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Abstract. In this paper, a new method of 
selection of individuals for crossover is 
presented and tested. Its main idea is that one of 
the selected individuals is always a member of an 
"elite" group, consisting of n best individuals 
currently in the population. This method does not 
slow down the execution of the algorithm and 
shows a marked improvement in search results. 
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1. Introduction 
 

The genetic algorithm is a heuristic 
optimization method that does not guarantee 
finding the optimum of the optimization function 
[7]. It was first described by John H. Holland in 
the early seventies of the 20th century and it has 
since been applied to many areas [8] [9]. The 
genetic algorithm is a useful tool in optimization 
of many kinds of problems, but its flaws are that 
it demands a lot of processing time and does not 
guarantee finding the optimum. The main 
motivation for modifying the selection method is 
improving the search quality, and reaching the 
optimum more quickly. 

Genetic algorithm is based on a simulation of 
natural evolution while searching a solution for a 
problem. In nature individuals in a population 
compete for limited resources. Those that are 
better adapted to conditions in their environment 
survive and carry their genes to the next 
generation, and those poorly adapted perish. New 
individuals are created by crossover of their 
parents, and can be modified by mutation. 
Mutation is a random modification of one or 
more chromosome elements. 

Implementing a genetic algorithm on a 
computer is simple and, once implemented, can 
be reused for solving many different problems. 
An individual, or its chromosome represents one 
solution to the problem, and most of the time 
spent executing the genetic algorithm is used for 
operations with the individuals. Because of that it 
is important to efficiently model the 
chromosome. In order to solve a new class of 
problems usually only the operators of crossover, 
mutation and calculation of fitness function need 
to be redefined, and the rest of the 
implementation can remain unchanged. 

The problem used for testing this method is 
multiprocessor scheduling, and the 
implementation that is used as a basis for our 
modification is the same as in [4].  

Many methods of selection for crossover have 
been described, and the method called 3-
tournament selection has proven itself to be very 
robust. In this method three individuals are 
randomly selected from the population. One with 
the lowest value of the fitness function is 
removed from the population. The remaining two 
individuals are used to generate a new individual 
that takes the place of the one that was removed. 
In this article a modification of that method is 
presented, in which at least one of the individuals 
selected is in a set of n best individuals in the 
population. This modification is simple to 
implement, and does not increase demands for 
processing time or memory space. A similar 
modification is described in [5]. 

The implementation of 3-tournament 
selection is described in section 2, modified 3-
tournament selection is described in section 3, 
and section 4 shows experimental results using 
the problem of multiprocessor scheduling, and 
compares with previous work in this area. 



 
2. Implementation of the genetic 

algorithm  
 

The implementation of the genetic algorithm 
that was used for the test consists of two main 
classes, describing the GA procedure and the 
individual. The first class contains details about 
the selection method and the conditions for 
termination of the procedure, while the other 
contains details about the chromosome, 
describing the individual and all associated 
genetic operators. 

For testing we used the multiprocessor 
scheduling problem, described by an acyclic 
directed graph [4]. Value of the fitness function 
is defined as the time of the end of the last 
executing task, with a negative sign, so that the 
algorithm decreases the time by maximizing this 
function. 

The genetic algorithm is shown in Fig. 1. 
Initialization of the algorithm is simple: a certain 
number of individuals is randomly generated. 
After that three individuals are randomly selected 
from the population, and one that has the lowest 
value of the fitness function is removed from the 
population. The vacant spot is filled by a new 
individual, created from the two remaining 
individuals. Mutation is then applied to the new 
individual. Probability of mutation is a parameter 
of the algorithm.  

Begin 
 Initialize population 
 Repeat 
  Choose three individuals 
  Remove weakest ind. from pop. 
  Crossover + Mutation 
  Evaluate new ind. 
 until finished 
End   
 

Figure 1. Genetic algorithm with 3-tournament 
selection without elite set 

 

After that the value of the fitness function is 
evaluated and stored for later use. For more 
complex problems calculation of the fitness 
function can be expensive, so it is useful to have 
it cached after the first evaluation. This can be 
done because the value of the fitness function for 
an individual does not change after it is created. 
This procedure is repeated until the termination 
condition is reached. That condition can be for 

example the number of generations or high 
similarity between all individuals. 

Result of this algorithm is the individual that 
had the highest value of the fitness function or, in 
our experiment, the shortest time to complete all 
tasks. 
 
3. Implementation of the elite set 
 

Implementation of the genetic algorithm with 
3-tournament selection and elite set is not very 
different from the original algorithm. The 
modified algorithm is shown in Fig. 2. 

 
Begin 
 Initialize population 
 Find members of elite set 
 Find candidate for removal from elite 
 Repeat 
  Choose one ind. from elite set 
  Choose two more individuals 
  Remove weakest ind. from pop. 
  Crossover + Mutation 
  Evaluate new ind. 
  If all three are elite then 
   reconstruct elite 
  else if new > candidate 
   place new into elite 
   find new candidate 
 until finished 
End   

 
Figure 2. Genetic algorithm with 3-tournament 

selection and elite set  
 

The beginning is the same: a set of solutions is 
initialized. After initialization, the elite set is 
constructed by finding the best n individuals 
from the population. The elite set is implemented 
as a field of indices in the population. This 
allows us to handle elite individuals like all 
others, since they are not removed from the 
population, but we still have quick access to all 
elite individuals. Construction of the elite set is 
implemented as a simple linear search of the 
population. After that the candidate for removal 
from elite set is selected. It is the individual in 
the elite set that has the lowest value of the 
fitness function. Every time a new individual is 
created it is compared to the worst individual in 
the elite set. To speed up the comparison the 
index of the candidate is kept also.  



After the initialization of the population and 
all necessary arrays, the crossovers are started. 
First an individual from the elite set is chosen 
randomly. Two other individuals are also chosen 
randomly, regardless of whether they are 
members of the elite set or not. The worst 
individual is removed from the population, and 
crossover and mutation proceed as in the original 
algorithm. After the new individual is created, it 
needs to be checked if it is good enough to 
become a member of the elite set. 

Worst case of selection is when all three 
individuals are members of the elite set. It is then 
possible for the new individual to have lower 
value of the fitness function than the individual 
that was removed, and should not be a member 
of the elite set. If that occurs, the elite set is 
reconstructed by searching the entire population. 
If the worst case did not occur, a simpler 
procedure is executed: the new individual is 
compared to the candidate for removal from the 
elite set. If it is better, it takes the candidate's 
place in the elite set. A new candidate is found 
by a linear search of the elite set. It is a very fast 
procedure since the elite set contains only a few 
elements, significantly less than the entire 
population. This shortened procedure saves time 
because the entire population does not have to be 
searched after creating a new individual. 

As can be seen from the description, this 
modification only marginally increases the 
demands for processing time and storage space. 
The most demanding operation that can occur is 
a linear search of the population, which is not a 
problem since the population usually contains a 
relatively small number of individuals, and it 
happens only in the case if all three individuals 
are members of the elite set. Probability of this 
happening in a population of 120, with an elite 
set of 4, is 0.0014%, which means that it will 
happen once in about 70000 algorithm cycles. 
There was no noticable increase in execution 
time, with all execution times at 65 minutes. 

In the more likely case that at least one if the 
individuals is not a member of the elite set only a 
comparison of two cached values is necessary, 
and maybe a linear search of the elite set. The 
search also takes very little time because the elite 
set has a very small number of individuals. The 
increase in use of storage space is also negligible 
All that is needed is a small array of integers to 
maintain the contents of the elite set. 
 

4. Experimental results 
 

Experiments were performed on a 
multiprocessor scheduling problem, scheduling 
1104 tasks on 7 processors [1] [2] [10], with 
population sizes 120 and 240, with mutation 
probability 1% and 40000 algorithm cycles. The 
number of elements in the elite set has varied 
between 1 and 5, and a comparison with the 
classic algorithm has been performed. For every 
combination of parameters 15 experiments were 
performed, and the best, worst and average 
results have been recorded. Execution times were 
equal for all combinations, and on the computer 
we used (Intel Pentium 4, 2 GHz, 1 GB RAM) it 
took a little over an hour, which shows that there 
was no increase in processing time due to the 
modifications. 

The problem description was taken from [6], 
where an optimal value of 1504 was found using 
a heuristic method. The best solution found using 
this algorithm was only 6% more than optimal 
value. The problem is described by a directed 
acyclic graph and a partial precedence relation is 
given, along with the time necessary to perform 
each task and number of processors. Every task 
is present in the graph, and appears only once. 
One processor can execute only one task at a 
time. The number of processors is fixed during 
the execution of all tasks. 
The best result (see Table 1) was found with 240 
individuals, with 4 members of the elite set. That 
result was 1596, and the second best result was 
1598, found with 120 individuals, 5 of which 
were in the elite set. The best result found using 
the unmodified algorithm was 1664 time units, 
with a population of 120 individuals.  
 

Table 1. Best results 
Elite - 1 2 3 4 5 
120 1664 1606 1606 1615 1600 1598 
240 1707 1599 1611 1600 1596 1605 
 

The best average result (see Table 2) was 
found with two combinations of parameters: 
population of 120, with 4 elite individuals, and 
also with population of 120, with 3 elite 
individuals. That result is 1617 time units. The 
unmodified algorithm found average solutions of 
1680 for 120 individuals and 1716 for 240  
individuals.  



Table 2. Average results 
Elite - 1 2 3 4 5 
120 1680 1627 1624 1626 1617 1621 
240 1716 1627 1626 1617 1622 1624 

 
Two worst results (see Table 3) were found 

with the unmodified algorithm; for population of 
120 the result was 1698, and for population of 
240 it was 1729. The worst result found using the 
elite set was for 240 individuals and 1 in the elite  
set, and that result was 1670 time units.  

 
Table 3. Worst results 

Elite - 1 2 3 4 5 
120 1698 1653 1642 1642 1635 1647 
240 1729 1670 1654 1637 1642 1644 
 

From tables 1-3 it can be seen that the best 
combination was population of 120 and 4 elite 
members. That combination found the best 
average result, and it was very close to the best 
solution found in all experiments (only 4 time 
units longer). It can also be seen that all 
combinations using the modified algorithm show 
significantly better results than the unmodified 
algorithm. 

In figure 3 we show a comparison of average 
results from two selection methods, as well as 

the best solution found, and the solution from 
[6]. The top most line is the unmodified selection 
algorithm, and the line below is our modified 
algorithm. Next two lines are best found solution 
and solution from [6]. It can be seen from figure 
3 that the modified algorithm makes much better 
progress in the early stages of the genetic 
algorithm. Later it approaches the solution at 
about the same speed as the unmodified 
algorithm. 

 
In [4] similar experiments were performed 

and we repeated them using the modified 
algorithm. The first problem was scheduling 452 
tasks on 20 processors, with the optimal solution 
of 537 time units. In [4] the parameters were: 
mutation probability 1%, population size 20 and 
10000 iterations, and we used the same 
parameters, modifying the size of the elite set 
from 1 to 4. In [4] the best result was 540 time 
units, while with the modified algorithm results 
were much better (see Table 4). With 4 elite 
members over 85% of experiments found the 
global optimum. The worst results were found 
with only one member of the elite set, only 25% 
found the best solution, and average solution was 
544 time units. 
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Figure 3. Evolution process for classic selection and new selection compared with 

best solution found and global optimum 
 



 
Table 4. Results for problem from [4] 
Elite 1 2 3 4 
Average 543 537.87 537.27 537.13 
 

Second problem was scheduling 473 tasks to 
4 processors, with 30000 iterations, population of 
50 individuals and mutation probability 1%, with 
the optimal solution of 1178 time units. In [4] the 
best solution was 1182, and average 1184 time 
units. Our results for this problem were 
approximately same, with the best solution 1182 
found for all combinations and average solution 
of 1185 for 4 members in the elite set. These 
results are compared in table 5. 

 
Table 5. Problems and best results 
 No. of 

tasks 
No. of 
proc. 

New 
method 

Old 
method 

Solutin 
from [6] 

1. 1104 7 1596 1680 1504 

2. 452 20 
537 

(538*) 
540 537 

3. 473 4 1182 1182 1178 
* 538 is the average solution from 60 runs 
 
5. Conclusion 
 

The method described here is an efficient 
upgrade to the standard 3-tournament selection 
method. Adding it to an existing implementation 
was simple, and did not increase demands for 
memory or processing time. Results achieved by 
this method are better than results using the 
unmodified 3-tournament selection algorithm. 
Future direction of this research is adapting this 
method to parallel genetic algorithm [3], where 
special attention is needed to maintain the elite 
set. 
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