
USING GENETIC ALGORITHMS FOR ADAPTING
APPROXIMATION FUNCTIONS

Marin Golub, Andrea Budin Posavec
Faculty of Electrical Engineering and Computing, University of Zagreb

Department of Electronics, Microelectronics, Computer and Intelligent Systems
Unska 3, 10000 Zagreb, Croatia

e-mail: {golub, andrea}@zemris.fer.hr

Abstract: This paper describes a different approach: using the genetic algorithm not only for
finding the optimum of the given cost function, but for adapting an existing solution of the
present problem to the new, modified problem. The genetic algorithm was extended to deal
with the dynamic approximation problem: the time series were changed during the
optimization process.

Key words: genetic algorithm, adapting mechanism, approximation functions, time series

1. Introduction

Using genetic algorithms as an optimization method is an attempt at imitating the natural
evolution process. A traditional genetic algorithm tries to find an optimum of a cost function
which does not change during the optimization process (Goldberg, 1989, Michalewicz, 1994).
Individuals in a population represent potential solutions. The cost function of the optimization
problem is like the natural environment: an individual continuously tends to adjust to the new
environmental conditions. A start population in traditional genetic algorithms is either
generated randomly or may be uniform (e.g. all solutions set to zero).

Fig. 1 Using the genetic algorithm as the adapting mechanism

In this paper we consider rephrasing the optimization problem. Let us suppose we have at first
used a genetic algorithm to find a solution of an optimization problem. When the problem
changes, we try to find a new solution, however, not by starting from the beginning, but by
using the known solution of the original problem (Fig. 1). In other words, at the beginning of
the optimization process we have a defined problem and a known solution. As time elapses,
the problem continuously changes and for each change we have to find a new solution. The

new solution is in many cases relatively similar to the previous solution. The genetic
algorithm is thus used as an adapting mechanism similar to nature's adapting mechanisms.

2. A test problem

The task to be solved by the genetic algorithm was to interpolate the given function g through
the continuously changing time series T={(x1,y1),(x2,y2),...,(xS,yS)}. The initial time series
consisting of S=20 points is (Fig. 2):

T = { (1,1),(4,50),(5,51),(7,52),(9,60),(11,71),(14,76),(15,73),(16,79),(17,68),(20,55),
 (22,57),(25,80),(27,82),(29,78),(31,100),(34,90),(36,85),(38,80),(40,78) }.

The approximation functions g (Schoeneburg, 1995) is given as:

 () ()() ()g x a a x b b x b
c

c x ci i i
i

P
i

i ii

R

= + + + +
+









+ +

=

−

+ +=

−

∑ ∑0 1 3 3 1 3 2
0

1
3

2
3 1 3 20

1

sin
cosh

. (1)

The constraint is that the coefficients a0,a1,b0,b1,...,bP-1,c0,c1,...,cR-1 belong to given intervals
as follows:

a0 ∈ [-10,70], a1 ∈ [-1,10];
b3i ∈ [-60,60], b3i+1 ∈ [0,2], b3i+2 ∈ [-10,10], where i=0,1,2,...,P-1;

c3i,c3i+2 ∈ [-100,100], c3i+1 ∈ [0,5], where i=0,1,2,...,R-1.

The problem can be stated as finding the minimal sum of squares of deviations for the given
function g and the given time series T. Therefore, the goal function to be minimized is:

 () () ()()f a a b b b c c c f a b c g x yP R i i
i

S

0 1 0 1 1 0 1 1

2

1

, , , ,..., , , ,..., , ,− −
=

= = −∑
r r r

. (2)

Each point of the time series has its own velocity vi and its moving direction which can be up
(vi>0) or down (vi<0) (Fig. 2). The change of the time series with time may precisely be
stated as the change of the yi value of each point according to the following expression:

 y t v ti i() = ⋅ . (3)

Fig. 2 Time series and moving directions (moving directions are randomly chosen)

The moving direction is randomly chosen. An additional constraint is that the value of each yi
must belong to the interval [0,100]. If a point is moving upwards and its yi value becomes
greater than 99, the moving direction changes to down. Analogously, a point moving
downwards changes its direction to up when its yi value becomes smaller than 1.

At the beginning of the optimization process we took two different approximation functions:
function g1 with P=9 and R=0 (containing only the sin members) and function g2 with P=6
and R=3. The solutions, i.e. functions g1

0 and g2
0, were found by the genetic algorithm after

several thousands of iterations (Budin, 1996, Golub, 1996) and are shown in Figs. 3 and 4.
Those solutions become the start solutions of the optimization process.

Fig. 3 The start solution - approximation function g1:

g1
0 =45.781+1.259·x-2.568·sin(0.407·x-9.191)-

-0.544·sin(1.218·x-6.239)-
-5.173·sin(1.173·x-0.277)-
-1.652·sin(1.896·x-6.487)+
+5.526·sin(0.531·x+0.035)+
+10.840·sin(0.315·x-3.627)-
-5.627·sin(1.258·x+7.744)-
-7.830·sin(0.697·x-5.638)-
-4.234·sin(0.872·x+1.447)+
+9.686·sin(0.457·x-1.415)-
-24.478·sin(0.359·x+0.871)-
-2.812·sin(1.649·x-2.715),

and the sum of squares of deviations is ()f a b
r r
, = 201.

Fig. 4 The start solution - approximation function g2:

g2
0 =52.598+0.884·x+4.317·sin(0.913·x-2.552)+

+0.191·sin(0.497·x+7.085)+
+1.835·sin(0.147·x+9.993)+
+1.983·sin(1.890·x-3.836)+
+2.842·sin(1.376·x+9.521)+
+13.024·sin(0.331·x-2.483)-
-3.515·sin(0.620·x+1.817)+
+2.760·sin(0.759·x-9.332)+
+0.134·sin(1.524·x-7.498)+
+60.581·cosh-2(0.091·x+66.374)-
-96.677·cosh-2(0.280·x+66.906)-
-96.268·cosh-2(4.999·x-6.275),

and ()f a b c
r r r
, , = 119.

The further task to be solved by the genetic algorithm was to interpolate the given function
gt+∆t through the dynamic time series Tt+∆t={ (x1,y1(t+∆t)), (x2,y2(t+∆t)),..., (xS,yS(t+∆t))}
based on the previous solution - the function gt. The problem is N-dimensional, since we have
to de-termine N coefficients of the function g for each change of the time series, where
N=2+P+R.

3. The implemented genetic algorithm

The genetic algorithm with steady-state reproduction with roulette-wheel based bad
individual selection has been used. The population was made up of POP_SIZE individuals.
Steady-state reproduction replaces M individuals, i.e. M bad individuals are selected for
elimination at each iteration. Their places are taken by the children of surviving individuals,
the parents being chosen randomly. The elitism principle has been used, which means that the

best individual is protected from selection and elimination. In other words, the probability of
elimination for the best individual equals zero.

The binary chromosome representation has been used, with each chromosome consisting of
an array of binary vectors, since the problem is multidimensional Each binary vector contains
B bits, so the whole chromosome consists of B⋅N bits.

Parameter Description Value
POP_SIZE size of population 100

N dimension of problem 38
B bits per binary vector 26
M selected number of individuals for elimination 50
pm probability of mutation 0.05
∆k number of iterations between two changes of time series 200

vi=∆y/∆k change velocity 1/200

Table 1 Genetic algorithm and problem parameters

In the first iteration, the genetic algorithm generates an initial population based on the given
solution. The initial population consists of the given solution and its mutations. The time
series changes every ∆k iterations. The values of the parameters of the genetic algorithm
(POP_SIZE, N, B, M, pm) and the parameters of the given problem (∆k, vi) are shown in
Table 1. The values of those parameters were chosen as a result of a set of performed
experiments.

4. Experimental Results

The results of the optimization processes for the functions g1 and g2 are shown in Figs. 5 and
6, respectively. The experiments were performed on a SUN SPARC station 20 with 64 MB
RAM. As can be seen in Table 2, somewhat more time was spent for optimization with
function g2. However, the achieved results for this function were superior to those for the
function g1. (the average sum of squares of deviations is smaller). The reason for this lies in
the fact that the cosh members present in function g2 enable a steeper change of values. This
is rather important when the yi value of a point significantly deviates from the yi values of the
other points. Such is the case with the first point of the time series in Figs. 3 and 4. As can be
seen in Fig. 3, only the sin members of the function g1 do not adequately approximate the first
point.

approximation function g1 g2
parameter P 9 6
parameter R 0 3
CPU time in seconds for ∆k=200 iterations 24.9 30.8
average sum of squares of deviations (f) 695 470

Table 2 CPU times and deviations for both approximation functions

The number of iterations between two changes of the time series (∆k) depends on the
maximal velocity V=max(vi). If ∆k is too small, the genetic algorithm cannot follow the
changes of the time series. In that case, either ∆k must be increased or V must be decreased or
both. The number of iterations between two changes of the time series was determined

experimentally. If the efficiency of the genetic algorithm is improved, e.g. by adjusting its
parameters or changing the whole algorithm, ∆k can be decreased in order to speed up the
optimization process.

Fig. 5 The adapting process for approximation fuction g1.The final solution g1
42

 with ()f a b
r r
, = 983 is:

g1
42 =45.11+0.375·x-8.727·sin(0.974·x-7.920)-15.16·sin(1.215·x-7.3)-8.29·sin(1.18·x-0.31)-4.35·sin(1.88·x-5.73)+

+12.4·sin(1.56·x+6.21)+8.85·sin(0.31·x-8.55)-17.43·sin(1.76·x+7.94)-4.2·sin(1.124·x-5.336)-
-4.51·sin(0.62·x+5.13)+17.38·sin(0.84·x-3.79)-8.7·sin(0.255·x+0.82)-8.739·sin(0.156·x-3.125)

Fig. 6 The adapting process for approximation fuction g2. The final solution g2
42

 with ()f a b c
r r r
, , = 342 is:

g2
42

=20+1.75·x-17.43·sin(1.785·x-1.193)-3.05·sin(0.4·x-0.4)+17.45·sin(0.09·x+1.835)+4.98·sin(0.27·x-1.74)-

-17.16·sin(1.14·x-8.99)+6.27·sin(1.35·x-2.52)-11.61·sin(1.0·x+4.38)+0.51·sin(1.92·x+1.1)+
+17.35·sin(0.18·x-0.38)+31.67·cosh-2(3.401·x-58.876)-24.491·cosh-2 (1.208·x+32.251)+
+45.503·cosh-2 (0.760·x+65.979)

5. Concluding remarks

The main difference between traditional genetic algorithms and the genetic algorithm
described in this paper lies in the choice of the start population. Traditional genetic algorithms
generate a start population randomly. On the other hand, the implemented genetic algorithm
generates a start population based on an already found solution, i.e. the start population
consists of the found solution and its mutations.

The start solution was found by the genetic algorithm in about 2000 iterations. Without using
the previously found solution in the initial population, several thousand iterations are needed
for each change of the time series. If, however, the genetic algorithm is used for adapting an
existing solution, the number of needed iterations is about ten times smaller. This means that
the time required for the solution of the same problem can be about ten times shorter.

The approximation function can also be changed during the optimization process. As further
work, a genetic algorithm should be developed which would change the whole approximation
function and not only its coefficients. Special genetic operators should be defined for dealing
with parts of approximation functions.

Acknowledgement

This work was carried out within the project 036-014 Problem-Solving Environments in
Engineering, funded by Ministry of Science and Technology of the Republic of Croatia.

References:

1. Budin, L., Golub, M., Budin, A. (1996), “Traditional Techniques of Genetic Algorithms
Applied to Floating-Point Chromosome Representations”, KoREMA ‘96. - 41st Annual
Conference, Opatija, pp. 93-96.

2. Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.
3. Filhio, J.L.R., Treleaven, P.C., Alippi, C. (1994), “Genetic-Algorithm Programming

Environments”, Computer, Vol. 27-6, pp. 28-43., June 1994.
4. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley
5. Golub M., “Vrednovanje uporabe genetskih algoritama za aproksimaciju vremenskih

nizova”, M.S. Thesis, Zagreb, 1996. (in Croatian)
6. Michalewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs,

Springer-Verlag, Berlin
7. Schoeneburg, E., Heinzmann, F., Feddersen. S., (1995) Genetische Algorithmen und

Evolutionsstrategien, Addison-Wesley
8. Srinivas, M., Patnaik, L.M. (1994), “Genetic Algorithms: A Survey”, Computer, Vol.

27-6, pp.17-26, June 1994.

