AN IMPLEMENTATION OF
BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION
IN GENETIC ALGORITHM

Marin Golub
Faculty of Electricd Engineering and Computing, Universty of Zagreb
Department of Electronics, Microdectronics, Computer and Intelligent Systems
Unska 3, 10000 Zagreb, Croatia
emal: golub@zemrisfer.hr

Abstract: This paper describes the implementation details and compares two methods for
optimisation of multi-dimensional cost functions. The implemented genetic algorithm uses two
chromosome representations. binary and floating point. In both representations the algorithm
is based on steady-state reproduction, roulette-wheel bad individuals selection and has the
same parameters.

Key words: genetic agorithm, chromosome representation, steady-state reproduction

1. Introduction

Genetic agorithms are very practical and robust optimisation methods [1],[3],[6]. The generd ideaiis
the amulation of naturd evolution in the search for the optima solution of a given problem. In nature
individuds are competing to survive. In this competition, only the fittest individuds survive and
reproduce. Therefore, the genes of the fittest survive, while the genes of wesker individuals die out.
Genetic materid is saved into the chromosomes. Parents genetic materia is mixed during
reproduction and the offspring has genes of both parents. Also, an individud’s genetic materid can
be changed by mutation. Mutation is a random change of one or more genes.

Implementation of this naturd process is suitable as an optimisation method. Figure 1 shows the
dructure of a genetic agorithm and an evolution program in generd.

procedure Evol ution program
begi n
initialize popul ation
while termi nation criterion is not reached
begi n
eval uat e popul ation
sel ect individuals for next popul ation
perform crossover and mutation
end

end

Figure 1. Structure of the genetic algorithm

When we smulate the naturd genetic dgorithm, each individuad (chromosome) represents a potentid
solution of a given problem. The GA spends most of the time on evaluating population. Therefore,

the representation of chromosome is very important: it could be an array of bits, a number, an array
of numbers, a matrix, a string of characters or any other data structure. A chromosome must satisfy
given precison and congraints [2],[3],[5],[6]. And, of course, it has to be suitable for the
implementation of genetic operators.

In section 2 the implemented genetic algorithm with steady-state reproduction is described. In
sections 3 and 4 chromosome representations are described. Test function and experimenta results
are described in sections 5 and 6, respectively.

2. Implemented genetic algorithm

In the binary and floating-point chromosome representation the implemented GA is the same and has
the same parameters. the size of population, the number of iminated individuas and the number of
mutations per generation. The difference between the two methods is in chromosome representation
and specific genetic operators.

The initidisation process is very dmple it crestes a population of POP_SZE individuds
(chromosomes), where each chromosome s initidised randomly.

Evduation function eval is defined as the difference between function f and the minimd vaue of
function f in current population: eval(x) = f (x) - min{f(xi)}, i=1,2,...POP_SZE. This

procedure is cdled windowing [1] where minimum is equd to zero (minimum evauation vaue is
zero). It diminates negative evauation vaues and protects the dgorithm from becoming a random
search processif dl individuas have gpproximately the same large function values [1].

The selection process saves the best individud. Figure 2 shows the steady-state reproduction with
roulette-whed bad individua sdlection. Steady-state reproduction replaces only M individuas. On
the other hand, the generation replacement technique replaces its entire set of parents by their
children. Steady-state reproduction has one parameter: M - the number of new chromosomes to
create [1],[5].

procedure Cenetic algorithmw th steady-state reproduction
begi n
initialize popul ation
while termination criterion is not reached
begi n
calculate elinination probability for each individua
turn roul ette-wheel Mtinmes and each tine del ete chosen
i ndi vi dual
mat e survived individuals and substitute M elin nated
i ndi vidual s by their children

end

end

Figure 2: Genetic algorithm with steady-state reproduction

The diminaion probability p. is proportiond to individud’'s dimination fitness
elimination_fitness= m_ax{ eval(>q)} - eval (x). Because the diminaion probability of the best
individud is zero, that selection aways saves the best individud.

For this paticular problem the following paameters ae used: population Sze
POP_SZ7E=10,30,60,100, number of diminated individuds M=POP_SZE/2 and number of
mutations per generation: N M@ POP_SZE/3. For the one-dimensona problem, number of
populations (iterations) is set to 500, and for two and ten-dimensiona problemsit is set to 1000.

3. Thebinary implementation

In the binary implementation each chromosome consists of a binary vector that represents real vaue
of the variable x. If the problem is multidimensond, the chromosome congsts of an array of binary
vectors. The length n of the binary vector depends on the required precision. The domain of the
vaidble x is [LB,UB] where LB,UBI A. Vector 0..00 @ bits and dl bits are set to zero)
represents vaue LB and vector 1..11 represents vaue UB. Any other binary vector
Bn-10n-2... 02010y represents vaue x with precison Dx:

n-1

| b2

o UB- LB
x=LB+=2——(UB- LB), DxK=—— 1,2

¢) > (1.(2)

The precison of the binary representation can be extended by increasing the number of bits per
chromosome, but this considerably dows down the agorithm [5].

We used uniform crossover: each bit of a new child is taken from one of the parents randomly.
Figure 3 shows uniform crossover procedure.

procedure Uni form crossover
begi n

for i=1 to n

| child[bi]=choose_one_by equal chance(parent1[bi], parent2[bi])
end

Figure 3: Uniform crossover

The mutation is a random change of one bit. The mutation probability of the best individud is zero
and for the other individudsit is
N_M

Pn = (POP_3iZE- 1)*n’

©)

where N_M is the number of mutations and n is a number of bits.

4. Thefloating point implementation

In the floating point implementation the chromoasome congsts of a floating point number. Of course, if
the given function has more than one variable, then the chromosome condsts of an array of floating
point numbers. The precison of such an goproach depends on the floating point number
implementation.

The crossover operator isdefined as: X, 4 = rand_number _in_range(X e 1 X parent2) -

The smple mutation operator defined by: x =rand_number _in_range(LB,UB) gives bad
experimentd results in fine locd tuning. The reason of such behaviour of the dgorithm with smple
mutetion operator is the very low probability that after mutation an dement will fal within a smal
intervad d of the domain range [5]:

d

UB- LB’ @

Py =
whered <<(UB-LB) T pq @0.

The non-uniform mutation operator depends on the time, that is, on the generation number t. The
probability of mutation is congtant, but mutation scope isn't and it changes with time. If chromosome
Xk IS selected for mutation then the new chromosome x; is caculated as:

XK =rand_number_in_range(LBM,UBM) (5)
where LBM =max{LB,x, - (UB- LB)r(t)}, UBM =min{UB,x, +(UB- LB)r(t)}, and

c, te°
r(t)=1- & T , Where s is a random number from the interval [0,1], b is a sysem parameter
determining the degree of dependency on iteration number (we used b=5) and T is the maximd
generation number. This function enables decreasing the search scope and the procedure idea is
borrowed from smulated annealing [4]. If t issmdl vaue, then the search scope is a random number
between 0 and UB-LB. At the other hand, at the end of time {® T) search scope tends to zero
(search scope ® 0) [5].

5. Test function

¢ 0‘ ’NWM h." l'”" .

RS
N \\\‘\\‘m Hizs ‘m 7N
1 ;,;‘\\\\\\\\ \§\\ N "",I/I: NN

7\ Hul'ﬂ i \‘ \‘\\\\\\\ %
Wit / ”' “’i \ W ”
i

-100 -50 0 50 100

Figure 4: 1D test function Figure 5. Segment of 2D test function
_ sin’(x) - 05 sin®y/x*> +y® - 05
f(X) =05- 7 f(x,y)=05- >
(1+ 0.001* x) [1+ 0001(X2 + y2)]

x1 [- 100,100] x,yT [- 100,100]

Thetest function[1] in N-dimensond spaceisgiven as.

éX; u
sn® || x*-05 exllj
f (%) = 05- S =z z:g 23, Xy, Xy, Xy 1 [~ 100,200]
+0001] X3¢ e U
el i=1 Xl ILJ'l éXNU

The globa maximum of the given problemis f (6) =1. Figure 4 and Figure 5 show function f (%) in
one and two dimensiond space respectively.

6. Experimental Results

For one and two-dimensiond problems both methods give very smilar results, however, the GA
with floating point representation is 60% fagter then the GA with binary representation. The
differences between two GA methods are larger if the search space is three or more dimensional.
For the ten-dimengond problem GA with floating point implementation gives dightly better solutions
in athree times shorter time than the GA with binary implementation.

dimension of probl em| 1D 2D 10D
population size 10 30 60 100
number of iterations 500 500 1000 1000
number of experiments 1000 1000 100 100

chromosome representation] Binary FP Binary FP Binary FP Binary FP
reach global optimum
f(x)=1

reach first local optimum
f(X)@.99

reach other local optimum
where f(x)>0.8

d - average deviation] 361E-4 [1L96E-4 | 1E5 | 7.6E5 | 00083 | 00089 | 0.217 0.167

S - standard deviation] 0.0018 | 0.0013 | 194 [6.65E-4 | 0.0036 | 0.0024 | 0.093 0.062

CPUtimein seconds| g 103 432 269 | 2805 | 1827 | 2378 | 7801
for 100 experiments

96.7% | 98.2% 100% 100% 16% 8% none none

3.3% 1.8% none none 84% 92% none none

none none none none none none 53% 76%

Table 1: Experimental optimisation results

Devidtion d is caculated for each experiment as. d = |f (f)) - f()?max)|. Last row in the table shows

how much CPU-time a SUN SPARCdation 2 (4/75) with 32 MB RAM gpends for 100
experiments. The parameters of GA were not optimised. For a particular set of parameters results
would be better.

We should expect better results if we ghrink the domain range. For example, let it be
Xy, X, Xy 1 [0,100]. Table 2 shows results of the optimisation of the same test function, but with
a smaler domain range. The GA with floating point chromosome representation amaost becomes a
random search process. The reason for such agorithm behaviour lies in bad crossover operator. If
we choose any two chromosomes from the domain range (neither of them isthe globa optimum), the
defined crossover can't produce the globa optimum, because the globa optimum is on the edge of
the domain range.

dimension of probl em| 1D 2D

population size 30 60
number of iterations 500 1000
number of experiments 100 100

chromosome representation] Binary FP Binary FP
reach global optimum
f(x)=1

reach first local optimum)
f(X)@.99

reach other local optimum)
where f(x)>0.8

d - averagedeviation] @ 0.0025 | 00075 | 0.0135

S - standard deviation] @ 0.038 0.004 | 0.0089

100% % 23% none

none 23% 7% 4%

none none none 26%

Table 2: Experimental optimisation results with smaller domain range: X, X,, ..., Xy | [O,lOO]

7. Conclusion

The GA with floating point chromosome representation is smpler for implementation and it is faster
than GA with binary representation. There are two reasons for that:

1) For the binary implementation, the agorithm must have a converson mechaniam that

could convert a bit dring (chromosome) to the red vaue. The floating point
implementation does not need such a mechaniam, because the chromosome is the
sametimeared vaue

2) Genetic operators crossover and mutation defined over floating point vaues are

ampler and faster than the uniform crossover and mutation over bit strings.

For multidimensiond problem the GA with floating point chromosome representation gives dightly
better results then the GA with binary representation (Table 1). The solution of the problem of fine
locd tuning in floating point representation lies in non uniform mutation.

On the other hand, the GA with floating point chromosome representation almost becomes arandom
search process, if, for a particular problem, the crossover operator can’'t produce the optimal
solution (seereaultsin the Table 2).

Refer ences:

[1]
[2]

[3]
[4]
[3]
[6]

Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New Y ork.
Filhio, JL.R., Treeaven, P.C., Alippi, C. (1994), “ Genetic-Algorithm Programming
Environments” , Computer, Vol. 27-6, pp. 28-43., June 1994.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wedey.

Laarhoven, PJM., Aarts, EH.L. (1987), Smulated Annealing: Theory and
Applications, D. Reidd Publishing Company.

Michdewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Berlin.

Srinivas, M., Patnaik, L.M. (1994), ‘Genetic Algorithms. A Survey”, Computer, Vol.
27-6, pp.17-26, June 1994.

