
Using a Set of Elite Individuals in a Genetic Algorithm

Marko Musnjak
Alstom Croatia

Mala Svarca 155
HR-47000 Karlovac, Croatia

Phone: (+385 47) 665 202
marko.musnjak@power.alstom.com

Marin Golub
Department of Electronics, Microelectronics,

Computer and Intelligent Systems
Faculty of Electrical Engineering and

Computing
University of Zagreb

Unska 3, HR-10000 Zagreb, Croatia
Phone: (+385-1)6129 967

marin.golub@fer.hr

Abstract. In this paper, a new method of
selection of individuals for crossover is
presented and tested. Its main idea is that one of
the selected individuals is always a member of an
"elite" group, consisting of n best individuals
currently in the population. This method does not
slow down the execution of the algorithm and
shows a marked improvement in search results.

Keywords. Genetic algorithm, selection,
scheduling, elitism

1. Introduction

The genetic algorithm is a heuristic
optimization method that does not guarantee
finding the optimum of the optimization function
[7]. It was first described by John H. Holland in
the early seventies of the 20th century and it has
since been applied to many areas [8] [9]. The
genetic algorithm is a useful tool in optimization
of many kinds of problems, but its flaws are that
it demands a lot of processing time and does not
guarantee finding the optimum. The main
motivation for modifying the selection method is
improving the search quality, and reaching the
optimum more quickly.

Genetic algorithm is based on a simulation of
natural evolution while searching a solution for a
problem. In nature individuals in a population
compete for limited resources. Those that are
better adapted to conditions in their environment
survive and carry their genes to the next
generation, and those poorly adapted perish. New
individuals are created by crossover of their
parents, and can be modified by mutation.
Mutation is a random modification of one or
more chromosome elements.

Implementing a genetic algorithm on a
computer is simple and, once implemented, can
be reused for solving many different problems.
An individual, or its chromosome represents one
solution to the problem, and most of the time
spent executing the genetic algorithm is used for
operations with the individuals. Because of that it
is important to efficiently model the
chromosome. In order to solve a new class of
problems usually only the operators of crossover,
mutation and calculation of fitness function need
to be redefined, and the rest of the
implementation can remain unchanged.

The problem used for testing this method is
multiprocessor scheduling, and the
implementation that is used as a basis for our
modification is the same as in [4].

Many methods of selection for crossover have
been described, and the method called 3-
tournament selection has proven itself to be very
robust. In this method three individuals are
randomly selected from the population. One with
the lowest value of the fitness function is
removed from the population. The remaining two
individuals are used to generate a new individual
that takes the place of the one that was removed.
In this article a modification of that method is
presented, in which at least one of the individuals
selected is in a set of n best individuals in the
population. This modification is simple to
implement, and does not increase demands for
processing time or memory space. A similar
modification is described in [5].

The implementation of 3-tournament
selection is described in section 2, modified 3-
tournament selection is described in section 3,
and section 4 shows experimental results using
the problem of multiprocessor scheduling, and
compares with previous work in this area.

2. Implementation of the genetic

algorithm

The implementation of the genetic algorithm
that was used for the test consists of two main
classes, describing the GA procedure and the
individual. The first class contains details about
the selection method and the conditions for
termination of the procedure, while the other
contains details about the chromosome,
describing the individual and all associated
genetic operators.

For testing we used the multiprocessor
scheduling problem, described by an acyclic
directed graph [4]. Value of the fitness function
is defined as the time of the end of the last
executing task, with a negative sign, so that the
algorithm decreases the time by maximizing this
function.

The genetic algorithm is shown in Fig. 1.
Initialization of the algorithm is simple: a certain
number of individuals is randomly generated.
After that three individuals are randomly selected
from the population, and one that has the lowest
value of the fitness function is removed from the
population. The vacant spot is filled by a new
individual, created from the two remaining
individuals. Mutation is then applied to the new
individual. Probability of mutation is a parameter
of the algorithm.

Begin
 Initialize population
 Repeat
 Choose three individuals
 Remove weakest ind. from pop.
 Crossover + Mutation
 Evaluate new ind.
 until finished
End

Figure 1. Genetic algorithm with 3-tournament
selection without elite set

After that the value of the fitness function is
evaluated and stored for later use. For more
complex problems calculation of the fitness
function can be expensive, so it is useful to have
it cached after the first evaluation. This can be
done because the value of the fitness function for
an individual does not change after it is created.
This procedure is repeated until the termination
condition is reached. That condition can be for

example the number of generations or high
similarity between all individuals.

Result of this algorithm is the individual that
had the highest value of the fitness function or, in
our experiment, the shortest time to complete all
tasks.

3. Implementation of the elite set

Implementation of the genetic algorithm with
3-tournament selection and elite set is not very
different from the original algorithm. The
modified algorithm is shown in Fig. 2.

Begin
 Initialize population
 Find members of elite set
 Find candidate for removal from elite
 Repeat
 Choose one ind. from elite set
 Choose two more individuals
 Remove weakest ind. from pop.
 Crossover + Mutation
 Evaluate new ind.
 If all three are elite then
 reconstruct elite
 else if new > candidate
 place new into elite
 find new candidate
 until finished
End

Figure 2. Genetic algorithm with 3-tournament

selection and elite set

The beginning is the same: a set of solutions is
initialized. After initialization, the elite set is
constructed by finding the best n individuals
from the population. The elite set is implemented
as a field of indices in the population. This
allows us to handle elite individuals like all
others, since they are not removed from the
population, but we still have quick access to all
elite individuals. Construction of the elite set is
implemented as a simple linear search of the
population. After that the candidate for removal
from elite set is selected. It is the individual in
the elite set that has the lowest value of the
fitness function. Every time a new individual is
created it is compared to the worst individual in
the elite set. To speed up the comparison the
index of the candidate is kept also.

After the initialization of the population and
all necessary arrays, the crossovers are started.
First an individual from the elite set is chosen
randomly. Two other individuals are also chosen
randomly, regardless of whether they are
members of the elite set or not. The worst
individual is removed from the population, and
crossover and mutation proceed as in the original
algorithm. After the new individual is created, it
needs to be checked if it is good enough to
become a member of the elite set.

Worst case of selection is when all three
individuals are members of the elite set. It is then
possible for the new individual to have lower
value of the fitness function than the individual
that was removed, and should not be a member
of the elite set. If that occurs, the elite set is
reconstructed by searching the entire population.
If the worst case did not occur, a simpler
procedure is executed: the new individual is
compared to the candidate for removal from the
elite set. If it is better, it takes the candidate's
place in the elite set. A new candidate is found
by a linear search of the elite set. It is a very fast
procedure since the elite set contains only a few
elements, significantly less than the entire
population. This shortened procedure saves time
because the entire population does not have to be
searched after creating a new individual.

As can be seen from the description, this
modification only marginally increases the
demands for processing time and storage space.
The most demanding operation that can occur is
a linear search of the population, which is not a
problem since the population usually contains a
relatively small number of individuals, and it
happens only in the case if all three individuals
are members of the elite set. Probability of this
happening in a population of 120, with an elite
set of 4, is 0.0014%, which means that it will
happen once in about 70000 algorithm cycles.
There was no noticable increase in execution
time, with all execution times at 65 minutes.

In the more likely case that at least one if the
individuals is not a member of the elite set only a
comparison of two cached values is necessary,
and maybe a linear search of the elite set. The
search also takes very little time because the elite
set has a very small number of individuals. The
increase in use of storage space is also negligible
All that is needed is a small array of integers to
maintain the contents of the elite set.

4. Experimental results

Experiments were performed on a
multiprocessor scheduling problem, scheduling
1104 tasks on 7 processors [1] [2] [10], with
population sizes 120 and 240, with mutation
probability 1% and 40000 algorithm cycles. The
number of elements in the elite set has varied
between 1 and 5, and a comparison with the
classic algorithm has been performed. For every
combination of parameters 15 experiments were
performed, and the best, worst and average
results have been recorded. Execution times were
equal for all combinations, and on the computer
we used (Intel Pentium 4, 2 GHz, 1 GB RAM) it
took a little over an hour, which shows that there
was no increase in processing time due to the
modifications.

The problem description was taken from [6],
where an optimal value of 1504 was found using
a heuristic method. The best solution found using
this algorithm was only 6% more than optimal
value. The problem is described by a directed
acyclic graph and a partial precedence relation is
given, along with the time necessary to perform
each task and number of processors. Every task
is present in the graph, and appears only once.
One processor can execute only one task at a
time. The number of processors is fixed during
the execution of all tasks.
The best result (see Table 1) was found with 240
individuals, with 4 members of the elite set. That
result was 1596, and the second best result was
1598, found with 120 individuals, 5 of which
were in the elite set. The best result found using
the unmodified algorithm was 1664 time units,
with a population of 120 individuals.

Table 1. Best results
Elite - 1 2 3 4 5
120 1664 1606 1606 1615 1600 1598
240 1707 1599 1611 1600 1596 1605

The best average result (see Table 2) was
found with two combinations of parameters:
population of 120, with 4 elite individuals, and
also with population of 120, with 3 elite
individuals. That result is 1617 time units. The
unmodified algorithm found average solutions of
1680 for 120 individuals and 1716 for 240
individuals.

Table 2. Average results
Elite - 1 2 3 4 5
120 1680 1627 1624 1626 1617 1621
240 1716 1627 1626 1617 1622 1624

Two worst results (see Table 3) were found

with the unmodified algorithm; for population of
120 the result was 1698, and for population of
240 it was 1729. The worst result found using the
elite set was for 240 individuals and 1 in the elite
set, and that result was 1670 time units.

Table 3. Worst results

Elite - 1 2 3 4 5
120 1698 1653 1642 1642 1635 1647
240 1729 1670 1654 1637 1642 1644

From tables 1-3 it can be seen that the best
combination was population of 120 and 4 elite
members. That combination found the best
average result, and it was very close to the best
solution found in all experiments (only 4 time
units longer). It can also be seen that all
combinations using the modified algorithm show
significantly better results than the unmodified
algorithm.

In figure 3 we show a comparison of average
results from two selection methods, as well as

the best solution found, and the solution from
[6]. The top most line is the unmodified selection
algorithm, and the line below is our modified
algorithm. Next two lines are best found solution
and solution from [6]. It can be seen from figure
3 that the modified algorithm makes much better
progress in the early stages of the genetic
algorithm. Later it approaches the solution at
about the same speed as the unmodified
algorithm.

In [4] similar experiments were performed

and we repeated them using the modified
algorithm. The first problem was scheduling 452
tasks on 20 processors, with the optimal solution
of 537 time units. In [4] the parameters were:
mutation probability 1%, population size 20 and
10000 iterations, and we used the same
parameters, modifying the size of the elite set
from 1 to 4. In [4] the best result was 540 time
units, while with the modified algorithm results
were much better (see Table 4). With 4 elite
members over 85% of experiments found the
global optimum. The worst results were found
with only one member of the elite set, only 25%
found the best solution, and average solution was
544 time units.

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

Ite
ra

tio
n

12
80

25
80

38
80

51
80

64
80

77
80

90
80

10
38

0

11
68

0

12
98

0

14
28

0

15
58

0

16
88

0

18
18

0

19
48

0

20
78

0

22
08

0

23
38

0

24
68

0

25
98

0

27
28

0

28
58

0

29
88

0

31
18

0

32
48

0

33
78

0

35
08

0

36
38

0

37
68

0

38
98

0

S
o

lu
ti

o
n New

Old

Optimum

Best found

Figure 3. Evolution process for classic selection and new selection compared with

best solution found and global optimum

Table 4. Results for problem from [4]
Elite 1 2 3 4
Average 543 537.87 537.27 537.13

Second problem was scheduling 473 tasks to
4 processors, with 30000 iterations, population of
50 individuals and mutation probability 1%, with
the optimal solution of 1178 time units. In [4] the
best solution was 1182, and average 1184 time
units. Our results for this problem were
approximately same, with the best solution 1182
found for all combinations and average solution
of 1185 for 4 members in the elite set. These
results are compared in table 5.

Table 5. Problems and best results
 No. of

tasks
No. of
proc.

New
method

Old
method

Solutin
from [6]

1. 1104 7 1596 1680 1504

2. 452 20
537

(538*)
540 537

3. 473 4 1182 1182 1178
* 538 is the average solution from 60 runs

5. Conclusion

The method described here is an efficient
upgrade to the standard 3-tournament selection
method. Adding it to an existing implementation
was simple, and did not increase demands for
memory or processing time. Results achieved by
this method are better than results using the
unmodified 3-tournament selection algorithm.
Future direction of this research is adapting this
method to parallel genetic algorithm [3], where
special attention is needed to maintain the elite
set.

6. References

[1] Ahmad I, Kwok Y-K. On parallelizing the

multiprocessor scheduling problem. IEEE

Transactions on Parallel and Distributed
Systems, 1999; 10(4).

[2] Correa R.C., Ferreira A., Rebreyend P,
Scheduling multiprocessor task with genetic
algorithm. IEEE Transactions on Parallel
and Distributed Systems, 1999; 10(8).

[3] Golub M., Jakobovic D., Budin L.
Parallelization of elimination tournament
selection without synchronization. In:
Proceedings of the 5th IEEE International
Conference on Intelligent Engineering
Systems; 2001. p. 85-89, available from:
http://www.zemris.fer.hr/~golub/clanci.html

[4] Golub M., Kasapovic S. Scheduling
multiprocessor tasks with genetic
algorithms. In: Proceedings of the IASTED
International Conference on Applied
Informatics; 2002 Feb 18-21; Insbruck,
Austria. 2002. p. 273-278, available from:
http://www.zemris.fer.hr/~golub/clanci.html

[5] Jung, S.H., Queen-bee evolution for genetic
algorithms. IEE Electronic Letters, 2003.

[6] Kasahara Laboratory. Advanced Computing
Systems, available from:
http://www.kasahara.elec.waseda.ac.jp
[01/29/2004]

[7] Michalewicz Z. Genetic Algorithms + Data
Structures = Evolutionary Programs. Berlin:
Springer-Verlag; 1992.

[8] Munetomo M, Takai Y, Sato Y. An efficient
migration scheme for subpopulation-based
asynchronous PGA. Technical Report
HIER-IS-9301, Hokkaido University
Information Engineering, 1993.

[9] Talbi E.-G., Bessiere P., A parallel genetic
algorithm for the graph partitioning
problem. Supercomputing, 1991. p. 312-320.

[10] Zomaya A., Ward C., Macey, B., Genetic
scheduling for parallel processor systems:
Comparative studies and performance
issues. IEEE Transactions on Parallel and
Distributed Systems, 1999. 10(8).

