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t. For every university at the beginningof ea
h semester, there are many organizationalproblems whi
h have to be solved by fa
ultyadministration. Some of them are division oflate-enrolled students into le
ture groups, and
reation of room s
hedule for examinations. Bothof these problems 
an have signi�
ant in�uen
eon the students' ability to attend enrolled 
ourses,and on the number of tea
hing sta� required forstudents examination. In this paper we will presentboth of these problems, and their solution usinggeneti
 algorithms.Keywords. student s
heduling, room s
hedule,geneti
 algorithms1 Introdu
tionIn medium and large fa
ulties, there are many 
om-plex organizational issues that need to be solved �le
ture, laboratory and exam s
heduling, just toname a few. Le
ture s
heduling, 
ourse enroll-ment administration and assignment of studentsinto le
ture groups are three interdependent pro-
esses. Allo
ation of rooms for exams is anotherexample of important task, espe
ially with denselypopulated terms in whi
h available room 
apa
i-ties are nearly exhausted. In this paper we willshow two su
h problems su

essfully ta
kled by ge-neti
 algorithms: division of late-enrolled studentsinto le
ture groups, and 
reation of room s
hedulefor examinations. Both of those problems are in-stan
es of hard 
ombinatorial problems. Solvingthem by hand is extremely hard, and solutions are

often very far from being optimal. However, it isimportant to �nd solutions that are as good as pos-sible, sin
e the former problem in�uen
es the abil-ity of late-enrolled students to attend le
tures ofenrolled 
ourses, and the latter problem 
an havesigni�
ant in�uen
e on a number of tea
hing sta�needed for student examination.Using todays 
omputing power to assist in �nd-ing good solutions 
an be more di�
ult than an-ti
ipating at the �rst glan
e. Namely, both ofthose problems are hard 
ombinatorial problemsfor whi
h we 
an not write the exhaustive sear
hpro
edure whi
h will 
omplete in a

eptable timeframe.Evolutionary algorithms [1, 2℄ are metaheuristi
swhi
h 
an rather su

essfully 
ope with this kindof problems. It is important to note that evolu-tionary algorithms 
an not provide us with a guar-antee of solution optimality, when working undertight time 
onstraints. However, they 
an oftenprodu
e a reasonably good solution that is not farfrom the optimal one. Under the umbrella of evo-lutionary 
omputation there are many algorithms,su
h as geneti
 algorithms [3℄, parti
le swarm op-timization [5, 6℄, ant 
olony optimization [7℄, ar-ti�
ial immune systems [8, 9, 10℄ and many oth-ers. We have de
ided to ta
kle both of des
ribedproblems using geneti
 algorithms, sin
e they o�errather straight-forward means for solution repre-sentation and multi-obje
tive optimization.This paper is organized as follows. In se
tion 2we will introdu
e the room s
heduling problem anddes
ribe the relationship between existing exams
heduling and here de�ned room s
heduling. Im-plementation of algorithm for the room s
hedul-



ing based on geneti
 algorithm will be presentedand elaborated. In se
tion 3, additional s
hedulingproblem � assignment of late enrolled students tole
ture groups � will be de�ned, and applied ge-neti
 algorithm based method will be des
ribed. Inse
tion 4 a 
on
lusion and future work dire
tionsare given.2 Room s
hedulingAt authors institution, ea
h semester is dividedinto four examination periods: two periods are formid-term exams, one is for �nal exams, and oneis for make-up exams. S
hedules for those peri-ods are produ
ed using geneti
 algorithms, as re-ported in [4℄. In this paper we will fo
us on ad-ditional s
heduling problem that is performed af-ter the 
ourses are assigned to exam time-slots:room s
heduling. Room s
heduling is an assign-ment problem in whi
h for ea
h exam time-slotrooms must be s
heduled to 
ourses while minimiz-ing the required number of tea
hing sta� and hav-ing adequate quality (quality will be de�ned later).This is also NP-hard problem. To exemplify, letus 
onsider a simple room s
heduling s
enario inwhi
h there are 30 rooms whi
h have to be s
hed-uled among 10 
ourses. We have to 
he
k ea
h pos-sible s
enario. The �rst room 
an be given to ea
hof 10 
ourses, then the se
ond room 
an be givento ea
h of 10 
ourses, and so on, whi
h gives us atotal of 10 · 10 · · · · · 10 = 1030 
ombinations. Ifit takes 1 µs to 
he
k a single 
ombination, theexhaustive sear
h pro
edure, whi
h 
he
ks ea
h ofthose 
ombinations, will �nish its work in approxi-mately 3.2 · 1016 years.What is the relationship between room and exams
heduling, and what are the related problems atauthors institution? First, the exam s
hedule is
reated and published. The generated s
hedule forea
h 
ourse 
ontains only a time and duration ofthe exam. For the exam s
heduling purposes, ea
hday of examination periods is divided into 4 dis-jun
t time-slots. Courses are then s
heduled sothat there is no student that is enrolled in two ormore 
ourses that are assigned into the same time-slot. Courses are assigned into time-slots takinginto a

ount time-slot 
apa
ity (a total number ofstudents whi
h 
an be a

epted by all rooms whi
hare available in that time-slot). This approa
h is

far from ideal. For example, it is easy to imaginea situation with a time-slot where there are only2 large rooms available (70 students ea
h). De-s
ribed s
heduling pro
ess 
an assign three or moresmaller 
ourses in that time-slot, as long as the to-tal sum of enrolled students is not greater than 140.However, from the standpoint of 
ourse-sta�, oftenroom-sharing is not an well-per
eived option.2.1 Exam s
heduling related prob-lemsTo redu
e the probability of su
h events, we 
antake two approa
hes: either to simultaneously gen-erate the exam s
hedule up to the level of rooms,or to arti�
ially redu
e the available rooms 
apa
-ity by a 
ertain fa
tor, so that in reality, spa
e pro-vided by all available rooms will not be fully o
-
upied. The former approa
h is problemati
, sin
eit drasti
ally in
reases the sear
h spa
e for an al-gorithm already operating on a huge sear
h spa
e,and trying to satisfy a number of additional 
on-straints. Instead, we took the se
ond approa
h.For a typi
al time-slot, a
tual student 
apa
ity atauthors institution is about 1000 students. Duringthe exam s
heduling, time-slot 
apa
ities were allset to 80% of that number (800 students).Unfortunately, even this approa
h during last fewyears has lead to problems when time-slots werenearly fully o

upied. The problem arose whensome 
ourses reserved more rooms than expe
ted,in order to be able to make more sparse students
hedule (to make 
heating more di�
ult). This,however, left no available rooms for other 
oursesassigned into that same time-slot.2.2 In
rease in required number ofsta� membersThe other important problem is the growth oftea
hing sta� requirements needed for exams. Tohelp with exam organization, a pool of tea
hingsta� members is 
reated. After the exam s
hed-ule is 
reated, and after exam-organizers reserverequired number of rooms and 
reate student s
hed-ules, a total number of tea
hing sta� members re-quired for exams is 
al
ulated (denoted with T ).Then, if there are N tea
hing sta� members avail-able in tea
hing sta� members pool, ea
h of tea
h-ing sta� members must be present on n = T/N



exams. During several last semesters, we noti
edthe 
onstant growth of n, whi
h 
an be attributedto the in
rease in a number of students present inthe system, as well as to misusage of the pool oftea
hing sta� by the sta� itself.2.3 The proposed solutionTo amend all of those issues, and to disburdenthe exam-organizers from the task of manually se-le
ting and reserving rooms and resolving possibleroom 
on�i
ts, the de
ision was made to 
reate aversion of exam s
hedule that for ea
h time-slot
ontains preassigned and reserved rooms for ea
h
ourse in that slot. This approa
h has many bene-�ts.
• Early room 
on�i
t dete
tion. By 
reat-ing room s
hedules 
entrally, situations su
has "two big rooms and three 
ourses" 
an bedete
ted early, and they 
an provoke a 
hangein exam s
hedule, or other adjustments so thatadditional room required for the third 
ourse
an be found. And all of that 
an be dealt withbefore the s
hedule is published.
• Rational room usage. Care 
an be takenin advan
e to 
reate su
h a room s
hedulethat will enable all 
ourses assigned to thesame time-slot to have enough assigned roomsfor rational student s
hedules. Then, if thereare available additional rooms, ea
h exam-organizer 
an reserve additional rooms to makestudent s
hedules more sparse. However, ini-tial intention that all 
ourses 
an have exams
an be ful�lled.
• Rational usage of tea
hing sta�. Duringthe pro
ess of room s
heduling, 
are 
an betaken to minimize the total number of tea
h-ing sta� required for all of the exams, based onobje
tive assessments of room requirements. Ifthere are rooms with various ratios s/t, where

s is number of students for that room and tnumber of tea
hing sta� members required inthat room, a 
lever sele
tion of rooms 
an bemade that will minimize total required numberof tea
hing sta� members. It is important tonote that always sele
ting rooms with minimalratio s/t for one 
ourse does not guarantee op-timal solution sin
e that room is then unavail-

able for other 
ourse that might have a betterusage for it.A
tual implementation of des
ribed s
hedulingte
hniques enabled us to in
lude even additionalwishful properties for ea
h room s
hedule, whi
h inpra
ti
e generated very promising results.2.4 Formal problem des
riptionIn this se
tion we will provide a formal problemde�nition.
• Let T = {T1, T2, ..., Tm} be a set of disjun
ttime-slots.
• Let Ci = {ci,1, ci,2, ..., ci,k} be a set of 
oursess
heduled to time-slot Ti, Ti ∈ T .
• Let stud(ci) be the number of students enrolledon 
ourse ci.
• Let R = {r1, r2, ..., rl} be a set of all existingrooms.
• Let Ri ⊆ R denotes a set of rooms available totime-slot Ti, Ti ∈ T .
• Let ARi ⊆ R be a set of rooms assigned to
ourse ci.
• Let stud(ri, cj) be the number of students that
ourse cj is willing to put in room ri. Note thatthis means that di�erent 
ourses 
an de
ideto �ll the same room with di�erent number ofstudents, if that room is assigned to a 
ourse.
• Let staff (ri, cj) be the number of tea
hing sta�members that 
ourse cj requires to be presentin room ri. Note that this means that di�erent
ourses 
an de
ide to assign di�erent numberof tea
hing sta� members in the same room, ifthat room is assigned to a 
ourse.
• Let building(ri) be the building in whi
h roomis situated.
• Let floor (ri) be the �oor on building in whi
hroom is situated.Then, the basi
 s
heduling 
an be formalized asfollows. For ea
h term Ti �nd a partition of Riinto disjun
t subsets R = {Ri,1, ..., Ri,p, Runused},

p = |Ci|, Ri,j ∩ Ri,k = ∅, ∀j 6= k, so that



∀cj

∑
r∈Ri,j

stud(r, cj) ≥ stud(cj). The idea is tode
ompose all available time-slot rooms into a dis-jun
t subsets of rooms � one subset for ea
h 
ourse,and possibly to leave some of available rooms unas-signed. The sum of 
apa
ities of rooms assigned toea
h 
ourse (as de�ned by that 
ourse) must beequal than or greater than the number of studentson that 
ourse.On top of that basi
 requirement, we added twoadditional ones. First, for ea
h time-slot Ti thetotal number of allo
ated tea
hing sta� membersshould be minimized:
minimizef(R) =

∑

ci,j∈Ci,r∈Ri,j

staff (r, cj).This will automati
ally remove all extra rooms,whi
h provide more 
apa
ity than needed for anyof the 
ourses. The se
ond requirement arose fromthe pra
ti
e of larger 
ourses whi
h usually allo-
ate one additional 
ourse sta� member to visitea
h assigned room and answer students' questions,several times during exam. Sin
e our institutionhas four buildings, room s
hedules that would bes
attered throughout the buildings are not desired.So during the room s
heduling pro
ess we wouldlike to �nd for ea
h 
ourse su
h a room assignmentthat will minimize the walking distan
e for 
y
li
path that visits ea
h assigned room on
e per 
y
le,whi
h is in essen
e a TSP problem [11℄. Sin
e itis well known that TSP belongs to NP-hard 
lassof problems, it was una

eptable to write a pro
e-dure that would, in order to evaluate the quality ofroom s
hedule, try to solve all a

ompanying TSP-s (one for ea
h 
ourse). The main reason is thatwhen using a geneti
 algorithm in order to solvethe s
heduling problem, we must be able to eval-uate thousands of s
hedules per se
ond. And thatwould not be possible if the evaluation required so-lutions of TSP problems.Instead, we de
ided to simplify things (or to 
om-pli
ate it). Sin
e for ea
h room we had data onroom's building and room's �oor, we de
ided tomeasure a quality of 
ourse's room s
hedule by
ounting the number of buildings and the number of�oors its rooms were lo
ated in. The idea was to fa-vor the s
hedules that for a single 
ourse stay on thesame �oor; for bigger 
ourses use multiple �oors ofthe same building, and only for large 
ourses spana
ross multiple �oors and multiple buildings.

Finally, there is one additional requirement thatdes
ribes the quality of room s
hedule, whi
h wede
ided to in
lude - a room preferability. We havethree types of rooms: �at 
lassrooms, amphithe-ater rooms, and 
omputer laboratories. During theexams, all three kinds of rooms are used. However,�at 
lassrooms are the most preferred, sin
e 
heat-ing in that kind of rooms is rather di�
ult. Am-phitheater rooms are less preferable, sin
e they al-low easier student 
heating during the exam. Com-puter laboratories are least preferable, sin
e stu-dents are pla
ed rather 
lose to ea
h other. So theroom s
hedule should have best possible quality,when 
onsidering room preferability.In order to 
olle
t all of required data, we enabledea
h 
ourse to adjust two room parameters: thenumber of students that the 
ourse is willing tos
hedule into a room, and the number of tea
hingsta� members that the 
ourse requires to be presentin the room.2.5 Geneti
 algorithm for rooms
hedulingWe implemented a steady-state geneti
 algorithm
ontaining a population of 1000 
hromosomes. Weindu
ed a ring topology into population, and lim-ited geneti
 operators to work only on 
losely po-sitioned parents. In order to do so, we de�ned aparameter neighborhood n and set its value to 10.The pseudo 
ode of the algorithm is as follows.fun
 GA(timeslot Ti)initPopulation(Ti)while(!stoppingCondition) {i = sele
tChromosome(0,popsize);j = sele
tChromosome(i-n,i+n);k = sele
tChromosome(i-n,i+n);(p1,p2)=best(i,j,k);
 = 
reateChild(p1,p2);if(better_than(
,
urrentBest)) {stagnationCounter=0;} else {stagnationCounter++;}repla
e worst(i,j,k) with 
;}return 
urrentBest;In ea
h iteration, a random 
hromosome is se-le
ted and then two more 
hromosomes are sele
ted



from its neighborhood. The better two are sele
tedto be parents. Crossover and mutation operatorsare applied on the parents. Finally, on 
hild a lo-
al sear
h was performed. The worst of the three
hromosomes initially sele
ted is then repla
ed. Ifthe 
hild is better than the 
urrently best solutionpresent in the population, stagnation 
ounter is re-set; otherwise, it is in
remented. Stopping 
ondi-tion is set to true when stagnation 
ounter rea
hes1,000,000.Fun
tion GA is then 
alled on
e for ea
h time-slot,in order to 
reate time-slot room s
hedule, sin
e thetime slots are nonoverlapping.The implementation of geneti
 algorithm forthis parti
ular problem is rather straight-forward.There is only one detail left to be explained: theoriginally presented problem is a 
lear 
ase of multi-obje
tive optimization (take enough rooms to allowall students to take exam, minimize total numberof sta� members, maximize quality of s
hedule interms of number of �oors and number of buildings).To handle multi-obje
tive optimization problems,evolutionary algorithms 
an work with the prin
ipleof domination. Namely the problem whi
h arises inmulti-obje
tive optimization is how to 
ompare twosolutions? In our 
ase, is it better to have a s
hed-ule that for some 
ourse requires 10 sta� membersand spans over three �oors, or to have a s
hedulethat for some 
ourse requires 11 sta� members andis lo
ated on a single �oor? The domination prin
i-ple allows su
h algorithms to avoid su
h questions,and to provide to the user a sele
tion of variouss
hedules ea
h having di�erent qualities. However,in our 
ase there were priorities whi
h had to betaken into a

ount, so we de
ided to take anotherstandard approa
h: to transform multi-obje
tiveproblem into a single obje
tive one, partially byindu
ing stri
t hierar
hy among various solutionquality measures, and partially by using weightingapproa
h.The quality of a solution is represented as a fourdimensional ve
tor q. The �rst 
omponent (q[0])is the total number of pla
es missing in order forall students to be able to take exam (some 
ourseshave not enough assigned rooms). This 
omponentshould be minimized to 0. The se
ond 
omponent(q[1]) is the total number of allo
ated extra-pla
e,whi
h are unused by students. This 
omponentshould also be minimized, in order to prevent solu-tion in whi
h small 
ourses (e.g., with 15 students)

get large rooms (e.g., for 70 students). The third
omponent is the total number of allo
ated sta�members required for the s
hedule. Finally, thefourth 
omponent represents s
hedule's lo
ationalquality and preferability, and is 
al
ulated as fol-lows.Set preferabilityPenalty to 0. Then, for ea
hroom assigned in a s
hedule, if it is an amphithe-ater, in
rement preferabilityPenalty by 9, and if itis a laboratory, in
rement preferabilityPenalty by
15. Set lo
ationPenalty to 0. For ea
h 
ourse Ci ins
hedule 
al
ulate the number of buildings nb andthe number of �oors nf on whi
h there are roomsassigned to that 
ourse. In
rement lo
ationPenaltyby 70 · (nb − 1) and by 23 · (nf − 1). Finally, set
q[3] to the sum of preferabilityPenalty and lo
ation-Penalty. Weights and other �xed numbers used forthis 
al
ulations were empiri
ally determined forauthors parti
ular problem. For other problems(di�erent number of buildings, �oors et
.) the user
an adjust this values to better suit his sense of"s
hedule quality".On
e the solution is fully evaluated, solution
omparison is implemented as follows:
ompare(s1, s2) {if(s1.q[0℄!=s2.q[0℄) {return s1.q[0℄!=s2.q[0℄;} else if(s1.q[2℄!=s2.q[2℄) {return s1.q[2℄!=s2.q[2℄;} else {return s1.q[1℄+s1.q[3℄-(s2.q[1℄+s2.q[3℄);}The 
omparison method must return a valuewhi
h is negative if s1 is better than s2, zero ifthey are equal, and a positive value otherwise. As
an be seen from the algorithm, the most impor-tant 
riteria is to allo
ate enough spa
e for all ofthe students. Only when 
omparing two s
heduleshaving equal number of missing pla
es, 
omparisonwill 
he
k the total number of assigned sta� mem-bers, and if there is still no di�eren
e, 
omparisonwill 
he
k the sum of extra-allo
ated pla
es andpreferabilityPenalty and lo
ationPenalty.2.6 Lo
al sear
hLo
al sear
h pro
edure is implemented as follows.For ea
h 
ourse (in a randomly determined order),
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Figure 1: Algorithms performan
e with lo
al sear
hpro
edure enabled
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Figure 2: Algorithms performan
e with lo
al sear
hpro
edure disabledif there is extra allo
ated pla
e, an attempt is madeto randomly deallo
ate some of rooms, but preserv-ing enough pla
es for the students (no shortage willbe 
reated). Then, for ea
h 
ourse, if there is notenough allo
ated pla
es, an attempt is made to ran-domly allo
ate additional rooms (if possible).Di�eren
e in algorithm performan
e with andwithout lo
al sear
h is 
learly illustrated on Fig-ure 1 and Figure 2. To obtain even a 
omparableresults, the algorithm with lo
al sear
h disabled re-quires about 100 times more iterations (about 106iterations versus 104), making the sear
h pro
edurea must-have if time-behavior is important. On Fig-ure 1, q[0] is not visible sin
e it falls to zero in �rstiteration.The results obtained for �rst exam period of 
ur-rent semester are en
ouraging. Compared with the

same semester of previous a
ademi
 year (in whi
hthe s
heduling was done by hand), a number of
ourse enrolments have risen for about 6%. How-ever, using the s
hedule we generated the require-ments for tea
hing sta� members have fallen forabout 3.4%, from to 524 to 506.3 Student group assignmentAt our institution, students are enrolled in a prede-�ned set of obligatory (non-ele
tive) 
ourses. Apartfrom that, they are allowed to de
ide whi
h addi-tional ele
tive 
ourses they will enroll, in order toa
hieve better spe
ialization. At the beginning ofea
h semester, enrollment pro
ess is divided intotwo phases. During the �rst phase, students de-
ide whi
h of the ele
tive 
ourses they will enroll.During this phase, the majority of students sub-mit theirs enrollment appli
ations. Then, the en-rollment pro
ess is temporarily suspended, and ale
ture s
hedule is 
reated, with maximal e�ort toallow all of the enrolled students to lake le
tures.At this moment le
tures begin.Unfortunately, there is always a 
ertain per
ent-age of students whi
h did not submit its enroll-ment appli
ation during �rst enrollment period, soat this point, enrollments are resumed, with one dif-feren
e: sin
e the le
ture s
hedule bas already been�xed, enrolled students are not automati
ally as-signed into le
ture groups. Instead, a list of all lateenrollments is 
omposed. All of students on thatlist 
ompete for remaining empty pla
es in le
turerooms. In an attempt to allow all of the studentsto take the le
tures of enrolled 
ourses, additionals
heduling problem is formed: it is ne
essary toblend all of the late enrolled students into existingle
ture s
hedule so that all of them 
an take all ofenrolled le
tures, and without over
apa
itying thele
ture rooms, if possible, or to 
reate a best pos-sible group assignment with minimum number ofover
apa
itated rooms and s
hedule 
on�i
ts.To do so, a list of required data is 
olle
ted, asfollows.
• A list of late enrolled student-
ourses thatmust be assigned into le
ture groups.
• For ea
h 
ourse and ea
h 
ourse-group the le
-ture s
hedule for 
omplete semester.



• For ea
h 
ourse and ea
h 
ourse-group thenumber of regularly enrolled and assigned stu-dents.
• For ea
h 
ourse a set of 
onstraints that mustbe satis�ed with regard to number of studentsin le
ture groups.The need for the lastly mentioned 
onstraints 
anbe justi�ed by a simple example. Let us assumethat students of the �rst year are divided into tengroups: 1.01 to 1.10. Let us further assume thatgroups 1.01 and 1.03 take le
tures on 
ourse c1 si-multaneously in room r1, while on 
ourse c2 theytake separate le
tures: 1.01 in room r2 and 1.03 inroom r3. From this example, it is obvious that thefollowing must hold:
ount(1.01) + 
ount(1.03) <= 
apa
ity(r_1)
ount(1.01) <= 
apa
ity(r_2)
ount(1.03) <= 
apa
ity(r_3)In general 
ase, there is no guarantee that addi-tional students 
an be blended into existing le
tures
hedule, so one of the goals of optimization pro
essis to try to satisfy as many 
onstraints as possible.3.1 A
tual data and algorithm im-plementationAt authors institution this semester we had a num-ber of late enrolled students. For 
ourses on whi
hall groups attend le
tures at the same time, stu-dents were assigned to any of the 
ourse groups. 38students remained on 18 
ourses having multiplele
ture groups, that had to be s
heduled (a total of89 student-enrollments, or approximately 5 
oursesper student). A total number of 
onstraints presenton those 18 
ourses was 90).A typi
al steady state geneti
 algorithm was em-ployed, working with population of 1500 
hromo-somes. The 
hromosome evaluation fun
tion wasimplemented as follows. For all unsatis�ed 
on-straints ci: g1 + g2 + ... + gn ≤ Ni over�ow is 
al-
ulated as oi = g1 + g2 + ... + gn − Ni. Then,for ea
h s
heduled student sj a total amount of
on�i
ting le
ture-hours hj is 
al
ulated. Penaltyfun
tion whi
h is then minimized by geneti
 algo-rithm is 
al
ulated as:

penalty = 4 ·
∑

i

oi + 2 ·
∑

j

hj.
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hedulinguns
heduled studentsWeights used here were determined empiri
ally.The performan
e of the algorithm is shown inFigure 3. As it 
an be seen, the s
heduling pro
ess�nished rather su

essfully: only two 
onstraintswere broken by 1, produ
ing 66% of penalty 4 · (1+
1) = 8, and one student ended up with two hoursof 
on�i
ting le
tures, produ
ing the rest 33% ofpenalty 2 · 2 = 4, whi
h totals 12. Careful postanalysis dis
overed that it was not possible for thestudent in question to �nd a better s
hedule.4 Con
lusion and Future WorkAt the present time, more and more students areenrolled at universities. The ever-in
reasing num-ber of enrollments poses serious problems for fa
-ulty administration involved in solving a variety oforganizational issues. Solving these problems byhand had be
ome an impossible mission, espe
iallyif the solution quality is 
onsidered.In this paper we des
ribed a su

essful deploy-ment of today available 
omputation power to helpwith two 
ommon problems fa
ed by many univer-sities. The problems were ta
kled by two imple-mentations of geneti
 algorithms, both of whi
hproved to be very 
apable. Usage of those algo-rithms enabled us to provide a higher quality ofstudying to students: late enrolled students weresu

essfully blended into existing le
ture s
hedule,while still allowing them to enroll requested ele
tive
ourses. Course sta� was also deburdened, and forea
h 
ourse exam a non-
on�i
ting room s
hedulewas 
reated, whi
h produ
ed additional bene�t �



lowered the demands on tea
hing sta� members.There are still many similar problems at univer-sities world-wide, 
urrently solved by hand, whi
hare ready to be ta
kled by evolutionary algorithms.Investigating university needs and providing ade-quate solutions is a part of our future work.Also, sin
e the fo
us of this paper is to show howAI-te
hniques 
an be used to help fa
ulty admin-istration, this paper presents a su

essfull appli
a-tion of geneti
 algorithm to two des
ribed s
hedul-ing problems. Using these algorithms we were ableto solve real-world problems fa
ed by authors in-stitution. As part of future work, the fo
us will beshifted to obtaining better performan
e. This willrequire a more rigorous 
omparison of appli
able(meta-)heuristi
 sear
h algorithms.5 A
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