Applying Al-techniques as Help for Faculty
Administration — A Case Study

Marko Cupié, Marin Golub, Domagoj Jakobovié

Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia

{marko.cupic, marin.golub,

Abstract. For every university at the beginning
of each semester, there are many organizational
problems which have to be solved by faculty
administration. Some of them are division of
late-enrolled students into lecture groups, and
creation of room schedule for examinations. Both
of these problems can have significant influence
on the students’ ability to attend enrolled courses,
and on the number of teaching staff required for
students examination. In this paper we will present
both of these problems, and their solution using
genetic algorithms.

Keywords. student scheduling, room schedule,
genetic algorithms

1 Introduction

In medium and large faculties, there are many com-
plex organizational issues that need to be solved —
lecture, laboratory and exam scheduling, just to
name a few. Lecture scheduling, course enroll-
ment administration and assignment of students
into lecture groups are three interdependent pro-
cesses. Allocation of rooms for exams is another
example of important task, especially with densely
populated terms in which available room capaci-
ties are nearly exhausted. In this paper we will
show two such problems successfully tackled by ge-
netic algorithms: division of late-enrolled students
into lecture groups, and creation of room schedule
for examinations. Both of those problems are in-
stances of hard combinatorial problems. Solving
them by hand is extremely hard, and solutions are

domagoj . jakobovic}@fer.hr

often very far from being optimal. However, it is
important to find solutions that are as good as pos-
sible, since the former problem influences the abil-
ity of late-enrolled students to attend lectures of
enrolled courses, and the latter problem can have
significant influence on a number of teaching staff
needed for student examination.

Using todays computing power to assist in find-
ing good solutions can be more difficult than an-
ticipating at the first glance. Namely, both of
those problems are hard combinatorial problems
for which we can not write the exhaustive search
procedure which will complete in acceptable time
frame.

Evolutionary algorithms [1, 2] are metaheuristics
which can rather successfully cope with this kind
of problems. It is important to note that evolu-
tionary algorithms can not provide us with a guar-
antee of solution optimality, when working under
tight time constraints. However, they can often
produce a reasonably good solution that is not far
from the optimal one. Under the umbrella of evo-
lutionary computation there are many algorithms,
such as genetic algorithms [3], particle swarm op-
timization [5, 6], ant colony optimization [7], ar-
tificial immune systems [8, 9, 10] and many oth-
ers. We have decided to tackle both of described
problems using genetic algorithms, since they offer
rather straight-forward means for solution repre-
sentation and multi-objective optimization.

This paper is organized as follows. In section 2
we will introduce the room scheduling problem and
describe the relationship between existing exam
scheduling and here defined room scheduling. Im-
plementation of algorithm for the room schedul-

ing based on genetic algorithm will be presented
and elaborated. In section 3, additional scheduling
problem — assignment of late enrolled students to
lecture groups — will be defined, and applied ge-
netic algorithm based method will be described. In
section 4 a conclusion and future work directions
are given.

2 Room scheduling

At authors institution, each semester is divided
into four examination periods: two periods are for
mid-term exams, one is for final exams, and one
is for make-up exams. Schedules for those peri-
ods are produced using genetic algorithms, as re-
ported in [4]. In this paper we will focus on ad-
ditional scheduling problem that is performed af-
ter the courses are assigned to exam time-slots:
room scheduling. Room scheduling is an assign-
ment problem in which for each exam time-slot
rooms must be scheduled to courses while minimiz-
ing the required number of teaching staff and hav-
ing adequate quality (quality will be defined later).
This is also NP-hard problem. To exemplify, let
us consider a simple room scheduling scenario in
which there are 30 rooms which have to be sched-
uled among 10 courses. We have to check each pos-
sible scenario. The first room can be given to each
of 10 courses, then the second room can be given
to each of 10 courses, and so on, which gives us a
total of 10 - 10 - ---- 10 = 103° combinations. If
it takes 1 us to check a single combination, the
exhaustive search procedure, which checks each of
those combinations, will finish its work in approxi-
mately 3.2 - 1016 years.

What is the relationship between room and exam
scheduling, and what are the related problems at
authors institution? First, the exam schedule is
created and published. The generated schedule for
each course contains only a time and duration of
the exam. For the exam scheduling purposes, each
day of examination periods is divided into 4 dis-
junct time-slots. Courses are then scheduled so
that there is no student that is enrolled in two or
more courses that are assigned into the same time-
slot. Courses are assigned into time-slots taking
into account time-slot capacity (a total number of
students which can be accepted by all rooms which
are available in that time-slot). This approach is

far from ideal. For example, it is easy to imagine
a situation with a time-slot where there are only
2 large rooms available (70 students each). De-
scribed scheduling process can assign three or more
smaller courses in that time-slot, as long as the to-
tal sum of enrolled students is not greater than 140.
However, from the standpoint of course-staff, often
room-sharing is not an well-perceived option.

2.1 Exam scheduling related prob-
lems

To reduce the probability of such events, we can
take two approaches: either to simultaneously gen-
erate the exam schedule up to the level of rooms,
or to artificially reduce the available rooms capac-
ity by a certain factor, so that in reality, space pro-
vided by all available rooms will not be fully oc-
cupied. The former approach is problematic, since
it drastically increases the search space for an al-
gorithm already operating on a huge search space,
and trying to satisfy a number of additional con-
straints. Instead, we took the second approach.
For a typical time-slot, actual student capacity at
authors institution is about 1000 students. During
the exam scheduling, time-slot capacities were all
set to 80% of that number (800 students).

Unfortunately, even this approach during last few
years has lead to problems when time-slots were
nearly fully occupied. The problem arose when
some courses reserved more rooms than expected,
in order to be able to make more sparse student
schedule (to make cheating more difficult). This,
however, left no available rooms for other courses
assigned into that same time-slot.

2.2 Increase in required number of
staff members

The other important problem is the growth of
teaching staff requirements needed for exams. To
help with exam organization, a pool of teaching
staff members is created. After the exam sched-
ule is created, and after exam-organizers reserve
required number of rooms and create student sched-
ules, a total number of teaching staff members re-
quired for exams is calculated (denoted with T).
Then, if there are N teaching staff members avail-
able in teaching staff members pool, each of teach-
ing staff members must be present on n = T/N

exams. During several last semesters, we noticed
the constant growth of n, which can be attributed
to the increase in a number of students present in
the system, as well as to misusage of the pool of
teaching staff by the staff itself.

2.3 The proposed solution

To amend all of those issues, and to disburden
the exam-organizers from the task of manually se-
lecting and reserving rooms and resolving possible
room conflicts, the decision was made to create a
version of exam schedule that for each time-slot
contains preassigned and reserved rooms for each
course in that slot. This approach has many bene-
fits.

e Early room conflict detection. By creat-
ing room schedules centrally, situations such
as "two big rooms and three courses" can be
detected early, and they can provoke a change
in exam schedule, or other adjustments so that
additional room required for the third course
can be found. And all of that can be dealt with
before the schedule is published.

e Rational room usage. Care can be taken
in advance to create such a room schedule
that will enable all courses assigned to the
same time-slot to have enough assigned rooms
for rational student schedules. Then, if there
are available additional rooms, each exam-
organizer can reserve additional rooms to make
student schedules more sparse. However, ini-
tial intention that all courses can have exams
can be fulfilled.

e Rational usage of teaching staff. During
the process of room scheduling, care can be
taken to minimize the total number of teach-
ing staff required for all of the exams, based on
objective assessments of room requirements. If
there are rooms with various ratios s/t, where
s is number of students for that room and ¢
number of teaching staff members required in
that room, a clever selection of rooms can be
made that will minimize total required number
of teaching staff members. It is important to
note that always selecting rooms with minimal
ratio s/t for one course does not guarantee op-
timal solution since that room is then unavail-

able for other course that might have a better
usage for it.

Actual implementation of described scheduling
techniques enabled us to include even additional
wishful properties for each room schedule, which in
practice generated very promising results.

2.4 Formal problem description

In this section we will provide a formal problem
definition.

o Let T = {T1,Ts,....,T,,} be a set of disjunct
time-slots.

o Let C; = {ci1,¢i2,..., ik} be aset of courses
scheduled to time-slot T;, T; € T'.

e Let stud(c;) be the number of students enrolled
on course ¢;.

e Let R = {rq1,ra,...,m} be a set of all existing
rooms.

e Let R; C R denotes a set of rooms available to
time-slot T3, T; € T'.

e Let AR; C R be a set of rooms assigned to
course ¢;.

o Let stud(r;, c;) be the number of students that
course c; is willing to put in room r;. Note that
this means that different courses can decide
to fill the same room with different number of
students, if that room is assigned to a course.

e Let staff (r;, ¢;) be the number of teaching staff
members that course c¢; requires to be present
in room r;. Note that this means that different
courses can decide to assign different number
of teaching staff members in the same room, if
that room is assigned to a course.

e Let building(r;) be the building in which room
is situated.

e Let floor(r;) be the floor on building in which
room is situated.

Then, the basic scheduling can be formalized as
follows. For each term T; find a partition of R;
into disjunct subsets R = {R; 1, ..., Ri p, Runused }»
p = |Ci|, Rij N Rix = 0,Yj # k, so that

Ve, ZTGRM stud(r,cj) > stud(c;). The idea is to
decompose all available time-slot rooms into a dis-
junct subsets of rooms — one subset for each course,
and possibly to leave some of available rooms unas-
signed. The sum of capacities of rooms assigned to
each course (as defined by that course) must be
equal than or greater than the number of students
on that course.

On top of that basic requirement, we added two
additional ones. First, for each time-slot T; the
total number of allocated teaching staff members
should be minimized:

minimize f(R) =

staff (r, ¢;).

>

Ci,j Eci,’l‘eRid

This will automatically remove all extra rooms,
which provide more capacity than needed for any
of the courses. The second requirement arose from
the practice of larger courses which usually allo-
cate one additional course staff member to visit
each assigned room and answer students’ questions,
several times during exam. Since our institution
has four buildings, room schedules that would be
scattered throughout the buildings are not desired.
So during the room scheduling process we would
like to find for each course such a room assignment
that will minimize the walking distance for cyclic
path that visits each assigned room once per cycle,
which is in essence a TSP problem [11]. Since it
is well known that TSP belongs to NP-hard class
of problems, it was unacceptable to write a proce-
dure that would, in order to evaluate the quality of
room schedule, try to solve all accompanying TSP-
s (one for each course). The main reason is that
when using a genetic algorithm in order to solve
the scheduling problem, we must be able to eval-
uate thousands of schedules per second. And that
would not be possible if the evaluation required so-
lutions of TSP problems.

Instead, we decided to simplify things (or to com-
plicate it). Since for each room we had data on
room’s building and room’s floor, we decided to
measure a quality of course’s room schedule by
counting the number of buildings and the number of
floors its rooms were located in. The idea was to fa-
vor the schedules that for a single course stay on the
same floor; for bigger courses use multiple floors of
the same building, and only for large courses span
across multiple floors and multiple buildings.

Finally, there is one additional requirement that
describes the quality of room schedule, which we
decided to include - a room preferability. We have
three types of rooms: flat classrooms, amphithe-
ater rooms, and computer laboratories. During the
exams, all three kinds of rooms are used. However,
flat classrooms are the most preferred, since cheat-
ing in that kind of rooms is rather difficult. Am-
phitheater rooms are less preferable, since they al-
low easier student cheating during the exam. Com-
puter laboratories are least preferable, since stu-
dents are placed rather close to each other. So the
room schedule should have best possible quality,
when considering room preferability.

In order to collect all of required data, we enabled
each course to adjust two room parameters: the
number of students that the course is willing to
schedule into a room, and the number of teaching
staff members that the course requires to be present
in the room.

2.5 Genetic algorithm for room

scheduling

We implemented a steady-state genetic algorithm
containing a population of 1000 chromosomes. We
induced a ring topology into population, and lim-
ited genetic operators to work only on closely po-
sitioned parents. In order to do so, we defined a
parameter neighborhood n and set its value to 10.
The pseudo code of the algorithm is as follows.

func GA(timeslot Ti)
initPopulation(Ti)
while(!stoppingCondition) {

i selectChromosome (0,popsize) ;

j selectChromosome(i-n,i+n);

k = selectChromosome(i-n,i+n);

(p1l,p2)=best(i,j,k);

¢ = createChild(p1,p2);

if (better_than(c,currentBest)) {
stagnationCounter=0;

} else {
stagnationCounter++;

i =

}
replace worst(i,j,k) with c;
}

return currentBest;

In each iteration, a random chromosome is se-
lected and then two more chromosomes are selected

from its neighborhood. The better two are selected
to be parents. Crossover and mutation operators
are applied on the parents. Finally, on child a lo-
cal search was performed. The worst of the three
chromosomes initially selected is then replaced. If
the child is better than the currently best solution
present in the population, stagnation counter is re-
set; otherwise, it is incremented. Stopping condi-
tion is set to true when stagnation counter reaches
1,000,000.

Function GA is then called once for each time-slot,
in order to create time-slot room schedule, since the
time slots are nonoverlapping.

The implementation of genetic algorithm for
this particular problem is rather straight-forward.
There is only one detail left to be explained: the
originally presented problem is a clear case of multi-
objective optimization (take enough rooms to allow
all students to take exam, minimize total number
of staff members, maximize quality of schedule in
terms of number of floors and number of buildings).
To handle multi-objective optimization problems,
evolutionary algorithms can work with the principle
of domination. Namely the problem which arises in
multi-objective optimization is how to compare two
solutions? In our case, is it better to have a sched-
ule that for some course requires 10 staff members
and spans over three floors, or to have a schedule
that for some course requires 11 staff members and
is located on a single floor? The domination princi-
ple allows such algorithms to avoid such questions,
and to provide to the user a selection of various
schedules each having different qualities. However,
in our case there were priorities which had to be
taken into account, so we decided to take another
standard approach: to transform multi-objective
problem into a single objective one, partially by
inducing strict hierarchy among various solution
quality measures, and partially by using weighting
approach.

The quality of a solution is represented as a four
dimensional vector ¢q. The first component (g[0])
is the total number of places missing in order for
all students to be able to take exam (some courses
have not enough assigned rooms). This component
should be minimized to 0. The second component
(g[1]) is the total number of allocated extra-place,
which are unused by students. This component
should also be minimized, in order to prevent solu-
tion in which small courses (e.g., with 15 students)

get large rooms (e.g., for 70 students). The third
component is the total number of allocated staff
members required for the schedule. Finally, the
fourth component represents schedule’s locational
quality and preferability, and is calculated as fol-
lows.

Set preferabilityPenalty to 0. Then, for each
room assigned in a schedule, if it is an amphithe-
ater, increment preferabilityPenalty by 9, and if it
is a laboratory, increment preferabilityPenalty by
15. Set locationPenalty to 0. For each course C; in
schedule calculate the number of buildings n; and
the number of floors ny on which there are rooms
assigned to that course. Increment locationPenalty
by 70 - (ny — 1) and by 23 - (ny — 1). Finally, set
q[3] to the sum of preferabilityPenalty and location-
Penalty. Weights and other fixed numbers used for
this calculations were empirically determined for
authors particular problem. For other problems
(different number of buildings, floors etc.) the user
can adjust this values to better suit his sense of
"schedule quality".

Once the solution is fully evaluated, solution
comparison is implemented as follows:

compare(sl, s2) {
if(s1.q[0]!=s2.q[0]) {
return s1.q[0]!=s2.q[0];
} else if(sl.q[2]!=s2.q[2]) {
return s1.q[2]!=s2.q[2];
} else {
return s1.q[1]+s1.q[3]
-(s2.q[1]1+s2.q[3]);
}

The comparison method must return a value
which is negative if sl is better than s2, zero if
they are equal, and a positive value otherwise. As
can be seen from the algorithm, the most impor-
tant criteria is to allocate enough space for all of
the students. Only when comparing two schedules
having equal number of missing places, comparison
will check the total number of assigned staff mem-
bers, and if there is still no difference, comparison
will check the sum of extra-allocated places and
preferabilityPenalty and locationPenalty.

2.6 Local search

Local search procedure is implemented as follows.
For each course (in a randomly determined order),

100 1000 10000
Iterations (log-scale)

Figure 1: Algorithms performance with local search
procedure enabled

1400

1200

1000

Penalty

. - v ST SUR e s
1 10 100 10000 100000

1000 1e+006
Iterations (log-scale)

Figure 2: Algorithms performance with local search
procedure disabled

if there is extra allocated place, an attempt is made
to randomly deallocate some of rooms, but preserv-
ing enough places for the students (no shortage will
be created). Then, for each course, if there is not
enough allocated places, an attempt is made to ran-
domly allocate additional rooms (if possible).

Difference in algorithm performance with and
without local search is clearly illustrated on Fig-
ure 1 and Figure 2. To obtain even a comparable
results, the algorithm with local search disabled re-
quires about 100 times more iterations (about 10°
iterations versus 10%), making the search procedure
a must-have if time-behavior is important. On Fig-
ure 1, ¢[0] is not visible since it falls to zero in first
iteration.

The results obtained for first exam period of cur-
rent semester are encouraging. Compared with the

same semester of previous academic year (in which
the scheduling was done by hand), a number of
course enrolments have risen for about 6%. How-
ever, using the schedule we generated the require-
ments for teaching staff members have fallen for
about 3.4%, from to 524 to 506.

3 Student group assignment

At our institution, students are enrolled in a prede-
fined set of obligatory (non-elective) courses. Apart
from that, they are allowed to decide which addi-
tional elective courses they will enroll, in order to
achieve better specialization. At the beginning of
each semester, enrollment process is divided into
two phases. During the first phase, students de-
cide which of the elective courses they will enroll.
During this phase, the majority of students sub-
mit theirs enrollment applications. Then, the en-
rollment process is temporarily suspended, and a
lecture schedule is created, with maximal effort to
allow all of the enrolled students to lake lectures.
At this moment lectures begin.

Unfortunately, there is always a certain percent-
age of students which did not submit its enroll-
ment application during first enrollment period, so
at this point, enrollments are resumed, with one dif-
ference: since the lecture schedule bas already been
fixed, enrolled students are not automatically as-
signed into lecture groups. Instead, a list of all late
enrollments is composed. All of students on that
list compete for remaining empty places in lecture
rooms. In an attempt to allow all of the students
to take the lectures of enrolled courses, additional
scheduling problem is formed: it is necessary to
blend all of the late enrolled students into existing
lecture schedule so that all of them can take all of
enrolled lectures, and without overcapacitying the
lecture rooms, if possible, or to create a best pos-
sible group assignment with minimum number of
overcapacitated rooms and schedule conflicts.

To do so, a list of required data is collected, as
follows.

e A list of late enrolled student-courses that
must be assigned into lecture groups.

e For each course and each course-group the lec-
ture schedule for complete semester.

e For each course and each course-group the
number of regularly enrolled and assigned stu-
dents.

e For each course a set of constraints that must
be satisfied with regard to number of students
in lecture groups.

The need for the lastly mentioned constraints can
be justified by a simple example. Let us assume
that students of the first year are divided into ten
groups: 1.01 to 1.10. Let us further assume that
groups 1.01 and 1.03 take lectures on course c; si-
multaneously in room 71, while on course co they
take separate lectures: 1.01 in room r5 and 1.03 in
room r3. From this example, it is obvious that the
following must hold:

count(1.01) + count(1.03) <= capacity(r_1)
count(1.01) <= capacity(r_2)
count(1.03) <= capacity(r_3)

In general case, there is no guarantee that addi-
tional students can be blended into existing lecture
schedule, so one of the goals of optimization process
is to try to satisfy as many constraints as possible.

3.1 Actual data and algorithm im-

plementation

At authors institution this semester we had a num-
ber of late enrolled students. For courses on which
all groups attend lectures at the same time, stu-
dents were assigned to any of the course groups. 38
students remained on 18 courses having multiple
lecture groups, that had to be scheduled (a total of
89 student-enrollments, or approximately 5 courses
per student). A total number of constraints present
on those 18 courses was 90).

A typical steady state genetic algorithm was em-
ployed, working with population of 1500 chromo-
somes. The chromosome evaluation function was
implemented as follows. For all unsatisfied con-
straints ¢;: g1 + g2 + ... + gn < N; overflow is cal-
culated as 0o; = g1 + g2 + ... + gn — N;. Then,
for each scheduled student s; a total amount of
conflicting lecture-hours h; is calculated. Penalty
function which is then minimized by genetic algo-
rithm is calculated as:

penalty:4'20i+2~2hj.
i J

400

350

300
250 &\
200

150 D

Penalty

100

“ -

0 5000

\

30000

—

10000 15000

Iterations

20000 25000

Figure 3: Algorithm’s performance on scheduling
unscheduled students

Weights used here were determined empirically.
The performance of the algorithm is shown in
Figure 3. As it can be seen, the scheduling process
finished rather successfully: only two constraints
were broken by 1, producing 66% of penalty 4- (1+
1) = 8, and one student ended up with two hours
of conflicting lectures, producing the rest 33% of
penalty 2 - 2 = 4, which totals 12. Careful post
analysis discovered that it was not possible for the
student in question to find a better schedule.

4 Conclusion and Future Work

At the present time, more and more students are
enrolled at universities. The ever-increasing num-
ber of enrollments poses serious problems for fac-
ulty administration involved in solving a variety of
organizational issues. Solving these problems by
hand had become an impossible mission, especially
if the solution quality is considered.

In this paper we described a successful deploy-
ment of today available computation power to help
with two common problems faced by many univer-
sities. The problems were tackled by two imple-
mentations of genetic algorithms, both of which
proved to be very capable. Usage of those algo-
rithms enabled us to provide a higher quality of
studying to students: late enrolled students were
successfully blended into existing lecture schedule,
while still allowing them to enroll requested elective
courses. Course staff was also deburdened, and for
each course exam a non-conflicting room schedule
was created, which produced additional benefit —

lowered the demands on teaching staff members.

There are still many similar problems at univer-
sities world-wide, currently solved by hand, which
are ready to be tackled by evolutionary algorithms.
Investigating university needs and providing ade-
quate solutions is a part of our future work.

Also, since the focus of this paper is to show how
Al-techniques can be used to help faculty admin-
istration, this paper presents a successfull applica-
tion of genetic algorithm to two described schedul-
ing problems. Using these algorithms we were able
to solve real-world problems faced by authors in-
stitution. As part of future work, the focus will be
shifted to obtaining better performance. This will
require a more rigorous comparison of applicable
(meta-)heuristic search algorithms.

5 Acknowledgments

This work has been carried out within project 036-
0361994-1995 Universal Middleware Platform for e-
learning Systems funded by the Ministry of Science,
Education and Sport of the Republic of Croatia.

References

[1] De Jong, K. A.: Evolutionary Computation,
MIT Press, Cambridge, 2006.

[2] Deb, K.: Multi-Objective Optimization us-
ing Evolutionary Algorithms, Wiley, New York,
2009.

[3] Affenzeller, M., Wagner, S.: Genetic Algo-
rithms and Genetic Programming, Modern Con-
cepts and Practical Applications, CRC Press,
Boca Raton, 2009.

[4] Cupi¢, M., Golub, M., Jakobovi¢, D.: Exam
Timetabling Using Genetic Algorithm, Proceed-
ings of the 31st International Conference on In-
formation Technology Interfaces, 22nd - 25th
June, Cavtat/Dubrovnik, Croatia, 2009, pp.
357-362.

[5] Eberhart, R.C., Kennedy, J.: A new optimizer
using particle swarm theory, Proceedings of the
Sixth International Symposium on Micro Ma-
chine and Human Science, Nagoya, Japan, 1995,
pp. 39-43.

[6] Montes de Oca, M.A., Stiitzle, T., Birat-
tari, M., Dorigo, M.: Frankenstein’s PSO: A
Composite Particle Swarm Optimization Algo-
rithm, IEEE Trans. on Evolutionary Computa-
tion. 2009, 13(5), pp. 1120-1132.

[7] Dorigo, M., Stiitzle, T.: Ant Colony Optimiza-
tion, MIT Press, Cambridge, MA, 2004.

[8] De Castro, L.N., Von Zuben, F.J.: The Clonal
Selection Algorithm with Engineering Applica-
tions, Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO ’00),
Workshop on Artificial Immune Systems and
Their Applications, Las Vegas, Nevada, USA,
2000, pp. 36-37.

[9] De Castro, L.N., Timmis, J.: Artificial Immune
Systems: A new computational intelligence ap-
proach, Springer-Verlag, Great Britain, 2002.

[10] Cutello, V., Nicosia, G.: Chapter VI. The
Clonal Selection Principle for In Silico and
In Vitro Computing, Recent Developments in
Biologically Inspired Computing, eds. Leandro
Nunes de Castro and Fernando J. Von Zuben.
Hershey, London, Melbourne, Singapore: Idea
Group Publishing, 2005, pp. 104-146.

[11] Johnson, D. S., McGeoch, L. A.: The Trav-
eling Salesman Problem: A Case Study in Lo-
cal Optimization, Local Search in Combinatorial
Optimization, E. H. L. Aarts and J. K. Lenstra
(editors), John-Wiley and Sons, Ltd., 1997, pp.
215-310.

