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Abstract. Pheromone trails are the main media for gathering collective 

knowledge about a problem, and have a central role in all ant colony 

optimization algorithms. Setting appropriate trail limits for the MAX-MIN ant 

system (MMAS) is important for good performance of the algorithm. We used 

rigorous analysis to develop expressions that model the influence of trail limits 

on MMAS behavior. Besides the general model, specific formulas for ATSP, 

TSP and QAP are presented. Assumptions on which our model is founded are 

experimentally validated. The paper gave general guidance for estimating the 

trail limits ratio established on exact analytical models. Experiments on tested 

problems showed a high level of agreement with predictions made by the 

presented model. 

Keywords: pheromone trail, trail limit, MAX-MIN ant system, Ant colony 

optimization, Swarm intelligence 

1 Introduction 

Many practical computational problems have a too high a complexity to be solved 

with exact algorithms. One common approach to overcome high complexity is to use 

heuristic algorithms that cannot guarantee finding an optimal or sufficiently good 

solution, but in practice they often do.  

Ant colony optimization (ACO) [1], [2] is a metaheuristic inspired by the foraging 

behavior of a colony of biological ants. Together with the ant colony system [3], the 

MAX-MIN ant system [4] is one of the most popular and successful [5] ACO 

algorithms. The MAX-MIN ant system has desirable characteristics like robustness, 

as it works with a population of solutions, natural parallelism and applicability to a 

wide range of problems [6], [7]. The disadvantage of MMAS, as with many nature 

inspired algorithms, is the usage of parameters that require appropriate tuning 

otherwise the algorithm may fail to find admissible solutions [8].  

The main characteristic of the MMAS is the existence of trail limits, where all 

trails are maintained inside an interval bounded by some predefined lower and upper 

trail limits. The motivation for limiting pheromone trails is to avoid algorithm 

stagnation [4]. There are two possible approaches for setting the trails limits. The first 



2 Nikola Ivkovic1, Marin Golub2, Mirko Malekovic1 

is to set minimum and maximum limits after experimental measuring of the 

algorithm’s performance. The second is to use an analytical expression to choose 

appropriate limits. Of course, analytically estimated limits can be fine-tuned with 

experimental measurements.  

The paper is structured as follows. Section 2 gives a brief description of the 

MMAS and Section 3 gives a brief description of studied problems. In Section 4, a 

trail separation effect is described, modeled and experimentally evaluated. In Section 

5, formulas for trail limits and probabilities are constructed, analyzed and compared. 

In Section 6, predictions of the presented model are experimentally evaluated. In 

Section 7 we summarize our findings and stress the importance of using exact 

formulas in trail limit estimation. 

2 MAX-MIN Ant System Description 

The MAX-MIN ant system is an extension of the ant system with improved 

performance for many optimization problems. It uses a colony of ants that construct a 

population of solutions, based on pheromone trails and heuristic values, both 

associated with building components. Heuristic values are used only with some 

optimization problems and for others it is always 1. The algorithm constructs a 

solution by adding solution components in the list of components that specify partial 

solutions, until an entire solution is constructed. The probability of selecting solution 

component c(i) is given in (1). Index i denotes a solution construction step, τc(i) is the 

trail value associated with component c(i), and ηc(i) is the heuristic value associated 

with c(i). In step i, a component is selected from Li, a set of components. Parameters α 

and β are used to maintain balance between trails and heuristic values. 
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After the population of solutions is constructed the best solution is found and trails are 

updated. The update process includes trail evaporation (2) for all trails, and trail 

reinforcement (3) for all components included in the iteration or global best solution. 
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Parameter ρ is the trail evaporation rate, and f(S
best

) is the goodness of the iteration 

best or the global best solution. If a trail gets smaller than the minimum trail limit, the 

trail is set to the minimal value and if a trail gets bigger than the maximum trails limit, 

the trail is set to the maximal value. After the trails update, ants construct a new 

population of solutions and the process repeats. If algorithm stagnation is detected, 

the trails are reset to their initial values. If a fitness function f(S
opt

) of the optimal 

solution can be estimated, then initial trails and maximum trail limit are set as: 
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3 Optimization Problems 

The Quadratic Assignment Problem (QAP) and the Travelling Salesman Problem 

(TSP) are well known optimization problems that arise in many practical applications. 

These are known to be NP-hard problems. Also, TSP and QAP cannot be 

approximated by polynomial approximation algorithms, unlike some other NP-hard 

problems, and are NPO-complete [9], [10]. Only brief problem descriptions are 

presented here. For a more comprehensive introduction, it is advisable to consult 

literature that is substantial for the selected problems. 

For the TSP, there is a set of cities and all distances between cities are known. The 

problem is to find a tour with minimum total length. All cites must be visited exactly 

once and a traveler must end the tour by coming back to the starting city. 

Alternatively, cities are called nodes or vertices and direct links between two cities 

are called edges or arcs. If edges have directions, the problem is called asymmetrical. 

Otherwise, if all edges have the same distances in both directions, the problem is 

called symmetrical. Although TSP is a general term and includes asymmetrical and 

symmetrical variants, more often only symmetrical variants are studied and denoted 

as a TSP. 

For the QAP, there is a set of facilities and an equally sized set of locations. Flow 

weights between facilities and distances between locations are known in advance. The 

problem is to allocate facilities to locations in a way such that the sum of the products 

of flow weights and distances is minimized.  

All ATSP and TSP test problems used in empirical studies presented in this article 

are taken from TSPLIB library publicly accessible at http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/ and VLSI Data Set accessible at 

http://www.tsp.gatech.edu/vlsi/. All QAP test problems used in the article are from 

QAPLIB library publicly accessible at http://www.seas.upenn.edu/qaplib/. 

4 Trails Separation 

Trails serve as a media for transferring collectively gathered knowledge about the 

problem into solution construction step. As the algorithm progresses, trails are 

changed to hopefully raise the probability for constructing an optimal or near optimal 

solution. The components that were reinforced in the previous steps are more likely to 

be chosen in the next solution construction. Because of this autocatalytic process, it is 

probable that the algorithm will converge toward one solution; hopefully an optimal 

or near optimal one. The trails of components that form this solution will probably be 

around maximal and all the others will be around minimal trail value.  

The trail separation can be defined as a state in which the most trails are separated 

into two non-overlapping intervals IMIN and IMAX, separated by the interval IMID. The 
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interval IMIN includes the lower and IMAX includes the upper trail limit. If the set SX 

denotes the set of components inside interval IX, than the separation effect can be 

formally defined as a state that satisfies the inequalities (6) and (7) for some arbitrary 

small r, 0 ≤ r < 1. 

)*+, = �)*+- ∪ )*/0�1                 (5) 

|)*+,| ≤ 4 ∙ |)*+-|       (6) 

 |)*+,| ≤ 4 ∙ |)*/0|            (7) 

4.1 Experimental Evaluations 

To evaluate trail separation effect on the test problems, 100 runs of the algorithm 

were executed and distributions of trails were gathered. Table 1 lists selected 

problems that consist of 90 QAP, 18 ATSP and 59 TSP problems, giving 16700 runs 

in total. A problem name contains information about the problem size; but for ATSPs, 

this rule is sometimes violated, so the sizes for ATSPs are explicitly listed. The 

parameters were set to α=1, ρ=0.1 and the number of ants was set equal to a problem 

size n. The iteration best reinforcement strategy was used, except for bigger problems 

(more than 300 cities for ATSPs and more than 400 for TSPs) where the global best 

strategy was used. For ATSPs and TSPs β=4 and for QAPs β=0. 

Table 1. List of selected problems used in experiments 

ATSP 

Problem Size Problem Size Problem Size Problem Size Problem Size 

br17 17 p43 43 ft53 53 kro124p 100 rbg403 403 

ftv33 34 ftv44 45 ftv55 56 ftv170 171 rbg443 443 

ftv35 36 ftv47 48 ftv64 65 rbg323 323   

ftv38 39 ry48p 48 ft70 70 rbg358 358   

TSP list 

gr17, gr21, gr24, fri26, gr48, hk48, eil51, berlin52, st70, eil76, pr76, rat99, kroA100, 

kroB100, kroC100, kroD100, kroE100, rd100, eil101, lin105, pr107, gr120, pr124, xqf131, 

pr136, pr144, ch150, kroA150, kroB150, pr152, u159, rat195, d198, kroA200, kroB200, 

tsp225, pr226, xqg237, gil262, pr264, pr299, lin318, linhp318, pma343, pka379, bcl380, 

pbk411, fl417, pbn423, pbm436, pr439, pcb442, d493, u574, pr654, xql662, u724, dkg813, 

pr1002 

QAP list 

tai10a, tai10b, had12, nug12, rou12, tai12a, had14, chr15a, esc16a, esc16b, esc16c, esc16e, 

esc16g, esc16h, esc16i, esc16j, had16, nug16a, nug16b, nug17, tai17a, had18, nug18, 

had20, lipa20a, lipa20b, nug20, rou20, tai20a, nug21, nug22, bur26a, nug27, nug28, kra30a, 

kra30b, lipa30a, lipa30b, nug30, tai30a, tai30b, tho30, esc32b, esc32c, esc32d, esc32h, 

kra32, tai35a, lipa40a, lipa40b, tai40a, tai40b, sko49, lipa50a, lipa50b, tai50a, tai50b, wil50, 

sko56, lipa60a, lipa60b, tai60a, tai60b, esc64a, sko64, tai64c, lipa70a, lipa70b, sko72, 

lipa80a, lipa80b, tai80a, tai80b, sko81, lipa90a, lipa90b, sko90, sko100a, sko100b, sko100c, 

sko100d, sko100e, sko100f, tai100a, tai100b, wil100, esc128, tai150b, tho150, tai256c 
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prediction curves. Bar graph (d) shows trails distribution for kroB100 instance of TSP problem.
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Secondly, when the trail separation occurs at a certain iteration and the algorithm 

has constructed a near optimal solution, it is possible that in the next iteration, the 

algorithm would find a better solution that differs from the previous in a few 

components. These new components will gradually rise from IMIN interval to IMAX 

interval, and the components that are being replaced will go from IMAX to IMIN interval. 

The third case is when two or more different solutions with some common 

components are constructed as iteration best solution in an alternating manner. Then, 

when the separation effect occurs, more components than predicted can be in the IMAX 

interval. As the algorithm proceeds, one solution can manage to be reinforced more 

than others and take others out of the IMAX interval. This can be observed on Fig. 1d 

where the average |SMAX| for kroB100 between 100 and 200 iterations falls closely to 

the predicted values. 

Coefficients of the determination R
2
, a measure of how well experimentally 

obtained values agree with predicted values, are calculated and listed in Table 2. The 

coefficient of determination for linear functions Count(IMAX) is equal to the square of 

the correlation coefficient. Data in Table 2 shows that the predicted values agree with 

the experimentally obtained values very well, since for all cases R
2
 is very close to 1 

(exactly 1 would mean perfect matching). 

Table 2. Coefficient of determination R2 

ATSP TSP QAP 

|SMAX | |SMIN | |SMAX | |SMIN | |IMAX | |IMIN | 

0.9993548 0.9999519 0.9990805 0.9996935 0.9993020 0.9999996 

5 Trail Limits and Solution Construction Probabilities 

For a fixed iteration of the MMAS algorithm it is possible to calculate the exact 

probability for one ant to construct predefined solution identified by an ordered list of 

components. Order in the list is not important for all optimization problems, but it is 

inherent for the MMAS solution construction process. The probability for 

constructing a solution as an ordered list is equal to the product of the probabilities of 

selecting individual components. To construct such expression it is necessary to know 

all the trails and heuristic values, and also the α and β parameters that influence the 

components selection. 

5.1 Stützle – Hoos Expression for Trails Limits 

Stützle and Hoos proposed in [4] an analytical expression (8) for calculating 

appropriate maximal and minimal trail values. 

�#�6 = �#$% ∙ �7 89�� !:

�$;<7��∙ 89�� !:  .   (8) 
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The average number of components that can be selected in construction steps is avg, 

the probability of constructing the best solution is pbest, and the number of components 

in the constructed solution is n. Heuristic values, as well as the α parameter, are 

neglected in expression (8). Mathews extended the Stützle-Hoos expression in [11] by 

setting the α parameter as an exponent on minimal and maximal trails. In [4] and [11] 

there is no differentiation between a solution described with a particular order of 

components, its probability is further on denoted as pπ, and a class of solutions, which 

are equivalent to a solution described with a particular order of components.  

5.2 Exact Expressions for Trail Limits 

In the presumption of complete trail separation and by neglecting heuristic values, if 

any are used, exact expressions that directly follow the process of constructing a 

solution can be obtained. All possible solution components that can be used for 

solution construction, in the solution construction step i, constitute the set Li. Using 

the random-proportional rule (1), the probability of selecting the component with 

maximal trail value is: 

����� = �=>?


�=>?
 @�=	A

 ∙�|B	|7��

      (9) 

C = DE�:
DEFG

     (10) 

����� = �
�@H
∙�|B	|7��

    (11) 

The probability for constructing the solution described with an ordered list of 

components constituting only of components associated with maximal trails is given 

in (12). The number of components contained in the solution is denoted as n.  

�I = �
∏ K�@H
∙�|B	|7��LA
	MN

     (12) 

5.2.1 Expressions for ATSP 

Solution construction starts by randomly selecting the first node. The probability of 

selecting the node that is first in the predefined permutation of components is 1/n. 

Without losing generality, nodes can be labeled sequentially starting from 1 to n, so 

that edge (i, i+1) is the component of the predefined solution as shown in the Fig. 2. 

The case when the first node is selected is shown in Fig. 2a. 

The next step is to select the second node, and by this, implicitly the first edge. For 

the first edge that can be selected, one component is associated with maximal trail 

value and |L1|-1=n-2 are associated with minimum trail value. In general, if an ant 

stays on a predefined path and has already selected i nodes, than it can select from 

|Li|-1=n-i-1 nodes as shown in Fig. 2b. Again, only one edge has the maximal value 

and all the others have minimal trail value.  
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Fig. 
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a solution, and although 

implicitly and the solution construction is over.
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particular permutation represents 
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The probability for constructing any of 
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probabilities of selecting following components are the same as wit

probability for constructing 

nodes is given in (15). One permutation identifies 

with choosing one of 

The expression for the 
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Fig. 2. Solution construction phases for ATSP 

At the end of solution construction, the ant is in the node labeled with n-1. As show

in Fig. 2c, there is no real choice for selection since |Ln-1|-1= 0 and only 

component with maximum trail can be selected. This permutation of nodes identifies 

solution, and although the edge (n, 1) is not explicitly selected, it is selected 

solution construction is over. Multiplying single probabilities for 

predefined order gives (13), the probability for constructing 

ATSP solution with all the edges associated with the maximum trail value.

particular permutation represents n equivalent solutions that are trivially generated by 

rotating permutations. All cyclic permutations of the nodes have the same tour length. 

robability for constructing any of n cyclic permutations that represent one 

equivalent solution is given by (14). 

I
/O�P�Q, CS� = �

6 ∙ T∏ �1 + CS ∙ U�67V
�W� X7�    

� S� = Q ∙ �I/O�P�Q, CS� = T∏ �1 + CS ∙ U�67V
�W� X7�   

Expressions for TSP 

onstruction for a TSP is very similar to that for an ATSP, but t

probability of selecting the first component is different. Fig. 2 can be reused as 

visualization aid if arrows are neglected and all edges are bidirectional. When 

node is randomly selected, the same as with ATSP, there is a choice of selecting two 

edges that have maximal trails (edges: (1, 2) and (1, n)) and n-3 edges with minimal

. After that, solution construction has defined constructing direction and 

probabilities of selecting following components are the same as with ATSP. 

robability for constructing a particular solution coded directly by one permutation of 

nodes is given in (15). One permutation identifies 2n equivalent TSP solutions. Along 

with choosing one of n nodes as starting node, we can choose 2 distinct directions. 

the class of equivalent solutions for TSP is given in (16). 

 

1. As shown 

1= 0 and only the 

This permutation of nodes identifies 

explicitly selected, it is selected 

Multiplying single probabilities for 

the probability for constructing an 

maximum trail value. One 

equivalent solutions that are trivially generated by 

rotating permutations. All cyclic permutations of the nodes have the same tour length. 

permutations that represent one 

 (13) 

 (14) 

ATSP, but the 

first component is different. Fig. 2 can be reused as 

visualization aid if arrows are neglected and all edges are bidirectional. When the first 

hoice of selecting two 

3 edges with minimal 

. After that, solution construction has defined constructing direction and 

h ATSP. The 

particular solution coded directly by one permutation of 

equivalent TSP solutions. Along 

t directions. 
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5.2.3 Expressions for QAP 

To construct a QAP solution is to select couplings of elements from a facilities set and 

a locations set. In every construction step, an element is selected randomly with 

uniform distribution from the available elements from one set (set of available 

facilities or locations), and then its coupling element from the other set is selected 

using the random-proportional rule (1). The probability of selecting one particular 

element from the first set is 1/n in the first construction step, 1/(n-1) in the second 

construction step, and generally 1/(n-i+1) in the i-th construction step. In the first step 

|L1|=n, and generally |Li|=n-i+1 for the step i. The probability of constructing one 

particular component in a predefined permutation is given by (17). The solution is the 

set of couplings, not their permutations, so there are n! equivalent solutions coded 

with one permutation. The expression for constructing a predefined solution that has 

all the trails with maximal value is given in (18). 

�Ia/P�Q, CS� = ∏ b �
�67�@�� ∙

�
��@YZ∙�67���c

6
�W�    (17) 

�a/P�Q, CS� = Q! ∙ �Ia/P�Q, CS� = ∏ �
��@YZ∙��

67�
�W�    (18) 

5.3 Expressions Comparisons and Analysis 

Expressions for ATSP, TSP and QAP are similar, so it is convenient to define a 

function (19) and rewrite expressions for ATSP (20), TSP (21) and QAP (22). 

�e+-�n, Cg� = �
∏ ��@Y
∙h�A^N
	MN

= Y^
A

�Y^
�A
= Y^
A∙i�Y^
�

i�Y^
@j�   (19) 

�/O�P�Q, CS� = �e+-�Q − 1, CS�     (20) 

��O�P�Q, CS� = V
KV@YZ∙�67[�L ∙ �

e+-�Q − 2, CS�   (21) 

�a/P�Q, CS� = �e+-�Q, CS�      (22) 

Figure 3a shows that the p
LIN

 function changes considerably with ϑ
α
 and n arguments, 

and only for a rather limiting region gives a probability that is not very close to either 

0 or 1. If, instead of using |Li| in construction steps, average value is used as in 

Stützle-Hoos and the α parameter is taken into account, then the probability of 

constructing a solution is (23). An equivalent expression, in a different formulation, 

was previously developed by Matthews [11].  

�/kl�Q, CS� = K1 + CS ∙ �mno − 1�L76.   (23) 
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5.3.1 Stützle – Hoos and Average Approximation 

The error caused by using 

shown on Fig. 3b. Both ax
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/p
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1000.  
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and Average Approximation Error 

by using an average approximation instead of an exact formula 

ig. 3b. Both axes use a logarithmic scale. The vertical axis represent

. Although this graph was originally drawn for the QAP (note that 

graph gives the error ratios for the ATSP and the TSP because 

scale like this graph lines are the same. 

raph shows that except for very small ϑ
α
 values, introduced error is huge and 

this becomes more serious as n grows. In an extreme case, when p
AVG
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becomes bigger than one, that is τmin > τmax. The Stützle-Hoos expression causes 

error ratio with even higher magnitudes if α≠1, otherwise it is equal to those for 

the Stützle-Hoos expression are empirically detected by others. 

Wong and See noted in [12] that minimal trail limits are often set too low and that this 

algorithms performance. These findings correspond with the error ratio 

ig. 3b, where it is noticeable that the Stützle-Hoos probability, as 

underestimates ϑ
α
 often by many orders of magnitude. 

of pLIN function on n and ϑα arguments (a) and error ratio of aver

approximation (or Stützle – Hoos) and exact expressions (b). 

Experimental model testing 

To test the proposed model, we compare the performance of the algorithm for 

ratios and different α parameters. The aim of these experiments is to see 

how well the proposed model explains differences in the performance of the 

algorithm. The results of the experiments are listed in the Table 3 as normalized mean 

solutions over 100 runs, for each parameter settings. For a problem instance and

parameter (one row in the table), the minimal mean solution was selected and then all 

were divided with this value. The parameters were set to α=1,

TSP), ρ=0.1, the number of ants was set equal to a problem size

the iteration best strategy was used and the maximum number of iterations was set to 

formula is 

ertical axis represents the 

QAP (note that 

TSP because 

, introduced error is huge and 

avg
n
<1, ϑ

α
 

Hoos expression causes an 

wise it is equal to those for p
AVG

. 

Hoos expression are empirically detected by others. 

that minimal trail limits are often set too low and that this 

error ratio 

Hoos probability, as a special 

 

average 

To test the proposed model, we compare the performance of the algorithm for 

parameters. The aim of these experiments is to see 

how well the proposed model explains differences in the performance of the 

ormalized mean 

problem instance and the α 

selected and then all 

=1, β=4 (for 

number of ants was set equal to a problem size n, 

was set to 
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For minimal mean solutions, with normalized value 1, respective ϑ
α
 is provided in 

the brackets. The results show that optimal ϑ depends on problem size n and the α 

parameter as predicted by the model. In general, data shows that when α changes, so 

does the optimal ϑ, but the optimal ϑ
α
 stays approximately the same. The results in 

Table 3 also show that it is better to set ϑ
α
 too low than to set it too high (relatively 

close to 1), since generally the leftmost column has better mean solutions then the 

rightmost column. (This is of course not true for small problems that have optimal ϑ
α
 

in rightmost columns. For small problems, too high ϑ
α
 values are not measured by 

these experiments.) These behaviors occur because too high ϑ
α
 prevents the algorithm 

from properly using trails to guide the algorithm towards the (near) optimal solution. 

When ϑ
α
 is set too low, at first the algorithm progresses normally, but after passing a 

certain minimum/maximum trail ratio, a search space is no longer explored. Instead, 

the algorithm constructs the same solutions all over again. 

Table 3. Normalized mean solutions for MMAS 

Problem α ϑ=1e-6 ϑ=1e-5 ϑ=1e-4 ϑ=1e-3 ϑ=1e-2 ϑ=1e-1 

ftv35 

(ATSP) 

2/3 1.002462 1.001899 1.001543 1(1.0e-2) 1.000449 1.040856 

1 1.005004 1.004676 1.00383 1.002428 1(1.0e-2) 1.007097 

3/2 1.00962 1.009681 1.008015 1.007027 1.00303 1(3.2e-2) 

ft70 

 (ATSP) 

2/3 1.000522 1.000408 1(2.2e-3) 1.029509 1.108673 1.235636 

1 1.00392 1.003653 1.002417 1(1.0e-3) 1.009122 1.205311 

3/2 1.008973 1.008685 1.009779 1.007142 1(1.0e-3) 1.128595 

kro124p 

(ATSP) 

2/3 1.008777 1.004721 1(2.2e-3) 1.003099 1.06977 1.231649 

1 1.023612 1.022723 1.013809 1.004179 1(1.0e-2) 1.175048 

3/2 1.027704 1.028072 1.027028 1.021173 1(1.0e-3) 1.031121 

eil51 

(TSP) 

2/3 1.002898 1.001613 1.000701 1(1.0e-2) 1.010144 1.065729 

1 1.005541 1.005308 1.004606 1.002128 1(1.0e-2) 1.014099 

3/2 1.008455 1.009225 1.006586 1.006446 1.001004 1(3.2e-2) 

pr124 

(TSP) 

2/3 1.001093 1.000788 1(2.2e-3) 1.000431 1.012313 1.08072 

1 1.004805 1.004036 1.001035 1(1.0e-3) 1.000607 1.036979 

3/2 1.007934 1.008671 1.006843 1.003956 1(1.0e-3) 1.008198 

ch150 

(TSP) 

2/3 1.005388 1.001836 1(2.2e-3) 1.013028 1.10239 1.205364 

1 1.014749 1.00848 1.00451 1(1.0e-3) 1.000149 1.140743 

3/2 1.025587 1.022809 1.022631 1.008084 1(1.0e-3) 1.034762 

chr20 

(QAP) 

2/3 1.232387 1.114547 1.061805 1(1.0e-2) 1.012952 1.669481 

1 1.331188 1.310806 1.272797 1.102553 1(1.0e-2) 1.113854 

3/2 1.524881 1.447104 1.479266 1.411661 1.174907 1(3.2e-2) 

lipa40a 

(QAP) 

2/3 1.001597 1.000158 1(2.2e-3) 1.005087 1.011528 1.012395 

1 1.005012 1.003934 1.001738 1(1.0e-3) 1.005246 1.012295 

3/2 1.006576 1.006538 1.005973 1.003545 1(1.0e-3) 1.010981 

sko100e 

(QAP) 

2/3 1(1.0e-4) 1.003395 1.052245 1.085047 1.093219 1.094417 

1 1.022404 1.011157 1(1.0e-4) 1.018971 1.085858 1.094746 

3/2 1.028558 1.027869 1.021032 1(3.2e-5) 1.010537 1.085239 
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7 Conclusion 

This paper explains the trail separation effect and shows with extensive experimental 

testing that in practice this effect occurs very closely as predicted with theoretical 

analysis. The paper stresses the importance of using exact models, instead of 

approximations, to avoid errors that can make calculated values completely unusable. 

Experimental results published by others detected that minimal trail limits are often 

set too low. This correlates with our findings that outside a limited domain, previous 

approximate expressions give significantly lower minimum trail limits. It is 

experimentally confirmed that choosing appropriate trail limits depends on the 

problem size and the α parameter as predicted by our model. If the trail limits ratio is 

set high (relatively close to 1) it will prevent the algorithm from learning and by this 

from successfully solving a problem, but setting it too low will cause algorithm 

stagnation and prevent it from further improving the solution. The presented model 

shows that appropriate trail limits, more precisely their ratio, vary considerably with a 

problem size and the α parameter.  
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