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Abstract. In this paper a genetic algorithm for 
solving timetable scheduling problem is 
described. The algorithm was tested on small 
and large instances of the problem. Algorithm 
performance was significantly enhanced with 
modification of basic genetic operators, which  
restrain the creation of new conflicts in the 
individual. 
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1. Introduction 
 

This article describes an implementation of 
genetic algorithm on timetable scheduling 
problem. The timetable scheduling problem is 
common to all educational institutions. Main 
algorithm goal is to minimize the number of 
conflicts in the timetable. Reduction to encoding 
of search space was also implemented. The 
algorithm was tested on small and large 
timetable problems at Faculty of Electrical 
Engineering and Computing (FER) in Zagreb. 
The program interface was developed in C#. The 
core of genetic algorithm was developed in C++ 
with STL (Standard Template Library) support. 
 
2. Timetable Scheduling Problem 
 

The scheduling problems are essentially the 
problems that deal with effective distribution of 
resources. During the scheduling process many 
constraints have to be considered. Resources are 
usually limited and no two tasks should occupy 
one particular resource at the same time. For 
most of the scheduling problems it has been 
shown that they are NP-hard, and that they can 
not be solved in polynomial time using a 
deterministic algorithm. 

School timetable scheduling problem presents 
a set of tasks (classes) and a set of resources 
(rooms, groups, instructors). Every task requests 
some resources for its realization and has the 

exact length. The set of timeslots when a class 
can be scheduled is also determined. The goal is  
to assign those tasks to their resources while 
satisfying all of the hard constraints – no  
resource should be allocated by multiple tasks at 
the same time. 

 
 

 
 
Figure 1. Timetable presented with 3D 

structure 
 
Scheduling a timetable could also be 

represented like special class of 3D cutting 
problems. The timetable could be presented as a 
3D structure. The dimensions of 3D timetables 
are: days (x-axis), timeslots (y-axis) and rooms 
(z-axis). The classes are shown as cubes, which 
should be placed in a 3D timetable structure (Fig. 
1) [7]. The scheduling is a process of placing 
those cubes into a timetable, in the way that no 
conflicting classes (which allocate the same 
resource, a student group or an instructor) are 
placed in the same timeslot.  

The timetable scheduling process could be 
formally defined with binary variables xcdtrgi, 
which have the value of 1 if and only if instructor 
i lectures the class c on day d at time t, for group 
g in room r. 

 
 
 



The timetable should satisfy the following 
conditions: 
a) Group g can attend only one class at one 

time. 
b) Instructor i can teach only one class at one 

time. 
c) In room r only one class can be taught at one 

time. 
d) All lectures should be kept exactly once. 

A GUI (Graphical User Interface) has been 
developed to facilitate the input of data. For each 
class the following can be set: 
• days and times when the class could be 

placed; 
• rooms where the class could be placed; 
• number of rooms occupied by a class 

simultaneously 
• groups of students that attend the class; 
• instructors that teach the class. 

The theoretical problem size can now be 
reduced. As the groups and instructors are 
intrinsic part of a class definition, indices i and g 
are eliminated. The information about groups 
and instructors is not discarded, however. It is 
stored with the variable to be utilized later when 
generating conflicts. 

 Furthermore, since many combinations of 
indices c,d,t,r are impossible, only the possible 
combinations are generated. 

Since one class can utilize more than one 
classroom (e.g. a larger group occupies two PC 
labs at he same time), the index r of variable 
xcdtrgi actually denotes one of the possible 
combinations of the room allocations. 

The pseudocode for the variable generation is: 
 

for each class c { 

   generate all possible room combinations 
   for each possible (day,time) pair { 
      for each r in room combinations { 
         create variable xcdtr 
    } 
  } 
} 

To facilitate the generation of conflict, three 
auxiliary 3D structures are created. Each 
structure represents a special type of view on the 
timetable: from the aspect of room, group and 
instructor. From every view new constraints can 
be identified. X and y axes of all three auxiliary 
structures represent the day and time. The z-axis 
is different in every structure, representing 
rooms, groups and instructors, respectively. 
During the constraint generation process, each 
variable is positioned, for all possible day-time 

pairs, at the appropriate z coordinate, which 
denote rooms, groups or instructors allocated by 
the corresponding class.  After filling of all the 
data, each x-y-z coordinate is checked[1]. If more  
classes compete for a particular resource, a new 
constraint has to be generated. This process is 
analogue to reducing of resource to only one task 
in a single timeslot. The solver is now assured 
that only one variable will take (for example) a 
particular room in a single day-time 
combination. All of those bound could be 
represented as: 

 1≤∑ classx  (1) 

 
 

 
 

Figure 2. Generation of conflicts and bounds 
 
3. The Genetic Algorithm Implementation 
 

Genetic algorithms are adaptive systems 
inspired by natural evolution. They can be used 
as techniques for solving complex problems and 
for searching of large problem spaces. Genetic 
algorithms are belonging to guided random 
search techniques, which try to find the global 
optimum. J.H. Holland presented this concept in 
early seventies. The power of genetic algorithms 
and other similar techniques (simulated 
annealing, evolutionary strategies) lies in the fact 
that they are capable to find global optimum in 
multi-modal spaces (spaces with many local 
optimums). Classical gradient methods will 
always gravitate from starting position to some 
local optimum, which could also be global, but it 
can not be determined for certain. Genetic 
algorithms are working with the set of potential 
solutions, which is called population. Each 
solution item (individual) is measured by fitness 
function. The fitness value represents the quality 
measure of an individual, so the algorithm can 
select individuals with better genetic material for 
producing new individuals and further 
generations. 



The simulation of evolution allows survival 
of better individuals and extinction of inferior 
ones. Evolution’s goal is to find better 
individuals in each generation. The process of 
evolution is maintained by selection, crossover 
and mutation. In terms of genetic algorithms 
those processes are called genetic operators. The 
selection chooses superior individuals in every 
generation and assures that inferior individuals 
extinct. The crossover operator chooses two 
individuals from current population (parents) 
and creates a new individual (child) based on 
parents’ genetic material. Selection and 
crossover operators will expand good features of 
superior individuals through the whole 
population. They will also direct the search 
process towards a local optimum. The mutation 
operator changes the value of some genes in an 
individual and helps to search other parts of 
problem space. 

In the algorithm presented here, each 
individual in the population represents one 
timetable. The algorithm starts from an 
infeasible timetable, and tries to get the feasible 
one. 

In a timetable, every class can be placed only 
once in the 3D timetable structure. This could be 
ensured with generation of a new constraint for 
each class that should be scheduled. These extra 
constraints would just enlarge the problem size 
and the number of constraints that should be 
checked. Because every class can have only one 
variable set to 1, individuals can be generated in 
such way that every gene in an individual 
represents one class. The value of a gene will be 
the ordinal of a binary variable belonging to that 
class. 

 
 
 
 

 
 
 
 
 
 

Figure 3. Encoding of Individuals 
 
The fitness value of an individual is 

calculated as 
 

fitness(individual) = 

(Number of conflicts)*K + Quality (2) 

 

The number of conflicts shows how many 
constraints have been violated within the current 
individual. When an individual reaches zero 
conflicts, that means that it represents a feasible 
timetable and that there are no collisions of 
classes [1]. 

The quality of the timetable is determined by 
earliness of scheduled classes. Students have 
better ability to learn in morning hours and after 
that, the interest for learning is continually 
decreasing. That is why the best quality value is 
set to the early hours and worse values are set for 
late hours. The genetic algorithm will try to 
schedule classes as early in the morning as it can, 
indirectly minimizing the number of holes in a 
student's schedule. 

The main goal of the genetic algorithm 
presented here is to achieve a feasible timetable. 
That is why the feasibility function will mainly 
try to minimize the number of conflicts in an 
individual. This is achieved by multiplying the 
number of conflict by a large constant K. The 
quality of the timetable is of the lesser 
importance. Individuals in a population are 
sorted by ascending value, so the best individual 
has the smallest fitness value. 

The program uses eliminating selection, 
which chooses and eliminates bad individuals 
from the current population, making room for 
new children that will be born from the 
remaining individuals. The probability of 
elimination increases proportionally with the 
fitness value of the individual. As the remaining 
individuals are better than the average of the 
population, it is expected that their children will 
be better as well.  

There is some probability (though very small) 
that eliminating selection deletes the best 
individual. That would ruin the algorithm efforts 
and put its work back for some number of 
generations. Therefore, protection mechanism for 
best individuals has to be made, so the good 
genetic material is sustained in population. It is 
called the elitism. The authors’ choice was to 
keep just the top one individual. 

The reproduction operators constitute a very 
important part of genetic algorithms. Those 
operators make use of good individuals (which 
remained in population after selection) and 
construct new, better individuals and overall 
population. 

The crossover operator operates on 
individuals (called parents) and make new, child 
individual from their genetic material. This 
operator fills up empty places in population that 

 



remained after elimination. If parents are good, it 
is likely that their child will also be good. 
Uniform crossover operator was chosen as the 
best option for this kind of problem [8]. 

 
for each gene in (parent1 , parent2){ 
   if(parent1[gene]==parent2[gene]){ 
      child[gene]=parent1[gene]; 
   }else{ 
      child[gene] =  
      random(parent1 ,parent2)[gene]; 
   } 
} 

 
Uniform crossover operator checks all genes 

of both parents. If parents have equal values of a 
gene, this value is written to the child. If values 
from parent genes differ, then the algorithm 
randomly chooses one parent as a dominant one 
and takes its gene. 

The program uses simple roulette wheel 
parent selection algorithm. The probability of 
selection of one individual is proportional to it’s 
fitness value [4]. 

Cumulative fitness values are used for each 
individual by the formula: 

∑
=

=
k

i
ik individualfitnessq

1

)( ,  D = max(qk) (3) 

where k=1, 2, ….  POPULATION_SIZE. 
 
The algorithm generates a random number r 

from  the interval (0, D) and selects an individual 
which satisfies the condition: 
 
 max qk <=  r. (4) 

 
 

 
 
 
 
 
 
 
 
 

Figure 4. Uniform crossover of individuals 
 
The mutation is also a typical operator for the 

genetic algorithm. It takes one or more genes 
from an individual and changes its value. The 
probability of the mutation is an input parameter 
for genetic algorithm. The presented algorithm 
iterates through every gene of every individual in 
the population. For each gene a random number 

form the interval (0, 1) is generated. If the 
generated value is smaller than the given 
probability of the mutation (pm), the gene 
changes value to a random value which denotes a 
different day-time value or room combination. 
 
for each gene in individual{ 
   if(p(Random) < pm){ 
      gene = get random value from  
               possible values list; 
   } 
} 

 
 
 
 
 

 
Figure 5. Mutation of individuals 

 
4. Improving genetic algorithm behavior 
 

The main idea for improving operators was to 
prohibit the introduction of new conflicts.  Basic 
operators did not take into account whether they 
make individuals with more or with less conflicts 
[5]. The outcome of the algorithm utilizing such 
basic operators was noticeably poor. The 
decision was made to add some programming 
logic to the operators and to use different 
selection algorithm.  

The first step of the improved crossover 
operator simply copies equal genes from parents 
to the child individual. No additional conflicts 
can be added through copying those equal 
values. Different parent’s genes are specially 
marked and delegated for further processing. In 
the second step, the crossover operator checks 
the list of equations for each marked gene in 
child individual and counts the number of 
potential conflicts generated for both parent’s 
choices. The gene from a parent that generates 
fewer conflicts is chosen, so no additional 
conflicts are generated in addition to the  
conflicts caused by the parents. 

Such a modification was not introduced to the 
mutation operator. Similar functionality of the 
mutation operator would probably lead the whole 
population to the local optimum. In most cases 
the mutation operator generates inferior 
individuals, but most of its genes are good. 
Mutated genes help us to explore other parts of 
searching space and to avoid reaching of local 
optimum value. 

 

 



Additional conflicts in population will be 
generated when two equal individuals appear in 
the mating process as parents. In that case one of 
the parents will be mutated and the child will be 
randomly generated. In this procedure a bad 
child individual will be created, but it will not 
spoil the population. Quite the reverse, it will 
bring new genetic material to the saturated 
population. 

The improved algorithm uses tournament 
eliminating selection [5]. This kind of selection 
ensures elitism. Consequently, the top individual 
can not be changed. The tournament selection 
allows greater population size without slowing 
down the algorithm. Better results were obtained 
with population of much greater size, in contrast 
to the basic algorithm, where enlargement of the 
population resulted in significant performance 
degradation. 
 
5. Experimental Results 
 

For experimental purposes data from Faculty 
of Electrical Engineering and Computing (FER) 
in Zagreb was used [7]. Algorithm was tested on 
the small and large instances of problem (Table 
1). The large problem is a full size FER schedule 
for the autumn semester. The small size problem 
was obtained from the large size with exclusion 
of about 70% of classes from the scheduling 
process. The small problem was solved without 
conflicts. When solving the large size problem, 
the basic algorithm stopped at about 95 conflicts. 
With intelligent operators, algorithm reached 
about 20 conflicts. 

 
Table 1. Size of the problem 

 
 SMALL LARGE 
Classes / Size of individual 227 770 
Rooms  27 41 
Groups 55 114 
Instructors 46 157 
Number of binary variables 16103 35026 
Number of bounds 4345 10898 
Population size (classical) 256 256 
Population size (improved) 5120 5120 
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Figure 6. Evolution process for the small size 
problem depending on mutation probability 

 

0

50

100

150

200

250

300

350

400

500 10500 20500 30500 40500

.015

.009

.003

 
Figure 7. Evolution process for the large size 
problem depending on mutation probability 
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Figure 8. Evolution process with improved 

operators for the small size problem 
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Figure 9. Evolution process with improved 

operators for the large size problem 
 
Figures 6. and 7. show the results of genetic 

algorithm with basic operators. This algorithm 
experiences problems with convergence and 
saturation of the population. After a certain 
number of conflicts had been reached, very small 
improvements were achieved through algorithm 
running time. 

The algorithm with improved operators (Figure 
8, and 9.) shows much better results. Faster 
convergence and fewer conflicts were achieved 
in a lesser amount of running time.  
 
8. Conclusion 
 

The initial scheduling problem with large 
number of binary variables has been reduced to 
the acceptable size by eliminating certain 
dimensions of the problem and encorporating 
those dimensions into constraints. The grouping  
of several binary variables into one gene value 
significantly reduced the individual size. Now it 
is possible to try to solve the full size problem 
(problem of the whole FER schedule) with 
genetic algorithm approach. Such a 
representation of the scheduling problem  
achieves the acceptable algorithm speed, so 
small size problems are solved in tens of 
seconds. Significant improvements have been 
achieved by using intelligent operators. The 
intelligent algorithm converges much faster then 
the basic algorithm and represents a good 
starting point for complete solving of the full 
scale problem.  

To completely solve the full scale problem, 
further algorithms improvements will have to be 
made. When generating the constraints, it could 

be useful to sign each one, so no constraint will 
be set (and checked) twice. Individuals should  
be generated in such way that classes which are 
more difficult to schedule occupy the front genes 
of an individual, while classes easier to schedule 
should occupy the back genes. This would be 
useful for intelligent crossover operator, which 
sets and checks the conflicts from front to back 
of the individual. Also, a parallel computing 
approach should be tried, so checking space of 
the problem could be widened. Each thread could 
start with different initial population and the 
quality of solution is expected to  be better. 
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