equal and 
precedence constraints is tree complexity this problem is 
O(N) where N is number of computational tasks or example, 
when number of processors is arbitrary, task processing time 
equal and precedence constraints arbitrary complexity this 
problem is NP-hard, which  is evidence that there doesn’t 
exist a good algorithm  to solve it exactly [10]. 
Consequently, research effort has focused on finding 
polynomial time algorithms, which produce optimal 
schedules for restricted cases of the multiprocessor 
scheduling problem. However we can find a solve that’s 
pretty close to the optimal solution. This paper presents an 
efficient method based on genetic algorithms to solve 
multiprocessor scheduling problem.  

This paper is organized as follows. First we present the 
model for multiprocessor scheduling (Section 2), after that 
the principles of genetic algorithms are precisely defined in 
Section 3. In Section 4, our proposed genetic algorithm is 
reviewed and analysed. Results and analyses are shown in 
Section 5 and we close the paper with concluding remarks 
and ways for further research – Section 6. 



  

II. THE MULTIPROCESSOR SCHEDULING 
PROBLEM 

     The number of available processors is unlimited. A 
multiprocessor system is composed of a set P of p identical 
processors (homogeneous), that is, their processing speeds 
are the same. The processors are fully connected without 
any regard to link contention and nonpreemptive, that is, 
each processor can execute at most one task at a time. A 
parallel program is characterized by a directed acyclic (task) 
graph G=(V, E) where V={Ti}, i=1,2, …,N represent the set  
of tasks of the program with associated weights {ri} where ri 
denotes the computation (execution) time of Ti, and E={eij} 
is the set of directed edges which define a partial order or 
precedence constraints on V. In our case of task graphs, 
intertask communication is negligible etc. the 
communication cost between two tasks assigned to the same 
processor is assumed to be zero. In task graph, tasks without 
predecessors are known as entry tasks and tasks without 
successors are known as exit tasks. Every task is present and 
appears only once in the schedule (completeness and 
uniqueness). The problem of optimal scheduling a task 
graph onto a multiprocessor system with p identical 
processors is to assign the computational tasks to the 
processors so that all of the tasks are completed in the 
shortest possible time.  The time that the last task is 
completed is called the finishing time (FT) of the schedule.  
A simple task graph with 10 tasks and a schedule is 
illustrated in Fig.1.  

 

Fig.1. Example of directed acyclic graph with execution 
time and without communicating cost 
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Fig.2. Example of optimal scheduling with precedence 

constraints. 

Inside of circle is the marks of tasks and from the right 
side of circle are first indexes getting by topological sorting 
and after comma execution time of task.  

III. EVOLUTION AND GENETIC 
ALGORITHM 

     Evolutionary algorithms are optimisation and search 
procedures inspired by genetics and the process of natural 
selection. This form of search evolves throughout 
generations improving the features of potential solutions by 
means of biologically inspired operations. On the ground of 
the structures undergoing optimisation the reproduction 
strategies, the genetic operators adopted, evolutionary 
algorithms can be grouped in: evolutionary programming, 
evolution strategies, classifier systems, genetic algorithms 
and genetic programming. 

The genetic algorithms behave much like biological 
genetics. The genetic algorithms are an attractive class of 
computational models that mimic natural evaluation to solve 
problems in a wide variety of domains. A genetic algorithm 
comprises a set of individual elements (the population size) 
and a set of biologically inspired operators defined over the 
population itself etc. a genetic algorithms manipulate a 
population of potential solutions to an optimisation (or 
search) problem and use probabilistic transition rules. 
According to evolutionary theories, only the most suited 
elements in a population are likely to survive and generate 
offspring thus transmitting their biological heredity to new 
generations. A genetic algorithm maps a problem onto a set 
of strings (the chromosomes), each string representing a 
potential solution. The three most important aspects of using 
genetic algorithms are: (1) definition of the objective 
function, (2) definition and implementation of the genetic 
representation, and (3) definition and implementation of the 
genetic operators. 

 
Table 1. Nature-to-computer mapping 

Nature  Computer  
Individual  Solution to a problem  
Population  Set of solutions  
Fitness  Quality of a solution  
Chromosome Representation for a solution  

 (e.g. set of parameters) 

Gene  Part of the representation of a solution  

 (e.g. parameter or degree of freedom)  

 Decoding of the representation of  

 solutions  

 

There are a lot of list heuristic methods which using to 
scheduling tasks onto parallel processors. Most of them give 
a good solution problem. Example, each task graph is 
assigned a priority, then added to a list of waiting tasks in 
order of decreasing priority. As processors become available 
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the task with the highest priority is selected from the list and 
assigned to the most suited processor. If more than one task 
has the same priority a task is selected randomly. The basic 
list scheduling heuristic is shown in pseudocode : 

 
begin 
  repeat 
    select a task 
    select a processor to run the task 
    assign the task to the processor 
  until all task s are scheduled 
end. 

Fig.3.List scheduling heuristic 

Initialisation - an initial population of the search nodes is 
randomly generated. The strings encoding mechanism 
should map each solution to a unique string. The encoding 
mechanism depends on the nature of the problem variables 
and it use for representing the optimisation problem’s 
variables. The representation is unique. In some cases the 
variables assume continuous values, while in other cases the 
variables are binary. It can be integer parameters, real-
valued parameters, vectors of parameters, Gray code, 
dynamic parameter encoding etc. The fitness values of each 
node are calculated according to the fitness function 
(objective function). The fitness function provides the 
mechanism for evaluating each chromosome in the problem 
domain. It is always positive. Three operators are needed to 
achieve this selection, crossover and mutation. The selection 
criterion is that string with higher fitness value should have 
a higher chance of surviving to the next generation. A 
quality measure for the solutions (fitness function) of the 
problem is known. Fitter solutions survive, while weaker 
ones perish. There are many different models of selection. 
The most popular selection in genetic algorithms is fitness 
proportionate selection, rank selection, tournament selection 
and elitist selection. After selection comes crossover.  

The crossover operator takes two chromosomes (parents) 
and swaps part of their genetic information to produce new 
chromosomes (child). The offspring (child) keep some of 
the characteristics of the parents. One point crossover 
involves cutting the chromosomes of the parents at a 
randomly chosen common point and exchanging the right - 
hand – side sub-chromosomes. In two – point crossover 
chromosomes are thought of as rings with the last and the 
first gene connected. The rings are cut in two sites and the 
resulting sub-parts are exchanged. In uniform crossover 
each gene of the offspring is selected randomly from the 
corresponding genes of the parents. Crossover is applied to 
the individuals of a population with a constant probability. 
Usually from 0.5 to 0.95.  

Mutation consists of making (usually small) alterations to 
the values of one or more genes in a chromosome. In genetic 
algorithms, mutation is considered a method to recover lost 
genetic material. Our proposed algorithm we call Turnir 
genetic algorithm. When we have task graph, we need use 
topological sorting. Topological sorting consist of finding 
some global ordering consistent with these local constraints. 

IV. PROPOSED ALGORITHM 

     Let be G(V,E) directed acyclic graph shown by list. Task 
graph is topological sortie if index (I)<index (J) if the node 
Ti is predecessor    from node Tj . If the number of nodes 
(tasks) is N them index can be the natural number from 
[1..N]. Include order Number [1..N] and order R of index of 
tasks. Algorithm of topological sorting by width looking as 
follows (Algorithm how we can give to the tasks indexes by 
width):  

 
for(I=1;I<= N;I++) { 
  Number[I]:=Number_incoming_edges[I]; 
  if(Number[I]==0) put_in_order(R,I); 
  J:=1  
  While R nonempty { 
    L=first_index_taken_from_order(R); 
    Index[L]:=J 
    J:=J+1; 
    for all K from list_outgoing_edges[L]{ 
    Number[K]:=number[K]-1; 
    if(Number[K]==0){put_in_order(R,K);} 
  } 
} 

Fig.4. Topological sorting by width 

When we got indexes of tasks, now, structure of our 
genetic algorithm look as follows: 
 
genetic algorithm { 
  initialisation(P(0));  
  for(i=0,i<I;i++) {//I-number of iterations 
    randomly choose three individuals from 
      P(i); 
    mark the worst  individuals for 
      elimination; 
    crossover surviving individuals; 
    mutation child; 
    evaluation child; 
    replace eliminated individuals with new  
      child  
  } 
} 

Fig.5 . Proposed genetic algorithm 

Now, we will consider initialisation, crossover, mutation 
and evaluation algorithm. 

With initialisation we will make population of solutions. 
Let be N population size and Z will be number of tasks from 
directed acyclic graph. Randomly we choose the one  of 
processors from set of [1,P] where P is total number of 
processors and then add the task from the list of task  sortie 
by indexes on increasing order. Pseudocode of initialisation 
is: 
 



  

initialisation(P(0)) { 
  for (i=0;i<N;i++){//N-population size 
  for(j=1;j<=Z;j++){//Z-number of tasks 
  set of tasks which do r-th processor 
    extend with task Tj; 
    //r-randomly chosen number: r∈[1,P] 
    //P-number of processors 

  } 
evaluation(i-th individual);  

} 

Fig.6.  Pseudocode of initialisation 

The chromosome is consisting from P sorted arrays. 
Example, let be P=3 and Z=10. One example of string 
looking as:   
 
S[1] 
S[2] 
S[3] 
 

Fig.7. Example of string (work with indexes (sorted by 
width) of tasks) 

This is only chromosome (string) but not scheduling. On 
that way, and with number of iterations we have defined 
algorithm of initialisation. 

The crossover operator use two strings randomly choose 
(choose one at random task) Ti from one of two sets and put 
on the new string. Precedence relation must be kept and 
whole time we work with indexes of tasks (getting by 
topological sorting). If Ti element the same set at both 
parents then Ti is coping on the same place for new string 
(child). If we randomly choose two same parents (strings 
A=B) and if one of parents e.g. A the best string we use 
operator mutation on the second B string. It is elitism.  Else, 
we mutate the first set and child generate randomly.  
This algorithm performs the crossover operation on two 
strings (A and B) and generates new string. 
 
crossover (A;B) { 
  if(A==B){ //elimination duplicate  
    if(A is the best string) mutation(B); 
                                // elitism   
    else mutation(A); 
    random generate child; 
  return 
} 

  for(i=1,i<=Z;i++){ 
    if(Ti∈P on both parents) 
      Ti copy on the same place on the child 
  else 

      Ti below one from sets of parents  
                                 (randomly); 
} 

} 
Fig.8. Pseudocode of crossover 

Increasing order indexes of the tasks must be kept.   

Before crossover operation: 
 
 
A[1] 
A[2] 
A[3] 
 
B[1] 
B[2] 
B[3] 
 

After crossover operation (child): 
 
C[1] 
C[2] 
C[3] 

 
Fig.9. Example of crossover operator (work only with 

indexes) 

Next, what we must to do is define the mutation operator. 
We first generate two randomly chosen numbers r i q from 
the sets [1,P]. The condition for that is that: a) r # q, and b) 
set r aren’t empty 

After that from set r, choose one task at random and 
remove him in the set q. We must take in the account that 
the task which we move, must be put on the place that 
indexes of task be ordered by increasing. 
Algorithm mutation: 
 
mutation() {  

generate  two numbers randomly r,q∈[1,P] 
with conditions: 
a) r # q, and  
b) set r aren’t empty 

from set r, randomly pick  a task and 
removing him in the set q; 

} 

Fig.10. Pseudocode of mutation 

Let be r=1 and q=2 and randomly choose the task has the 
index 5. 

Before mutation: 
 
S[1] 
S[2] 
S[3] 
 

After mutation: 
 
S[1] 
S[2] 
S[3] 
 

Fig.11. Example of mutation operator 
 

Figure 12 shows the evaluation algorithm. 
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evaluation(){ 
  for(i=1;i<=P;i++) FTP[i]=0; 
      // reset FTP for all processors 
  for(i=1;i<=Z;i++){ 
        // Ti∈{sets of tasks processor p}, 
           p∈[1,P] 
    FTP[p] += duration(Ti); 
    for(j=1;j<=P;j++){ 
      if(j == p) continue; 
      // the precedence relations are  
      // maintained in this line: 
      if(((Tx∈j)<Ti ) && (FTP[j]>pom)) 
      // x is the biggest index of tasks set 
      // p (tasks which execution onto 
      // processor p), and that content the 
      // condition  x<j. 
         FTP[p] = FTP[j] + Ti; 
    } 
  } 
  FT=maxi∈[1,P]{FTP[i]}; 
} 

Fig.12. Pseudocode of evaluation 

The fitness function for the multiprocessor scheduling 
problem in our genetic algorithms is finishing time a besides 
it can be also throughput and processor utilization. Finishing 
time of a schedule is defined as follows: 
FT=maxi∈[1,P]{FTP[i]} where FTP[i] is the finishing time 
for the last task in processor i. 

V. RESULTS 

     The experiments have been done on two computers: 
a) SUN ULTRA on 140 MHz with 64 MB RAM, and 
b) ALPHA STATION 600 on 333 MHz and 256 MB 

RAM 
Test problem consists in the work with two problems: 
Problem with 452 tasks, which should be scheduling onto 20 
processors. Number of tasks generated randomly as 
processing times for every task and the precedence 
constraints took from [12]. For this problem, optimal 
solution is 537 time units. And it has been also taken from 
[12]. To that solution we have done with our GA with next 
parameters: mutation probability 1%, population size is 20 
individual solutions and it has 10000 iterations with 85% 
probability. We have done a few tens experiments. In the 
15% cases we have got local optimum. The result of 540 
time units doesn’t look as bad solution because it’s only 
three time units worst solution from optimal solution from 
the site [12]. This problem, on the computer b), for 1000 
iterations spent 7 minutes and 40 seconds. We have 
graphically showed evolution process for first problem 
(Fig.13). 
 

 
Fig.13. Evolution process 

Second, we tested the problem with 473 tasks, which should 
be scheduling onto 4 processors. This problem, for 1000 
iterations on the computer b) spent 1 minute. Optimal 
solution for this problem is 1178 time units (from the site). 
The best solution with our genetic algorithm was 1182 time 
units and the worst solution was 1187 time units. Average 
solution with 1184 time units has got with the next 
parameters: population size=50, number of iterations=30000 
and mutation probability=0.01 or 1%. For better results, it 
would be to adjust genetic algorithm and for that we need a 
few hundred experiments, which take a few months on this 
computers.  
We measured the quality the schedules using a quantity 
called speedup where: 
Speedup = (completion time of a task graph using sequential 
schedule) / (completion time of the task graph on 
multiprocessor according to scheduling algorithm). For the 
first problem with 452 tasks, total processing time is 4584 
t.u., speedup = 8.54, until for the second problem with 473 
tasks, total processing time is 4713 t.u., speedup =  3.98. 

VI. CONCLUSION 

     In this paper we present an efficient genetic algorithms 
for scheduling precedence constrained task graphs with 
negligible intertask communication onto multiprocessors 
without taking contention in the communication channels 
into consideration. This means that for such problems, 
without limiting onto communication cost and contention of 
the communication channels has to be designed a different 
type of algorithm. Experimental results on the relatively 
hard problems that have been taken from Internet [12] show 
that genetic algorithm without optimisation of parameters 
comes to optimum or near optimum solutions. In order to 
get better results, concerning larger probability of the global 
optimum, an optimisation of the parameters genetic 
algorithm should be done. It is possible to make a parallel of 
the described genetic algorithm, in a very simple way, by 
using multithreading as described in [14,15,16].   



  

VII. APPENDIX 

Table 2 : Complexity of scheduling problems 

Number of 
Processors (m) 

Task Processing 
Time Ti 

Precedence 
Constraints 

Complexity 

Arbitrary Equal Tree O (n) 

2 Equal Arbitrary O (n^2) 

Arbitrary Equal Arbitrary NP-hard 

Fixed (m>=2) Ti=1or2 for all i Arbitrary NP-hard 

Arbitrary Arbitrary Arbitrary Strong NP-hard 
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