Genetic Algorithms in Real-Time Imprecise Computing

Leo Budin, Domagoj Jakobovi¢, Marin Golub
Faculty of Electrical Engineering and Computing
Unska 3, HR-10000 Zagreb, Croatia
phone: +385 1 61 29 935, fax: +385 1 61 29 653
e-mail: {leo.budin, marin.golub, domagoj.jakobovic} @fer.hr

Abstract - This article describes the use of genetic algorithms
in real-time systems that employ the imprecise computation
paradigm. In real-time systems, the focus is on ensuring that a
set of tasks each complete within their deadlines. Faults may
occur in the computation or the environment that can cause
missed deadlines. That is why the idea of using partial results
when exact ones cannot be produced within the deadline has
been introduced. This idea has been formalized using the
concepts of anytime algorithms and imprecise computation
and specific techniques have been developed for designing
programs which can produce partial results and for
developing systems that can support imprecise computation
techniques. Genetic algorithms are methods that can be,
without any adaptation, used in an imprecise computation
system. They produce a solution that bears a certain measure
of reliability. During the process of their execution, this
solution is constantly improving. They can be used as a part of
a real-time system, especially for optimizing tasks where there
exists no classical algorithm or its computational time proves
to be too expensive.

I. INTRODUCTION

Real-time systems are now used in a wide variety of
applications, including space and defense systems, process
control and signal processing. Conventionally, real-time
systems are designed to perform a given set of tasks where
each task is bounded with its time constraints. These
include the earliest begin, or ready, time and the latest
finish time or deadline. A task set in a classical real-time
system can also be interdependent; a successor-predecessor
relation is defined between some of the tasks. In order for
all of these constraints to be satisfied a feasible schedule
must be produced prior to or even during the system run.
This, with the general problem of scheduling resources
being optimally NP-hard, calls for fast and effective
methods for resolving the scheduling problem.

While the scheduling is in most cases fixed at design
time, a static well-planned real-time system will never miss
a deadline. In practice, however, several dynamic situations
may arise which affect the scheduling; tasks may overrun
their expected computation time due to larger amount of
input data or because an iterative algorithm takes a longer
time to converge. The concept of imprecise and
approximate computations has emerged as the basis of a
new approach of dealing with these issues. When time and
resources are not enough for computations to complete
within the deadline, there may still be enough resources to
produce approximate results of acceptable, if not desired,

quality.

The nature of many of the algorithms is such that they
can adapt to the imprecise computation concept; that is, an
algorithm can produce an approximate result before its
regular execution time is finished. Genetic algorithms, an
example of heuristic directed random search methods, fit
perfectly with the idea of imprecise computing. They are
iterative algorithms which refine their output with time and
can handle a vast majority of computational and
optimization tasks in everyday practice.

A genetic algorithm may be viewed as an evolutionary
process wherein a population of solutions evolves over a
sequence of generations. The algorithm maintains a set of
solutions which are evaluated by fitness function in each
generation. After evaluation, they are
reproduction based on their fitness. Selection embodies the
principle of ‘'survival of the fittest": 'good’ solutions are
selected for reproduction and 'bad' ones are eliminated. The
selected solutions then undergo recombination under the
action of genetic operators, crossover and mutation.
Crossover causes exchange of genetic material between
solutions; crossed solutions can produce ones with better
(or worse) fitness value.
restoring lost or unexplored genetic material. After
performing genetic operators, a generation cycle is
concluded and a test is performed in order to determine
whether a termination condition is reached or not.

In this work the use of genetic algorithms in imprecise
real-time systems is analyzed, the features of such systems
are described and a few guidelines are stated for their
efficient design. A scheduling algorithm is designed which
can be used in those systems that may include genetic
algorithms.

selected for

The role of mutation is in

II. IMPRECISE COMPUTATION TECHNIQUE

Meeting timing or deadline constraints is one of the most
important concerns in real-time systems. Unfortunately,
due to nonpredictive elements in dynamic real-time
implementations, such as variations in processing times of
algorithms and constantly changing environment demands,
it is sometimes impossible to schedule all of the tasks so
that their deadlines are met at all times. This situation
occurs quite often when the system is in peak load. The
imprecise computation technique represents an approach
that trades off the quality of the results produced by the
tasks with the amounts of processing time required to

produce the results. This technique assures that an
approximate result of an acceptable quality is available to
the user whenever the exact result of the desired quality
cannot be obtained in time.

A. Task requirements

In order for a real-time system to support imprecise
computation, every time-critical task in the system has to
be structured in a way that it can be logically decomposed
into two subtasks: a mandatory subtask and an optional
subtask. The mandatory subtask is the portion of
computation that has to be done for a task to produce a
meaningful result and it has to be completed before the
deadline. The optional subtask is the portion of the
computation that refines the result. It can be left unfinished
at the expense of the quality of the overall result produced
by the task.

There exist several methods to adapt the task execution
so it can be used in imprecise computation. If a task
generates the result in some form of iterative refinement,
we can record the intermediate results at appropriate
instances of the task execution. The mandatory part of a
task executes first, producing a result with the minimum
acceptable level of reliability. This result is then refined by
the optional part which stores the current output value in
predefined time intervals. Upon request, the latest recorded
value of intermediate result is available to the user. This
method for returning imprecise results is called the
milestone method.

If the milestone method is not applicable, then it can be
possible to compose a task where mandatory parts are
interleaved with computational steps that can be skipped in
producing a minimally acceptable solution. These parts are
called sieve functions. If a sieve function is not completed,
then its inputs, rather then outputs, are used by later
mandatory computation. Iterative computation can also be
viewed as a series of sieve functions.

When neither the milestone method nor the sieve method
can be used, we can almost always use the multiple
versions of the tasks. In this approach we need to provide
two (or more) versions of each task: the primary and the
alternate version. The primary version produces a precise
result but uses more computation time. We may want to
schedule the alternate version, which has a shorter
processing time and generates an imprecise but acceptable
result, when it is not possible to complete the primary
version of a task by its deadline.

We have the maximum flexibility in scheduling when all
computations are designed to be
monotone, that is, the quality of the intermediate result
produced by it is non-decreasing as it executes longer. The
longer a monotone task executes before its termination, the
smaller is the error of its imprecise result. Monotone
algorithms exist in many problem domains such as
numerical computation,
prediction, heuristic search or sorting. There are also

the time-critical

statistical ~ estimation and

efforts to develop monotone algorithms in application
domains where such algorithms are needed. When tasks are
monotone, the scheduling can be done dynamically and on-
line, or nearly on-line, because the scheduler can terminate
a task any time after it has produced an acceptable result.

B. Scheduling for a purpose

Given a set of tasks in a real-time system, we have to
schedule them so that deadline constraint is met for every
task. Apart from satisfying timing constraint, we may also
want to achieve a certain performance regarding some
other criteria. In imprecise real-time systems there are
several different performance metrics. If our goal is to
minimize the total or maximum error, we will try to
schedule the tasks in such a fashion that every task returns
as good result as possible. The problem becomes more
demanding if every task has a certain weight factor that
determines exactly how important its result is to the system.

If we are given a certain total error threshold, we may
want to minimize the number of late or tardy tasks, that is,
the ones whose mandatory subtask cannot even meet its
deadline. Given the same threshold value, we may choose
to minimize the average response time or mean flow time,
i.e. the average amount of time a task spends in the system
until it completes, which includes possible waiting as well
as running.

The goal may also sometimes be to minimize the number
of discarded optional tasks, the ones whose optional part is
not computed. If the real-time system is realized by using
the multiple versions of the tasks, it is then often called the
imprecise computation with 0/1 constraint. Scheduling
such a system to minimize total error has proved itself to be
very demanding.

III. SCHEDULING GENETIC ALGORITHMS

Genetic algorithms have not been excessively utilized in
hard real-time systems so far. In such a system the user
needs the output promptly and accurately, which genetic
algorithms are not designed for. Of course, an algorithm
always has to exist that will produce the result. In cases
where there is no algorithm which will yield the correct
result or its execution might be too slow or the problem is
NP-hard we might use a genetic algorithm. If a real-time
System is also based on an imprecise computing model, a
genetic algorithm as a task may be the solution.

Genetic algorithms, as well as other heuristic random
search methods (simulated annealing, evolutionary
strategies etc.), are monotone algorithms that are suitable
for implementation in an imprecise computation system.
The system can record the current solution in every
generational cycle of the algorithm. The computational
time of the mandatory subtask of genetic algorithm is
virtually non-existent, because the algorithm provides the
initial solution in the first iteration. The optional part, on

the other hand, has an undetermined execution time,
because there is no way to know whether the algorithm has
reached the correct solution. Formally, we can either
denote the computational time of mandatory subtask as
zero and of the optional subtask as infinite or vice versa,
depending on the nature of the real-time system. The
accuracy of the solution provided by genetic algorithm
cannot be measured, which is a significant drawback; in
general, we can only hope that the solution is 'good enough'
as there is no error estimate. What we can tell is that the
solution can only be better if the algorithm executes longer.
To cope with this problem, one can perform a series of
optimizations of the same class of the problem. That way,
for a given execution time, we could estimate the quality of
the solution produced so far. Genetic algorithms can also
very easily be designed to execute in parallel. That
approach can produce better results in same amount of time
on multiprocessor systems.

There are two ways of incorporating genetic algorithms
into real-time systems. They can either replace a task or
several of them or the system may consist entirely of
genetic algorithms. In the first approach the genetic
algorithm can perform a job for which there is no effective
algorithm or the job is too time-consuming for a classical
algorithm. If that is the case, the computation time of the
mandatory part of genetic algorithm should be defined as
infinite so it can run as long as possible. That way it will
always be late, but only formally, as it can never complete
in traditional sense anyway. The computational error of the
algorithm is unknown and therefore can only be ignored.

What criteria should we consider when making a
schedule for a real-time system including or consisting
entirely of genetic algorithms? Minimizing total or
maximum error is not possible because we have no mean to
evaluate it. In classical imprecise computations the error is
usually defined as a function of the time portion of the
optional subtask that was discarded in the schedule, which
cannot be measured if a task is a genetic algorithm. The
user can, in that case, assign higher weight values to more
important parts of the computation. The number of late
tasks is also without meaning in such system, as well as the
problems with 0/1 constraints. As for the average response
time, there is no sense in terminating a genetic algorithm if
it is not absolutely necessary; it can only produce a better
result over time. Thus, when scheduling genetic algorithms,
we should allow each one to execute as long as possible in
order to get more accurate results. We can assign weight
factors to each algorithm so that more important tasks get
more execution time.

The scheduling algorithm should also take advance of
the property of the genetic algorithms which allows them to
be easily configured to execute on more than one processor
simultaneously. Such a parallelization can be achieved by
dividing an algorithm into a number of threads where each
thread operates on a single set of solutions. The number of
threads is not limited which in turn allows a genetic

algorithm to run on as many processors as we can provide,
whereas some other types of algorithms can only run on a
certain maximum number of processors. That number is
called the maximum degree of concurrency and is not
defined for genetic algorithms. In the same time, a genetic
algorithm divided in threads and executing on a number of
processors doesn't have any multiprocessing overhead
since no interprocessor communication or synchronization
is needed. In fact, that parameter cannot be defined because
of the undetermined computation time of the algorithm.

The migration problem, i.e. transferring the algorithm
from one processor to another, is not an issue when genetic
algorithms are in question. Since there exists only one set
of solutions, available to all processors, on which the
threads operate, any processor can continue the work of
every other. More details on implementing parallel genetic
algorithms can be found in [1].

On the other hand, when constructing a feasible
schedule, we should also try to avoid the preempting of a
genetic algorithm. Every algorithm operates on a
population of solutions that can occupy a significant
amount of memory, depending of the number and the size
of the population members. If we are to interrupt the
algorithm, we have to preserve or to store the entire
population. Not only that it is not recommended but it can
also block some valuable resources and demand more
computation time for context switching.

IV. SCHEDULING ALGORITHM

Having in mind the goals stated for scheduling imprecise
real-time systems with genetic algorithms, a scheduling
algorithm can be designed which will take in account those
priorities. An imprecise real-time system is defined in a
following manner.

We are given a set of n preemptable tasks, indicated as
T={Ty, T, .., T,}. Each task is characterized by the
following parameters, which are rational numbers:

e ready time 1 at which T; becomes ready for execution,

e deadlined by which T; must be completed,

e mandatory processing time m that is required to
execute the mandatory part of T; (not defined for
genetic algorithms)

* optional processing time O; for the optional subtask
(not defined for genetic algorithms)

e weight w; that is a positive number greater or equal to
one and measures the relative importance of the task.

The dependencies between the tasks in T, if any, are
specified by their precedence constraints; they are given by
a partial order relation < defined over T. T; < T; if the
execution of Tj cannot begin until the task T; is completed
and terminated. In order for a schedule to be valid, all the
precedence constraints must be satisfied. It is possible that
the given deadline of a task is later than that of its
successors, or the given ready time may be earlier than that

of his predecessors. Instead of working with given ready
times and deadlines, modified values are used that are
consistent with the precedence constraints. Those values
are computed as follows. The modified deadline of a task
that has no successors is equal to its given deadline. Let A;
be the set of deadline times of all successors of T;. The
modified deadline d; of T; is

d; :min{di‘,min{dj]}, 0d; DA .)
Similarly, the modified ready time of a task that has no
predecessors is equal to its given ready time. Let B; be the

set of ready times of all predecessors of T;. The modified
ready time r; of Tj is

7 :max[ri‘,max{rj}], Or; UB;. @

Working with the modified ready times and deadlines
allows the precedence ignored
temporarily. If an algorithm finds an invalid schedule in
which T; is assigned a time interval later then some
intervals assigned to T; but T; < Tj, a valid schedule can be
constructed by exchanging the time intervals assigned to T;

constraints to be

and T; to satisfy their precedence constraint without
violating their timing constraints. Hereafter by ready times
and deadlines we mean modified ready times and
deadlines.
The scheduling algorithm devised in this work is
oriented towards scheduling genetic algorithms as tasks,
but it can also be used in any imprecise real-time system.
We only have to keep in mind the algorithm's assumptions
and priorities, which are:
= every task is supposed to be parallelizable; the
algorithm schedules them as on the one-processor
system, but a task is supposed to occupy all the
available processors in its time interval;

= the algorithm tries to give more time to more important
tasks, but only as long as less important tasks keep a
certain minimum quantity of time (defined later in the
text) or it can be set by the user;

= if a task is scheduled more than one distinct time
interval, the scheduling algorithm tries to rearrange the
intervals to merge them into one.

Rather then stating the algorithm and than presenting a
scheduling example, we will describe the algorithm along
with resolving an imprecise real-time system schedule. The
real-time system which is going to be scheduled is defined

in Table 1.
TABLE 1
THE EXAMPLE REAL-TIME SYSTEM

r[i] d[i] w(i]
T, 0 6 3
T, 4 12 2
Ts 0 14 1

The given parameters are presented in the algorithm in
the following data structures:
e n - the number of tasks in the system,

e 1[i], i = 1..n - array of (modified) ready times of every
task,

e d[i], i = 1..n - array of (modified) deadlines of every
task,

e a[] - array of distinct time values which is obtained by
sorting the lists of ready times and deadlines of all the
tasks in T and deleting duplicate entries in the list (i.e.
all distinct values of r[i] and d[i]),

e wli],i= l..n - array of task weights,

e h[] - array of distinct weight values, sorted in
descending order and without the smallest value,

e mTl[i], i = l..n - array of minimum time quantities for
each task. The minimum time for a task is defined as

w(i]

mT[i] = ———(d[i] - r[i]) . (3)

n

2 wj]

=1
The user can define the minimum time a task is
assigned, but in that case there may not always exist a
feasible schedule.

e MTIi], i = l..n - array of the maximum allowed time
for each task, d[i]-f[i].

Let the tasks' indexes be arranged in such a fashion that
d[1] < d[2] £ ... £ d[n]. The output of the scheduling
algorithm is a list of time intervals along with an index of
the task which is executed in that time. It works in three
phases: in the first phase the initial feasible arrangement is
made. In the second phase the intervals are modified, if
possible, so that the tasks with higher weight values get
even more computational time, keeping the other tasks with
their defined minimum. Finally, the algorithm finds the
preempted entries in the third phase and tries to merge
them if possible.

Additional data structures that are used in the process are
also:

L, 2) - list of time intervals; every list member has a
task index i = L(i, 1) and a duration 7 = L(i, 2);

e p - total number of entries in the list;

e F[i], i = 1..n - array which denotes the last entry of the
task i in list L;

e DI[i], i = 1..n - array of total time duration given to the
task i;

e MJi][2], i = 1..1 - array of amounts of time an interval
can be ‘shifted’ in the schedule in both directions
(defined in the algorithm).

In our example system, the defined minimum time
quantities for tasks T, 7, and T3 are 3, 8/3 and 7/3,
respectively. We will, however, redefine those values into,
for example, 3, 3 and 2.5.

The first phase of the scheduling algorithm is presented
in Fig 1.

for every i in al]
W = weight sum of all T[]]
dljl>alil;
if p=0 or M[L(p,1)]11[2]1=0
for every T[Jj] : r[jl<al[i]l AND d[jl>ali]
pt+;
add entry L(p,1)=3; F[j]=
L(p,2)=wljl/w*(ali+1]-a[i
D[J] += L(p,2);

: r[jl<al[i] AND

P
1)
else
for every TI[J]
if alil=r(j]
ptt;
add entry L(p,1)=3j; F[J]
L(p,2)=w[3]/W* (a[i+1]-a]
D[J] += L(p,2);

: r[jl<ali] AND d[jl>ali]

P/
1)

else
L(F[1,2) += w[j]/wW*(ali+1]-a[i]);
D[J] += L(F[3],2);
if d[L(p,1)l=ali+l]
M[L(p,1)][2]=0;

c=0;

for every i in L
M[i][1)=c-r[L(i, D];
c += L(i,2);
M[i] [2]=d[L(i,1)]-¢C;

Figure. 1 The first section of the scheduling algorithm

After the first phase we have the following entries in L
as (task, duration) and M as (left shift, right shift):

L(task, duration) M

(T, 4 0, 2)
(T3, 3.333) (4, 6.666)
(To, 4.666) (3.333,0)
(Ts,2) (12,0)

The values in array M denote how much we can shift the
specified time interval to the left (before in time) or right
(later in time). The second phase of the algorithm is listed
in Fig 2.

After the second section the schedule of our example is
as follows:

L(task, duration) M

(T2, 6) 0, 0)
(T3, 0.5) 2,7.5)
(T2 5.5) 2.5,0)
(Ts,2) (12,0)

The tasks T; and T, have been given additional amounts
of computation time from Ts. The latter one is, on the other
hand, preempted with T,. In the last section the scheduling
algorithm finds such duplicate entries and tries to resolve
them. The third phase of the algorithm is shown in Fig. 3.
Finally, the schedule for the example real-time system
takes the following form :

L(task, duration) M

(T, 6) 0,0)
(T2, 5.5) (2,0
(T3, 2.5) (11.5,0)

for every i in h[]
for every entry j
DL (3,1)<MT[L(3,1)]
k=j; end=0; z=L(j, 1)
while M[k] [2]>0 AND end=0 AND D[z]<MT[z]
k++; t=L(k,1);
if w[t]l<h[i] AND D[t]>mT[t]
take=min{ D[t]-mT[t], MT[z]-D[z],
L(k,2), M[m][2], m=j..k-1 }
L(j,2) += take;

w[L(j,1)]=h[i] AND

D[z] += take; M[]j]l[2] -= take;
L(k,2) -= take;
D[t] -= take; M[k][1l] += take;

if take=L (k,2)
remove entry k from L
for every entry m from j+1 to k-1

M[m] [1] += take;
M[m] [2] -= take;
if M[m][2]=0
end=1;
(endwhile)

k=j; end=0;
while M[k][1]1>0 AND end=0 AND MT[z]>D[z]
k--; t=L(k,1);
if w[t]<h[i] AND D[t]>mT[t]
take=min{ D[t]-mT[t], MT[z]-D[z],
L(k,2), M[m][1], m=k+1..7 }
L(j,2) +=take;

D[z] += take; M[Jj][1l] -= take;
L(k,2) -= take;
D[t] -= take; M[k][2] +=take;

if take=L(k,2)
remove entry k from L
for every entry m from k+1 to j-1

M[m] [1] -= take;
M[m] [2] += take;
if M[m] [1]=0
end=1;
(endwhile)

Figure 2. The second section of the scheduling algorithm

for every entry i : F[L(i,1)]>1i
repeat
k=i+1; z=L(i,1);
max_up=max_dn=MT[z];
while L(k,1)!=z
max_dn=min{ max_dn, M[k][1] };
max_up=min{ max_up, M[k]I[2] };
if max_dn>=L(i,2)
L(k,2) += L(i,2);
remove entry i from L;
for every entry m from i+l to k-1
M[m] [1] -= L(i,2);
M[m] [2] += L(i,2);
else if max_up>=L(k,2)
L(i,2) += L(k,2);
remove entry k from L;
for every entry m from i+l to k-1
M[m] [1] += L(k,2);
M[m] [2] -= L(k,2);
;2

while F[z]>k AND L(i,2)>0;

Figure 3. The third section of the scheduling algorithm

We now have a schedule in which the tasks with higher
priorities have an optimal arrangement of computing time.
In addition, there is no preempting which was one of the
priorities during the design of the algorithm. If we are
running on a multiprocessor system, a genetic algorithm or
any other parallelizable algorithm can occupy all the
processors in its time interval.

As it was mentioned before, the scheduling algorithm
was devised primarily for scheduling genetic algorithms as
tasks in an imprecise real-time system, but it can also be

used for scheduling of 'ordinary’ imprecise systems' tasks.
If that is the case, the minimum task time should be the
computational time of the mandatory part m, and the
maximum task time the sum of the mandatory and the
optional time 0;. Finally, the user may choose to schedule
the system with some of the existing algorithms, in which
case the mandatory and optional part of a genetic algorithm
should only formally be defined as it was described in
section III.

V. ACKNOWLEDGMENT

This work was carried out within the research project
"Problem-solving Environments in Engineering",
supported by the Ministry of Science and Technology of
the Republic of Croatia.

(1]

(2]
(3]

(4]

(5]

6]

REFERENCES

Budin, L., Jakobovi¢, D., Golub, M. (1998), "Parallel
Adaptive Genetic Algorithm", Proc. Int. Conf. Neural
Computing NC'98, Wienna, October 1998.

Davis, L. (1991) Handbook of Genetic Algorithms,
Van Nostrand Reinhold, New York.

Garvey, A., Lesser, V. (1995), "Representing and
scheduling satisficing tasks",
approximate — computation,
Publishers, pp. 23-34

Leung, Joseph Y-T. (1995), "A survey of scheduling
results for imprecise computation tasks", Imprecise
and approximate computation, Kluwer Academic
Publishers, pp. 35-42

Liu, J. W-S,, Lin, K-J., Shih, W-K., Yu, A. C., Chung,
JY., Zhao, W. (1991), "Algorithms for Scheduling
Imprecise Computations", IEEE Computer, 24, pp. 58-
68

Michalewicz, Z. (1992), Genetic Algorithms + Data
Structures = Evolutionary Programs, Springer-Verlag,
Berlin.

Imprecise and

Kluwer Academic

