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Abstract 

In this paper we introduce an efficient implementation 
of asynchronously parallel genetic algorithm with 
adaptive genetic operators. The classic genetic 
algorithm paradigm is extended with parallelization on 
one hand and an adaptive operators method on the 
other. The parallelization of the algorithm is achieved 
through multithreading mechanism, a very effective and 
easy to implement technique. With parallelization we 
can get a better program structure and a significant 
decrease in computational time on a multiprocessor 
system. The adaptive method presented here determines 
the way in which the genetic operators are applied, not 
interfering with the operators themselves. It uses certain 
population characteristic values to estimate the 
diversity of the solutions in problem space and acts 
accordingly either to prevent premature convergence or 
to exploit the promising areas. The improvement we 
achieve with adaptation is twofold: the designed 
algorithm performs better over a range of domains and 
the user is also relieved of the task of defining its 
parameters. The described parallel adaptive genetic 
algorithm (PAGA) is applied to optimization of several 
multimodal functions with various degrees of 
complexity, employed earlier for comparative studies. 
Furthermore, a non-uniform mutation operator is 
introduced in this work and its influence on algorithm's 
performance is recognized. 

1. Introduction 

Genetic algorithm is a representative of a class of 
methods based on heuristic random search techniques 
[13]. It was proposed by John H. Holland in the early 
seventies and has found application in a number of 
practical problems since. Genetic algorithm requires a 
considerable amount of computational time. The 
parallelization of GA is an attempt primarily to speed up 
the algorithm without interfering with its properties. In 
this work, the multithreading technique is recognized as 
an efficient tool for transforming the genetic algorithm 
into parallel form. Multiple threads are reasonably 
simple to implement, they are supported by more and 
more operating systems and they require less 
preparation and handling than processes. The key for 

getting high performance in parallel computing is to 
reduce the communication between processes (or in our 
case between threads). That is why the asynchronous 
approach has been favored both in this paper and in 
similar research projects [12]. It has to be said that there 
is not any standard methodology for incorporating 
parallel ideas into genetic algorithms. Our version does 
not include several distinct subpopulations; there exists 
only a single mating pool, but a number of threads can 
operate on the population at the same time, each one 
acting independently. 

The strength of GAs lies mainly in their capability to 
locate the global optimum in a multimodal surrounding. 
Unfortunately, no matter how robust and efficient a 
genetic algorithm may be, the solution it provides 
always bears a certain measure of unreliability. The 
genetic algorithm can only locate the global optimum 
with some probability of success and a considerable 
attention has been paid to the efforts to increase that 
probability. In achieving this goal, two major 
approaches can be recognized: the first one is to design 
a GA for a class of problems that we are dealing with. 
This includes creating data structures and genetic 
operators characteristic to a problem at hand, creating 
an evolutionary program. The method is, however, 
problem specific and requires a lot of modeling for each 
purpose. The second approach acts on the algorithm 
directly and tries to increase the efficiency by changing 
its internal structure. This method is not problem 
dependent and it does not restrict the applicability at all. 
The adaptive method presented here is an example of 
this approach. 

The engineers utilizing GAs in everyday practice in 
most cases do not need the genetic algorithm to be 
robust and applicable to a wide range of problems. They 
need it to solve their specific problem, and for that 
purpose they usually have to create a specialized 
algorithm that, in general, will not perform well (or will 
not work at all) when used for other optimization 
problems. On the other hand, if the algorithm is adapted 
using the second approach, it can still be, in most cases, 
transformed into an adequate evolutionary 



program. That is why every progress in internal GA 
structure can be reflected to a variety of applications. 
Another good thing we obtain from adapting the genetic 
algorithm is that we can bypass the task of defining its 
parameter values, which is in most cases left to the user. 
Those values are known to significantly affect the 
algorithm's performance; poorly chosen parameters can 
cause the algorithm not to produce any relevant 
solutions at all. Moreover, the optimal parameter 
configuration is often problem dependent. This can 
make an inexperienced user's utilization of the genetic 
algorithm very difficult. 

2. Parallel genetic algorithm 

Genetic algorithm is a heuristic random search method 
based on natural evolution which requires considerable 
amount of CPU time. Since the optimization problem 
has to be solved in given computing and time 
constraints, parallel genetic algorithm is an attempt to 
speed up the program without interfering with other 
properties of the algorithm. 

Existing parallel implementations of genetic algorithm 
can be classified into following categories: 
• distributed GAs (parallel island models). Such 

algorithms assume that several subpopulations 
evolve in parallel. The models include a concept of 
migration (movement of an individual string from 
one subpopulation to another)[12,13]. 

• parallel GAs. In that case several parallel processes 
work over one common population. 

 

 

 

 

 

 

 

 

Figure 1 Parallel genetic algorithm realised with 
multiple threads 

The parallel genetic algorithm (PGA) can be 
implemented using several threads. The main benefits 
that arise from multithreading are: better program 
structure (any program in which many activities do not 
depend upon each other can be redesigned so that each 
activity is executed as a thread) and efficient use of 
multiple processors (numerical algorithms and 
applications with a high degree of parallelism, such as 
matrix multiplication or, in this case, genetic algorithm, 

can run much faster when implemented with threads on 
a multiprocessor) [17]. 

For every algorithm that we want to execute in multiple 
threads, first we have to identify independent parts and 
assign to each a thread. One or more threads can be 
assigned to each genetic operator (selection, crossover 
and mutation - Figure 1). Additionally, we can assign a 
thread for user interface, a thread for parameter control, 
a thread for results comparison with other methods (e.g. 
we can implement a completely random search 
mechanism and compare its results with the genetic 
algorithm), etc. 

The choice of selection. The steady-state selection has 
one parameter M - the number of new chromosomes to 
create. Generational replacement is the special case of 
steady-state selection in which parameter M equals the 
size of the population [2]. Similarly, the tournament 
selection is the special case of steady-state selection too, 
in which parameter M equals 1 (Table 1). 

Table 1 Steady-state reproduction and parameter M 

Parameter M Type of 
selection 

Description 

M=POP_SIZE Generational 
selection 

replaces whole population 

1≤M≤POP_SIZ
E 

Steady-state 
selection 

replaces M individuals 

M=1 Tournament 
selection 

replaces only one individual 
(the worst of three chosen) 

The steady state reproduction replaces M individuals in 
each iteration of the evolution process. Let us divide 
that algorithm into three independent parts and assign to 
each one a thread. The first thread executes only the 
crossover and creates new individuals. The second 
thread performs the selection and deletes selected 
individuals. The third thread does only the mutation. In 
that case, without any synchronization, the population 
size will not be constant. If the thread for deletion is 
faster then the thread for creation, after some time, the 
population will consist of one individual (the last 
individual can’t be deleted because it is the best one at 
the same time). The crossover operator needs two 
individuals to create a child and it waits for the other 
individual creation forever, because nobody will create 
it. That is the deadlock. The other possibility is memory 
overflow if the creation thread is faster than elimination. 

That problem can be solved by a simple synchronization 
mechanism: if the population size is too small, the 
elimination thread waits; if the population size is too big 
the creation thread waits. The change of variable 
POP_SIZE must be assigned to a critical section to 
prevent multiple threads from 

thread 
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simultaneously changing it. Few experiments showed 
that the parallel genetic algorithm described above 
spends more computation time for synchronization than 
for optimization, and the parallel program is even 
slower than the sequential one. 

For steady-state selection with parameter M=1 the 
roulette-wheel bad individual selection is not a good 
choice. As for the each turn the selection probabilities 
for the whole population have to be calculated, roulette-
wheel selection slows down the algorithm. In that case 
the solution is tournament bad individual selection. The 
tournament bad individual selection in each step of the 
evolution chooses with equal probability three 
individuals from the mating pool. Then, it eliminates the 
weakest one of those three individuals. The survived 
two individuals are parents of a child which will replace 
the eliminated one. 

Genetic operators as independent parts of GA. The 
parallel steady-state genetic algorithm with tournament 
bad individual selection was implemented. In this 
implementation, the genetic algorithm consists of two 
threads: one performs tournament selection and 
crossover and the other mutation (Fig. 2). 

SIMPLE PARALLEL GENETIC ALGORITHM{ 
  initialize population; 
  create thread for tournament selection and  
                                     crossover; 
  create thread for mutation; 
  wait while termination criterion is not 
                                       reached; 
  delete all threads; 
} 
 
Thread for mutation 
forever{ 
  choose randomly one individual and mutate it; 
} 
 
Thread for tournament selection and crossover 
forever{ 
  choose randomly three individuals; 
  delete the worst of three chosen individuals; 
  new individual = crossover(survived parents); 
} 

Figure 2 The structure of simple parallel genetic 
algorithm (SPGA) 

The major problem of that simple parallel 
implementation is that it has no control over mutation 
probability. The consequence is a very bad algorithm 
behavior. The results are slightly better than random 
search, but also useless. 

If the threads are left to parallel execution without any 
control, one of two threads can waste some time on 
waiting for processor time. Then, one of two 
possibilities can happen: 

A) The mutation thread works and the thread for 
selection and crossover waits. 

This is completely random search, i.e. the mutation 
probability is set to one. If the elitism is not applied, the 
best individual achieved in past iterations will be lost. 
So, in the mutation thread the elitism must be added 
(Figure 3). 

Thread for mutation 
forever{ 
  choose randomly one individual; 
  if(this individual isn’t the best) mutate it; 
} 

Figure 3 Thread for mutation extended with elitism 

B) The thread for selection and crossover works and the 
mutation thread waits. 

The mutation probability is set to zero. In several 
hundred iterations the genetic algorithm produces a 
uniform population (the population consists of one 
individual with POP_SIZE-1 copies). Even if we 
control the mutation probability, during the run of the 
genetic algorithm about half the chromosomes created 
are duplicates [2]. If the population is more 
homogenous, then the mutation probability must 
increase. The control of mutation probability can be 
easily solved with some synchronization techniques 
such as MUTual EXclusion locks (MUTEX), condition 
variables or semaphore synchronization, but, any of 
these synchronization mechanisms spends too much 
CPU time. As the goal of parallelisation is speeding up 
the algorithm, the synchronization must be avoided if 
possible. 

The other possibility is the implementation of adaptive 
mutation probability. Before the crossover is performed, 
the parents have to be checked. If the parents are equal, 
then mutate one of them and produce their child 
completely randomly (Fig. 4). 

Thread for tournament selection and crossover 
forever{ 
  choose randomly three individuals; 
  delete the worst of three chosen individuals; 
  if(survived individuals are equal){ 
    mutate one of the equal individuals; 
    create new individual randomly; 
  }else{ 
    new individual=crossover(survived parents); 
  } 
} 

Fig. 4 Thread for tournament selection and crossover 
extended with duplicate elimination and adaptive 

mutation probability 

These two extended threads can be parallely executed 
without any synchronization. Experiments have shown 
that 69,4% of the optimization time is consumed by the 
thread for tournament selection and crossover and the 
mutation thread spends the rest of optimization time 
(30,6%). On a two processor system, the whole 
optimization time is about 30% shorter than on a one 
processor system. 



The described extended parallel genetic algorithm 
(EPGA_1) divided into only two threads is suitable for 
execution on the two processor system. 

Parallel genetic algorithm with equal threads. If we 
want to make a good use of multiprocessor system with 
more than two processors, the genetic algorithm has to 
be divided into more than two threads. The idea is in 
dividing the genetic algorithm into required number of 
equal and independent parts (Fig. 5). 

This is the same algorithm like the described EPGA_1, 
but it is divided in a different manner. Each thread 
performs all genetic operators like the nonparallel 
genetic algorithm. One thread operates on only a part of 
the population, because the tournament selection works 
over only three chromosomes in each iteration. The 
other thread can work over the same chromosomes 
(one, two or all three) at the same time without any 
synchronization. This kind of parallel algorithm works 
the same with one or more threads. 

EXTENDED PARALLEL GENETIC ALGORITHM 2{ 
  initialize population; 
  create several equal evolution threads; 
  wait while termination criterion is not  
                                       reached; 
  delete all threads; 
} 
 
Evolution thread 
forever{ 
  perform tournament selection; 
  delete selected individual; 
  perform crossover; 
  replace deleted individual; 
  perform mutation; 
} 

Figure 5 The structure of parallel genetic algorithm 
with equal threads (EPGA_2) 

The parallel genetic algorithm was tested on several 
multidimensional problems. Table 2 shows the results 
of the optimization of 38 dimensional approximation 
problem [14]. The global minimum of that problem is 
equal or greater than 0 (the smaller solution value is a 
better solution). 100.000 iterations were made for each 
experiment and for each algorithm 20 experiments were 
done. The size of population is set to 50. 

Table 2 Random search and parallel genetic algorithm 
comparison 

 Random 
search 

SPGA EPGA_1 EPGA_2 

Total CPU time in seconds 135 302 350 350 

Optimization time for NP≥2 
(NP - number of 

processors) 
PN

135≈  212 245 
PN

350≈  

the worst solution 25 019 19 455 109.0 
average solution 21 798 16 881 49.1 
the best solution 14 826 8 250 16.5 

The optimization time is equal to the duration of the 
longest thread, if the number of processors is equal or 
greater than the number of threads. The optimization 
time for SPGA and EPGA_1 on a two processor system 
is equal to duration of the thread for crossover and 
selection (that is about 70% of total CPU time). On a 
three or more processor system the program isn’t faster 
because the algorithm is divided into only two threads. 
The EPGA_2 is divided into NT=NP threads. The 
optimization time for EPGA_2 is equal to the 
optimization time for the same non-parallel genetic 
algorithm divided by the number of processors. 

3. Adaptive genetic operators 

Two characteristics are held to be essential in genetic 
algorithms for optimizing multimodal functions. The 
first one is the capability to converge to an optimum, 
local or global, after locating the region containing it. 
The second characteristic is the capacity to explore new 
regions of the solution space in search of the global 
optimum. It is with genetic operators, crossover and 
mutation, that we achieve those properties. The 
crossover operator is mainly responsible for the first 
characteristic, while the latter is made possible with 
mutation. The balance between these characteristics can 
be achieved by affecting the way the genetic operators 
are performed. 

The essence of successful multimodal search is to keep 
the population dispersed in the problem space. We do 
not need the whole population to converge to an 
optimum, but we need to preserve the premature 
convergence at a local one. At the same time we should 
allow the algorithm to exploit the promising areas and 
locate the optimum with desired accuracy. It is possible 
to maintain the diversity of the population by increasing 
the mutation rate, while the speed of the convergence 
can be increased by favoring better individuals to 
participate in crossover. Prior to applying the actual 
adaptation techniques, we have to be able to estimate 
the degree of diversity of the population. 

We can get a rather good picture of the state the 
population is in by observing two of its characteristic 

values: fmax - fitness value of the best member, and f  

- average fitness of the set of solutions, both assigned to 

a current generation. The expression f fmax −  is likely 

to be less for a population that has converged than for a 
population scattered in the solution space. The above 
property has already been recognized earlier in 
literature [16] and it has proven itself in all experiments 
accompanying this work. A normalized expression has 
been used here in determining the degree of population 
diversity:



 ( ) / ( )max max minf f f f− −  (1) 

where fmin represents the worst fitness value. If the value 
is low, the population is homogenous; if it gets higher 
the population is more diversed. However, in 
optimizing problems with a large solution space (long 
binary strings) this value tends to be very low in the 
beginning and to raise slowly over the process. This is 
due to the functions that have approximately average 
values in most of the defined search space, whereas the 
higher function values are located in a considerably 
smaller area. To effectively exploit the above 
expression (1), a correction technique is performed in 
each generation. In the beginning of the process the 
expression is evaluated and its value stored in a static 
variable. It is calculated in each generation and 
compared to that stored in the variable. If the new value 
is greater than the old one, the value of the variable is 
then replaced with the new one. If it is smaller, the 
variable is unchanged. Let us name the value of (1) in 
current generation with curr_val and the static variable 
with prev_val. 

The value of the following expression is calculated and 
named as w: 

 w
curr val

prev val
=








 

_

_

2

 (2) 

The logic behind w is as follows: if the population 
becomes more homogenous, which we want to avoid, 
curr_val is smaller than prev_val and w consequently 
decreases. The 2nd power is added for increased 
sensitivity. Before calculating w, the algorithm 
compares the variables and replaces prev_val with the 
new value if  prev_val < curr_val. If that is the case, the 
population has become more diversed, which is 
desirable, and w equals one. 

The adaptive technique affects the way the 
chromosomes are picked up for crossover. For every 
solution a characteristic value v is calculated as follows: 

 v f f w f f w= − ⋅ − − − ⋅ −( ) ( ) ( ) ( )min max min2 1 1  (3) 

where f stands for the fitness value of a chromosome. 
The roulette-wheel method is used to select the 
chromosomes for crossover, regarding their 
characteristic values. A previously selected individual is 
then replaced by the crossover product, while the 
parents are left intact. A chromosome can participate in 
crossover more then once, depending on its fitness 
value. If a population is scattered in problem space the 
value of w will be higher, so according to (3), the 
solutions with better fitness values get a higher chance 
to mate and produce offspring. If  w is lower, the 
selection becomes more uniform, and for w < 0.5 the 
algorithm even favors worse solutions. 

When applied to a steady-state algorithm with 
elimination selection, as in previous work [10], the 
adaptive method calculates the expression (2) in the 
beginning of every generation. If the algorithm uses 
tournament selection, as described in section 2, we have 
to determine when to calculate the new value of w. The 
interval of POP_SIZE (the size of  the population) 
crossovers has proven to be efficient in this 
implementation as the step size. 

Finally, the adaptive technique varies the number of 
mutations in each generation. The number of mutations 
is calculated as: 

 ( )[ ]1.012_ +−⋅⋅= wSIZEPOPn  (4) 

The number of mutations increases linearly with the 
decrease of (1) in current generation. Again, if we 
employ tournament selection, the mutations are 
performed in each step of the adaptation process. 

The adaptive strategy increases the exploitation of good 
solutions thus speeding up the convergence and also 
prevents the population, in most cases, from getting 
stuck at a local optimum. Each one of these techniques 
can be applied independently, which further increases 
their configurability.  

We also propose a modified, non-uniform mutation 
operator to accompany this work. The non-uniform 
mutation takes into consideration the fitness value of a 
solution and selects the scope in which the solution will 
be changed. This is done in practice by restricting the 
number of bits which the mutation operator can affect in 
a single chromosome. In binary representation, only a 
set number of rightmost (i.e. less significant) bits can be 
mutated. The changeable bits form a rightmost substring 
of a chromosome, the length of which is defined with: 

 bits chrom length
f f

f f
f f= + ⋅ − −

−









 >1 1_

max

 ,   (5) 

where chrom_length is the total number of bits in a 
chromosome and f is the fitness value of the selected 
individual. This restriction is only made for solutions 
whose fitness value is greater than the population 
average. The same technique for floating-point 
representation is easily implemented by defining the 
greatest difference between the old solution and the new 
one after mutation. For problems where the Euclidean 
distance between chromosomes cannot be defined, this 
operator is meaningless. 



The non-uniform mutation operator has significantly 
improved the algorithm's 'fine tuning' capabilities. 
However, the best results, in overall, are achieved when 
both types (uniform and non-uniform) of operators are 
included. In all of the GA implementations following 
this work, there is a 50% chance that either of the 
operators will be applied when a chromosome is 
mutated.  

4. An implementation of parallel adaptive 
genetic algorithm 

In this section we describe the implementation of a 
parallel genetic algorithm incorporating the adaptive 
techniques. The parallel model used is the parallel 
genetic algorithm with equal threads (EPGA_2). Each 
thread performs independently and operates on the 
whole population, though no more than three 
individuals at the same time. A thread performs the 
tournament selection and deletes the selected individual. 
Then it performs roulette wheel selection to determine 
two parents to participate in crossover. The product of 
the crossover replaces the deleted individual. After 
POP_SIZE crossovers, the algorithm calculates the 
population diversity (3) and updates the chromosomes' 
characteristic values. The mutation phase is then 
performed and a generational cycle is concluded. The 
structure of the parallel adaptive genetic algorithm 
(hereafter reffered to as PAGA) is shown in Fig. 6.  

PARALLEL ADAPTIVE GENETIC ALGORITHM{ 
  initialize population; 
  create several equal evolution threads; 
  wait while termination criterion is not  
                                       reached; 
  delete all threads; 
} 
 
Evolution thread 
forever{ 
  perform tournament selection; 
  delete selected individual; 
  perform roulette wheel parent selection 
  perform crossover; 
  replace deleted individual; 
  every POP_SIZE evaluations calculate w & vi; 
  perform mutation; 
} 

Figure 6 The structure of parallel adaptive genetic 
algorithm with equal threads (PAGA) 

The PAGA can be executed on a one or multi-processor 
system, with one or more threads. The termination 
criterion used in this work is a set number of function 
evaluations made by the algorithm. 

5. Experimental results 

For the experiments, five test functions have been taken 
from a number of sources and are shown in Fig. 7. The 
evaluations were undertaken for 5, 10 and 30 
dimensional instances of the test functions. 
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Figure 7 Test functions 

The performance of PAGA is evaluated and compared 
with standard roulette wheel genetic algorithm (denoted 
as GA-rw) and steady state algorithm with elimination 
selection (GA-eli). The fitness value of the best member 
at the end of a run is considered in the results. The 
common features of all the algorithms are binary 
encoding, precision of 1e-5, uniform crossover 
operator, both uniform and non-uniform mutation and 
50 individuals as the size of the population. The 
parameters of GA-rw and GA-eli are shown in Table 3. 

Table 3 Parameter settings 

 GA-rw GA-eli PAGA 
crossover rate 0.7 - - 

generation gap - 0.8 - 
mutation rate 0.01 0.01 - 

selection method roulette wheel elimination tournament 

The genetic algorithms were allowed to execute 200000 
evaluations for 5 and 10 dimensional problems and 
500000 evaluations for 30 dimensional problems. The 
results are produced by averaging the results from 
twenty trials on each of the function instances and are 
presented in Table 4. 

Table 4. Experimental results 

 GA-rw GA-eli PAGA 
5dim   f1 0.01424 0.01796 0.00971 

10dim f1 0.03172 0.14543 0.02347 

30dim f1 0.21629 0.49963 0.17725 

5dim   f2 0.08343 0.14285 0.01288 

10dim f2 0.66908 0.41222 0.49651 

30dim f2 5.30848 8.78713 6.14411 

5dim   f3 0.94420 1.69862 0.01346 

10dim f3 19.8973 2.02005 5.89022 

30dim f3 185.182 251.085 56.0275 

5dim   f4 0.00167 0.00237 0.00146 

10dim f4 0.00169 0.00979 0.00145 

30dim f4 0.03358 0.02479 0.01781 

5dim   f5 48.225 109.324 2.853 

10dim f5 159.242 300.893 152.0605 

30dim f5 1230.44 1854.3 1142.321 

The entries in the table show the average deviation from 
the global optimum normalized to the range from zero 
to one for functions f1 and f4. A smaller value indicates 



better performance and the best results are in bold face. 
It can be perceived from the results that the PAGA 
managed to perform reasonably good in optimizing a 
number of problems, while the standard algorithms with 
fixed parameters were able to find the best solution only 
when those parameter values fit the problem at hand. 

6. Concluding remarks 

In most of the test cases, the PAGA outperformed the 
standard versions. The adaptive technique makes it 
possible for the algorithm to perform similarly to the 
one whose parameters are 'well tuned' for a specific 
problem, which is the main reason for adaptation. 

By dividing the genetic algorithm into threads we 
achieved several benefits: the algorithm is faster (the 
optimization time is shorter than for the nonparallel 
genetic algorithm), the code can be easily adapted and 
extended with new genetic operators and we can 
simultaneously execute two or more methods and 
compare the results at the same time. The parts obtained 
by dividing the genetic algorithm are independent. The 
critical sections are avoided, because the 
synchronization mechanisms would significantly slow 
down the parallel program. 

Some questions still remain to be answered, such as the 
choice for population size. That problem is dealt with in 
the paper [8] by Hinterding and the results shown there 
are promising. The choice of  the type of genetic 
operators is also a difficult task, and it has been 
effectively solved in an exceptional work [9] by Houck 
and Kay. The mentioned adaptations are solely 
independent and can also be incorporated in PAGA, 
which further increases its usability and can lead to a 
significant performance enhancement. 
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