
Traditional Techniques of Genetic Algorithms Applied to Floating-Point
Chromosome Representations

Leo Budin, Marin Golub, Andrea Budin
Faculty of Electrical Engineering and Computing

Department of Electronics, Microelectronics, Computer and Intelligent Systems
Unska 3, HR-10000 Zagreb, Croatia

phone: +385.1.61 29 935, fax: +385.1.61 29 653
e-mail: {leo.budin, marin.golub, andrea.budin}@fer.hr

Abstract - The choice of chromosome representation in
genetic algorithms depends on the variables of the
optimization problem being solved. If the variables are real-
valued, the chromosomes can be represented as fixed-point
integer values which enables the use of classical genetic
operators defined for binary strings. Another possible
chromosome representation is using floating-point numbers
directly. In this case, genetic operators have to be defined
additionaly. This paper presents a different approach:
floating-point chromosome representation with traditional
genetic operators. In order to achieve fine local tuning of the
solutions, a mapping is defined which dynamically changes
the operating scope of genetic operators.

I. INTRODUCTION

Genetic algorithms have recently emerged as practical
and robust optimization methods . One of the most
important issues to be considered when trying to solve a
particular problem is the choice of adequate chromosome
representation. Mostly used chromosome representations
are binary strings, character strings, floating-point
numbers, arrays of numbers, matrices and other data
structures [3,4,5,6,8,10]. For a given problem, there is
always a representation which exhibits better optimization
results in comparison with other representations. However,
the theory of genetic algorithms concentrates mostly on
binary representations and has very little to say about
nonbinary representations.

Another important issue in genetic algorithm structures,
closely related with the choice of chromosome
representation, are the encoding and decoding mechanisms
which perform transformations between the chromosome
representations and the optimization problem’s variables
[10]. Those mechanisms depend on the nature of the
problem variables.

II. BINARY CHROMOSOME REPRESENTATION

A large number of optimization problems have real-
valued continuous variables. We are interested in the
minimization of a function of n variables f(x1,x2,...,xn):Rn→R
with explicit constraints xilΛxiΛxih, i∈{1,2,...,n}. The classical
genetic algorithms use binary encoding with m bits per
variable, i.e. the chromosome is of length n·m. Each gene of
length m is encoded as:

B
x x
x xi

i il

ih i

m=
−
−

⋅2 (1)

Decoding is performed according to the following
expression:

x x B x xi il i
m

ih il= + ⋅ ⋅ −−2 () (2)

This method is usually referred to as fixed-point integer
encoding. One of the drawbacks of this method is the
problem known as Hamming cliffs [8]. Namely, the
Hamming distances between binary codes of adjacent
integers sometimes tend to be very large. This problem is
usually solved by Gray coding.

III. FLOATING-POINT CHROMOSOME
REPRESENTATION

An alternative representation in optimization problems
with real-valued continuous variables is the floating-point
chromosome representation. With this representation, there
is no need for an explicit encoding mechanism. Each
member of each population in the genetic algorithm is a
floating-point vector. The genetic operators (mutation and
crossover) in this case do not handle bit strings and are
defined in a different manner. For example, the mutation
operation does not randomly change one bit, but randomly
chooses a floating-point number within a particular range.

This paper will describe our attempt to develop a
different approach to solving optimization problems with
real-valued continuous variables. In our approach, classical
genetic operators defined for binary strings are used for
floating-point chromosome representations.

We first introduce normalized variables:

{ }y
x x
x x

i ni
i il

ih il
=

−
−

∈, ,...,1 , i.e. (3)

in f(x1,x2,...,xn) we replace the variables with:
{ }x x x x y i ni il ih il i= + − ⋅ ∈() , ,...,1 (4)

Therefore, the function to be minimized becomes
f(yi,y2,...,yn):[0,1]n→R, i.e. it’s domain is reduced to the
interval [0,1]n.

This paper describes an approach for solving
optimization problems with real-valued continuous
variables which utilizes classical genetic operators (defined
for binary strings) over floating-point chromosome
representations.

There are various possible floating-point representations
of real numbers. However, in order to keep the
representation machine-independent, we use the double
precision format defined with the IEEE 754-1985 standard
[1], where the floating-point number is represented in 64
bits (Figure 1). The first bit is the sign bit, the following 11
bits store the biased exponent (bias=1023). The remaining
52 bits represent the fraction, which is always a value less
than one, and the significand is one plus the fraction value.
If we denote the sign bit with s, the exponent with e and the
fraction with f, the value of a represented number is (-
1)s×1.f×2e-1023.

1 11 52

sign exponent fraction
msb lsb msb lsb

Fig. 1. Double precision IEEE 754-1985 floating-point format

The genetic algorithm treats the floating-point
chromosome representations as binary strings. Those
binary strings are subject to classical genetic operators.
We used uniform crossover - each bit of a child is taken
from one of the parents randomly, according to the follow-
ing expression: CHILD = (A AND B) OR (R AND (A XOR B)),
where A and B are parents, and R is a random number. The
mutation operator flips randomly selected bits: it changes
their values from 0 to 1 or vice versa.

A problem which is rather often encountered is the
problem of operators which sometimes generate impossible
solutions - solutions not belonging to the solution space.
This is the problem of handling constraints and it may be
treated as follows. If the frequency of impossible solutions
generated by a particular genetic operator is significant, the
genetic operator has to be redefined in order to generate
possible solutions.

n floating point numbers, width=n⋅64

1 11 52 1 11 52 1 11 52
..........

..........
10 S 10 S 10 S

n reduced genes, width=n⋅(10+S), MinSΛSΛ52

Fig. 2. Chromosome mapping

The operating scope or operating length of a genetic
operator is the length of the binary string on which the
operator performs an operation at a given moment. In our
approach, the operating scope (length) of genetic operators

is dynamic. It is time-dependent, i.e. it depends on the
number of generations or iterations. At each stage of the
evolution, the whole chromosome is mapped into a
reduced-size chromosome (Figure 2).

Since the domain of the function that has to be minimized
has been reduced to the interval [0,1]n, we don’t need the
sign bit nor the most siginificant bit of the exponent. The
start length, i.e. the length of each member of the first
population, consists only of 10 bits of the exponent and a
chosen number (MinS) of most significant bits of the
fraction. During the search process, the length is increased
in order to include more most significant bits of the fraction
(S). At the end of the search process, the operating length
may reach 62 bits (the full length of the floating-point
number minus two most sgnificant bits). The goal at the
beginning of the process is rough location of the global
optimum. As the process develops, increasing the
operating scope of the operators enables fine local tuning
of the solution.
We found the described approach very appropriate for
polynomial, Fourier and wavelet approximation of time
series. The simplified encoding - decoding mechanism
during the evolution process reduces the computation time.

IV. EXPERIMENTAL RESULTS

As an example, the task to be solved by the genetic
algorithm was to interpolate the given function g through
the time series T={(x1,y1),(x2,y2),...,(x20,y20)}, i.e. to
determine 29 coefficients a0,a1,a2,...a28 of the function g
given as:

() ()()g x a a x a a x ai i i
i

= + + +− +
=
λ0 1 3 1 3 3 1

1

6
sin . (5)

Additionally, we introduce the constraint that the
coefficients of the function g must belong to given
intervals as follows:

a0,a1,a2,a5,a8,a11,a14,a17∈[-10,10]
a3,a6,a9,a12,a15,a18∈[0,2]

a4,a7,a10,a13,a16,a19∈[-5,5].

This problem can be stated as finding the minimal sum of
squares of deviations for the given function g and the
given time series T. Therefore, the goal function is:

() ()()f a a a g x yi i
i

0 1 28
2

1

20
, ,...., = −

=
λ (6)

We took the following time series:

T = { (1,1),(4,50),(5,51),(7,52),(9,60),(11,71),(14,76),
(15,73),(16,79),(17,68),(20,55),(22,57),(25,80),
(27,82),(29,78),(31,100),(34,90),(36,85),(38,80),
(40,78) }

In the first iteration, the genetic algorithm generates a
random initial population. The best solution in the first
iteration is given in Fig. 3.

Fig. 3. A randomly generated solution in the first iteration:

g(x) = -8.469+2.768*x-11.575*sin(1.838*x+4.693)-
-0.220*sin(1.416*x-4.214)-
-27.042*sin(1.361*x+7.119)+
+28.305*sin(1.406*x-0.974)-
-13.592*sin(0.702*x+8.645)-
-9.012*sin(0.229*x-7.921)+
+15.272*sin(0.756*x+3.814)+
+8.445*sin(0.834*x-3.715)-
-22.951*sin(0.206*x+8.920)

()f a a a0 1 28, ,..., =34066.9

During the evolution process, further populations exhibit
better solutions, e.g. the best solution in the 114th iteration
is shown in Fig. 4.

Fig. 4. The solution after 114 iterations:

g(x) = 24.321+2.046*x+5.069*sin(0.297*x+5.072)-
-13.991*sin(0.121*x-3.181)+
+1.088*sin(1.900*x+6.073)-
-2.783*sin(0.383*x+0.436)-
-1.542*sin(0.976*x-0.357)-
-3.979*sin(0.659*x-4.554)-
-0.583*sin(1.128*x+2.243)-
-4.182*sin(1.214*x+7.893)+
+7.858*sin(1.140*x+3.279)

()f a a a0 1 28, ,..., =922.9

The termination criterion for our genetic algorithm was
the number of iterations, set to 4000.

In the final solution, depicted in Fig. 5., the sum of
squared deviations is 84.6. The obtained solution almost
perfectly fits to 16 of the 20 given points of the time series.

Fig. 5. The final solution after 4000 iterations:

g(x) = 23.906+2.048*x+12.994*sin(0.288*x+5.045)-
-13.125*sin(0.121*x-3.164)+
+3.257*sin(1.891*x+7.500)-
-2.811*sin(0.422*x+5.312)-
-3.750*sin(0.984*x-0.002)-
-7.500*sin(0.663*x+7.813)-
-1.819*sin(1.689*x+7.500)-
-3.750*sin(1.188*x+8.553)+
+8.438*sin(1.137*x+3.125)

()f a a a0 1 28, ,..., =84.6

V. CONCLUSION

In our approach, the genetic algorithm exhibits good
results in fine local tuning because of the variable
chromosome length. At the beginning of the optimization
process, the chromosome has a certain start length, which
increases during the process. In the first part of the
process, the solution is subject only to rough tuning. Fine
local tuning is performed towards the end of the process,
when the chromosomes reach the whole length of the
floating-point number.

By implementing the described genetic algorithm, we
also achieved better results concerning the execution time
in comparison with the traditional genetic algorithms with
binary chromosome representations. This improvement is
due to the avoidance of the encoding mechanism.

However, some problems have arisen in the
implementation of the traditional mutation of exponents. A
randomly generated exponents tends to be close to the
lower bound of the domain, if the domain is mapped onto
the interval [0,1]. The problem has been overridden by
using such a mutation of exponents where the random
numbers are generated with a uniform probability within a
given interval.

REFERENCES

[1] —, An American National Standard: IEEE
Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985.

[2] Davis, L., Handbook of Genetic Algorithms, Van
Nostrand Reinhold, New York, 1991.

 [3] Field, P., A Multary Theory for Genetic
Algorithms: Unifying Binary and Nonbinary
Problem Representations, Doctoral Thesis,
University of London, 1995.

[4] Filhio, J.L.R., Treleaven, P.C., Alippi, C., “Ge-
netic-Algorithm Programming Environments”,
Computer, Vol. 27-6, pp. 28-43, June 1994.

[5] Goldberg, D., "What Every Computer Scientist
Should Know About Floating-Point Arithmetic",
ACM Computing Surveys, Vol. 23-3, pp. 5-48,
March 1991.

[6] Goldberg, D., Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, 1989.

[7] Golub M., Vrednovanje uporabe genetskih
algoritama za aproksimaciju vremenskih nizova,
M.S. Thesis, Zagreb, 1996. (in Croatian)

[8] Michalewicz, Z., Genetic Algorithms + Data
Structures = Evolution Programs, Springer-
Verlag, Berlin, 1994.

[9] Schoeneburg E., Heinzmann F., Feddersen S.,
Genetische Algorithmen und Evolutions-
strategien, Addison-Wesley, 1995.

[10] Srinivas, M., Patnaik, L.M., “Genetic Algorithms:
A Survey”, Computer, Vol. 27-6, pp.17-26, June
1994.

