Abstract: This paper describes the implementation details and compares two methods for optimisation of multi-dimensional cost functions. The implemented genetic algorithm uses two chromosome representations: binary and floating point. In both representations the algorithm is based on steady-state reproduction, roulette-wheel bad individuals selection and has the same parameters.

Key words: genetic algorithm, chromosome representation, steady-state reproduction

1. Introduction

Genetic algorithms are very practical and robust optimisation methods [1],[3],[6]. The general idea is the simulation of natural evolution in the search for the optimal solution of a given problem. In nature individuals are competing to survive. In this competition, only the fittest individuals survive and reproduce. Therefore, the genes of the fittest survive, while the genes of weaker individuals die out. Genetic material is saved into the chromosomes. Parents’ genetic material is mixed during reproduction and the offspring has genes of both parents. Also, an individual’s genetic material can be changed by mutation. Mutation is a random change of one or more genes.

Implementation of this natural process is suitable as an optimisation method. Figure 1 shows the structure of a genetic algorithm and an evolution program in general.

```
procedure Evolution program
begin
  initialize population
  while termination criterion is not reached
  begin
    evaluate population
    select individuals for next population
    perform crossover and mutation
  end
end
```

Figure 1: Structure of the genetic algorithm

When we simulate the natural genetic algorithm, each individual (chromosome) represents a potential solution of a given problem. The GA spends most of the time on evaluating population. Therefore,
the representation of chromosome is very important: it could be an array of bits, a number, an array of numbers, a matrix, a string of characters or any other data structure. A chromosome must satisfy given precision and constraints [2],[3],[5],[6]. And, of course, it has to be suitable for the implementation of genetic operators.

In section 2 the implemented genetic algorithm with steady-state reproduction is described. In sections 3 and 4 chromosome representations are described. Test function and experimental results are described in sections 5 and 6, respectively.

2. Implemented genetic algorithm

In the binary and floating-point chromosome representation the implemented GA is the same and has the same parameters: the size of population, the number of eliminated individuals and the number of mutations per generation. The difference between the two methods is in chromosome representation and specific genetic operators.

The initialisation process is very simple: it creates a population of POP_SIZE individuals (chromosomes), where each chromosome is initialised randomly.

Evaluation function \(\text{eval} \) is defined as the difference between function \(f \) and the minimal value of function \(f \) in current population: \(\text{eval}(x) = f(x) - \min_i \{ f(x_i) \} \), \(i=1,2,...,\text{POP}_\text{SIZE} \). This procedure is called windowing [1] where minimum is equal to zero (minimum evaluation value is zero). It eliminates negative evaluation values and protects the algorithm from becoming a random search process if all individuals have approximately the same large function values [1].

The selection process saves the best individual. Figure 2 shows the steady-state reproduction with roulette-wheel bad individual selection. Steady-state reproduction replaces only \(M \) individuals. On the other hand, the generation replacement technique replaces its entire set of parents by their children. Steady-state reproduction has one parameter: \(M \) - the number of new chromosomes to create [1],[5].

Figure 2: Genetic algorithm with steady-state reproduction

The elimination probability \(p_e \) is proportional to individual’s elimination fitness: \(\text{elimination_fitness} = \max_i \{ \text{eval}(x_i) \} - \text{eval}(x) \). Because the elimination probability of the best individual is zero, that selection always saves the best individual.
For this particular problem the following parameters are used: population size: \(POP_SIZE = 10, 30, 60, 100 \), number of eliminated individuals: \(M = POP_SIZE / 2 \) and number of mutations per generation: \(N_M \equiv POP_SIZE / 3 \). For the one-dimensional problem, number of populations (iterations) is set to 500, and for two and ten-dimensional problems it is set to 1000.

3. The binary implementation

In the binary implementation each chromosome consists of a binary vector that represents real value of the variable \(x \). If the problem is multidimensional, the chromosome consists of an array of binary vectors. The length \(n \) of the binary vector depends on the required precision. The domain of the variable \(x \) is \([LB, UB]\) where \(LB, UB \in \mathbb{R} \). Vector 0...00 (\(n \) bits and all bits are set to zero) represents value \(LB \) and vector 1...11 represents value \(UB \). Any other binary vector
\[
\lambda b_{n-1} b_{n-2} ... b_2 b_1 b_0
\]
represents value \(x \) with precision \(\Delta x \):
\[
x = LB + \sum_{i=0}^{n-1} \frac{2^i}{2^n - 1} (UB - LB), \quad \Delta x = \frac{UB - LB}{2^n - 1}
\]
(1),(2)
The precision of the binary representation can be extended by increasing the number of bits per chromosome, but this considerably slows down the algorithm [5].

We used uniform crossover: each bit of a new child is taken from one of the parents randomly. Figure 3 shows uniform crossover procedure.

```plaintext
procedure Uniform crossover
begin
  for i=1 to n
    child[bi]=choose_one_by_equal_chance(parent1[bi],parent2[bi])
  end
```

Figure 3: Uniform crossover

The mutation is a random change of one bit. The mutation probability of the best individual is zero and for the other individuals it is:
\[
P_m = \frac{N_M}{(POP_SIZE - 1) \times n},
\]
(3)
where \(N_M \) is the number of mutations and \(n \) is a number of bits.

4. The floating point implementation

In the floating point implementation the chromosome consists of a floating point number. Of course, if the given function has more than one variable, then the chromosome consists of an array of floating point numbers. The precision of such an approach depends on the floating point number implementation.

The crossover operator is defined as: \(x_child = \text{rand_number_in_range}(x_parent_1, x_parent_2) \).
The simple mutation operator defined by:

\[x = \text{rand_number_in_range}(LB, UB) \]

gives bad experimental results in fine local tuning. The reason of such behaviour of the algorithm with simple mutation operator is the very low probability that after mutation an element will fall within a small interval \(\delta \) of the domain range [5]:

\[p_\delta = \frac{\delta}{UB - LB}, \quad (4) \]

where \(\delta < (UB - LB) T \quad p_\delta \equiv 0. \)

The non-uniform mutation operator depends on the time, that is, on the generation number \(t \). The probability of mutation is constant, but mutation scope isn’t and it changes with time. If chromosome \(x_k \) is selected for mutation then the new chromosome \(x_k' \) is calculated as:

\[x_k' = \text{rand_number_in_range}(LBM, UBM) \quad (5) \]

where \(LBM = \max\{LB, x_k - (UB - LB)r(t)\} \), \(UBM = \min\{UB, x_k + (UB - LB)r(t)\} \), and

\[r(t) = 1 - s \left(\frac{1}{t^b} \right), \]

where \(s \) is a random number from the interval \([0, 1]\), \(b \) is a system parameter determining the degree of dependency on iteration number (we used \(b=5 \)) and \(T \) is the maximal generation number. This function enables decreasing the search scope and the procedure idea is borrowed from simulated annealing [4]. If \(t \) is small value, then the search scope is a random number between 0 and \(UB-LB \). At the other hand, at the end of time \((t \rightarrow T)\) search scope tends to zero \((\text{search scope} \rightarrow 0)\) [5].

5. Test function

\[f(x) = 0.5 \left(\sin^2(x) - 0.5 \right), \quad x \in [-100, 100] \]

\[f(x, y) = 0.5 \left(\sin^2 \sqrt{x^2 + y^2} - 0.5 \right), \quad x, y \in [-100, 100] \]
The test function $[1]$ in N-dimensional space is given as:

$$
f(\bar{x}) = 0.5 - \frac{\sin^2 \sqrt{\sum_{i=1}^{N} \frac{x_i^2}{\lambda_i} - 0.5}}{\left[1 + 0.01(N) \sum_{i=1}^{N} x_i^2 \right]}, \quad \bar{x} = \left[\begin{array}{c} x_1 \\ \varepsilon x_2 \\ \vdots \\ \varepsilon x_N \end{array}\right], \quad x_1, x_2, \ldots, x_N \in [-100, 100]
$$

The global maximum of the given problem is $f(\bar{0}) = 1$. Figure 4 and Figure 5 show function $f(\bar{x})$ in one and two dimensional space respectively.

6. Experimental Results

For one and two-dimensional problems both methods give very similar results, however, the GA with floating point representation is 60% faster than the GA with binary representation. The differences between two GA methods are larger if the search space is three or more dimensional. For the ten-dimensional problem GA with floating point implementation gives slightly better solutions in a three times shorter time than the GA with binary implementation.

<table>
<thead>
<tr>
<th>dimension of problem</th>
<th>1D</th>
<th>2D</th>
<th>10D</th>
</tr>
</thead>
<tbody>
<tr>
<td>population size</td>
<td>10</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>number of iterations</td>
<td>500</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>number of experiments</td>
<td>1000</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>chromosome representation</td>
<td>Binary</td>
<td>FP</td>
<td>Binary</td>
</tr>
<tr>
<td>reach global optimum</td>
<td>96.7%</td>
<td>98.2%</td>
<td>100%</td>
</tr>
<tr>
<td>reach first local optimum where $f(x) \leq 0.99$</td>
<td>3.3%</td>
<td>1.8%</td>
<td>none</td>
</tr>
<tr>
<td>reach other local optimum where $f(x) > 0.8$</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>\bar{d} - average deviation</td>
<td>3.61E-4</td>
<td>1.96E-4</td>
<td>1E-5</td>
</tr>
<tr>
<td>σ - standard deviation</td>
<td>0.0018</td>
<td>0.0013</td>
<td>1.9E-4</td>
</tr>
<tr>
<td>CPU time in seconds</td>
<td>168</td>
<td>103</td>
<td>432</td>
</tr>
</tbody>
</table>

Table 1: Experimental optimisation results

Deviation d is calculated for each experiment as: $d = \left| f(\bar{0}) - f(\bar{x}_{\text{max}}) \right|$. Last row in the table shows how much CPU-time a SUN SPARCstation 2 (4/75) with 32 MB RAM spends for 100 experiments. The parameters of GA were not optimised. For a particular set of parameters results would be better.

We should expect better results if we shrink the domain range. For example, let it be: $x_1, x_2, \ldots, x_N \in [0, 100]$. Table 2 shows results of the optimisation of the same test function, but with a smaller domain range. The GA with floating point chromosome representation almost becomes a random search process. The reason for such algorithm behaviour lies in bad crossover operator. If we choose any two chromosomes from the domain range (neither of them is the global optimum), the defined crossover can’t produce the global optimum, because the global optimum is on the edge of the domain range.
Table 2: Experimental optimisation results with smaller domain range: $x_1, x_2, \ldots, x_N \in [0,100)$

<table>
<thead>
<tr>
<th>dimension of problem</th>
<th>1D</th>
<th>2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>population size</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>number of iterations</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>number of experiments</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>chromosome representation</th>
<th>Binary</th>
<th>FP</th>
<th>Binary</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>reach global optimum $f(x)=1$</td>
<td>100%</td>
<td>77%</td>
<td>23%</td>
<td>none</td>
</tr>
<tr>
<td>reach first local optimum $f(x) \geq 0.99$</td>
<td>none</td>
<td>23%</td>
<td>77%</td>
<td>74%</td>
</tr>
<tr>
<td>reach other local optimum where $f(x)>0.8$</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>26%</td>
</tr>
<tr>
<td>\bar{d} - average deviation</td>
<td>$\equiv 0$</td>
<td>0.0025</td>
<td>0.0075</td>
<td>0.0135</td>
</tr>
<tr>
<td>σ - standard deviation</td>
<td>$\equiv 0$</td>
<td>0.038</td>
<td>0.004</td>
<td>0.0089</td>
</tr>
</tbody>
</table>

7. Conclusion

The GA with floating point chromosome representation is simpler for implementation and it is faster than GA with binary representation. There are two reasons for that:

1) For the binary implementation, the algorithm must have a conversion mechanism that could convert a bit string (chromosome) to the real value. The floating point implementation does not need such a mechanism, because the chromosome is at the same time a real value.

2) Genetic operators crossover and mutation defined over floating point values are simpler and faster than the uniform crossover and mutation over bit strings.

For multidimensional problem the GA with floating point chromosome representation gives slightly better results than the GA with binary representation (Table 1). The solution of the problem of fine local tuning in floating point representation lies in non uniform mutation.

On the other hand, the GA with floating point chromosome representation almost becomes a random search process, if, for a particular problem, the crossover operator can’t produce the optimal solution (see results in the Table 2).

References:

