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1. Introduction

The central subject of this paper is the exploring of algorithms for finding optimal

methods to compute large powers. One way of looking at this is the following, let us

suppose we have an expression xn which we want to compute where n is a natural

number exponent, the most basic attempt would be:

x1 = x2 = ... = xn

x1 ∗ x2 ∗ ... ∗ xn = xn
(1.1)

Of course this isn’t the optimal way of computing the exponent, the problem has

been in the spotlight of scientific studies for quite a while and the benefit of its solution

has a huge impact in optimizing mathematical computation to the minimal number of

operations. This optimization problem brings us to the subject of addition chains and

differential addition chains which have proven to be the best methods for computing

large powers with a minimal number of operations, one would ask himself why would

anyone want to analyze a proven method of optimal calculation. The trick is this, there

is no mathematically proved method for finding optimal addition chains so we are left

to a certain quantity of mathematical uncertainty. Before we immerse ourselves in

analyzing the methods for finding optimal addition chains through evolutionary com-

putation we should go through some of the methods introduced in the past and prove

that they are not optimal. Also, we need to keep in mind that we are working directly

with the exponent, the base of the power doesn’t really interest us when searching for

the minimal number of operations in calculating powers.
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2. Other Exponentiation Methods

2.1. Binary Method for Exponentiation

This is probably the most intuitive method for application in computer systems

mainly because it finds its grounds in binary logic. Again, suppose we have to compute

the power xn and the only available operations we have are squaring and multiplying

by x. Looking at the exponent the only operations needed are shifting left ( which is

equivalent to multiplying by 2 ) and adding 1. As we can see the operations play in

favor of computer processors which are able to execute them with ease. Taking all of

this into consideration the solution would look something like this:

SSSSXSXSSS (2.1)

Where S denotes the squaring operation of the last result and X denotes the operation

of multiplying the last result by x or to put it in needed perspective, the first operation

is multiplying the exponent by 2 and the second is adding 1 to the exponent. This

method is quite ancient, it appeared in Pingala’s Hindu classic around 200 B.C. bit a

clear discussion of how to compute 2n was given by al-Uqlidisi of Damascus in A.D.

952. which is actually equivalent to what we did here.(Knuth, 2002)
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2.2. Right-to-left Binary Method for Exponentiation

This method is a variation of the standard binary method of exponentiation, lets

get the idea why does the earlier method need variation. The standard binary method

starts from the base x and works its way up to xn, a more careful reader would see that

this method isn’t really applicable because it’s extremely impractical in calculation,

basically there is no way of finding the minimal number of operations other than blind

search, this is where the variation comes in, instead of computing from the beginning

x, we start computing from the end xn. The algorithm itself would look like this:

A1. [Initialize] Set N ← n, Y ← 1, Z ← x.

A2. [Halve N ] (At this point, xn = Y ZN .) Set N ← bN/2c, and at the same time

determine whether N was even or odd. If N was even, skip to step 5.

A3. [Multiply] Set Y ← Z ∗ Y .

A4. [N = 0?] if N = 0, the algorithm terminates, with Y as the answer.

A5. [Square Z] Set Z ← Z ∗ Z, and return to step 2.

Algorithm A is a practical method for multiplication by hand, since it involves only

the simple operations of doubling, halving and adding. It is often called the "Russian

peasant method" of multiplication, since the Western visitors to Russia in the nine-

teenth century found the method in wide use there.

The number of multiplications required by Algorithm A is:

blog nc ∗ ν(n) (2.2)

Where ν(n) is the number of ones in the binary representation of n.

Is it optimal? Several authors have published statements (without proof) that the

binary method actually gives the minimum possible number of multiplications. But

that is not true. The smallest counterexample is n = 15 when the binary method needs

six multiplications, yet we can calculate y = x3 in two multiplications and x15 = y5 in

three more, achieving the desired result with only five multiplications. (Knuth, 2002)
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2.3. The Factor Method

The factor method is based on a factorization of n. If n = pq, where p is the smallest

prime factor of n and q > 1, we may calculate xn by first calculating xp and then raising

this quantity to the qth power. If n is prime, we may calculate xn−1 and multiply by x.

And, of course, if n = 1, we have xn with no calculation at all. Repeated application

of these rules gives a procedure for evaluating xn, given any value of n. For example,

if we want to calculate x5, we first evaluate y = x5 = x4 ∗x = (x2)2 ∗x, then we form

y11 = y10 ∗ y = (y2)5 ∗ y. The whole process takes eight multiplications, while the

binary method would have required nine. The factor method is better than the binary

method on the average, but there are cases (n = 33 is the smallest example) where the

binary method excels.
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3. Addition Chain Exponentiation

3.1. Addition Chain Definition

In the earlier chapter we have discussed other methods for calculating exponentia-

tion. Stating some simple examples we have proven that those methods are not optimal

methods for exponentiation, the search has brought us to addition chains which have

proven to be the most economical way to compute xn, this is a mathematical problem

with an interesting history. Although we are concerned with the calculation of powers

the problem can be easily reduced to addition, since the exponents are additive. Let’s

begin with a formal definition of addition chains, an addition chain for n is a sequence

of integers

1 = a0, a1, a2, ..., ar = n (3.1)

with a property that

ai = aj + ak for some k ≤ j < i, (3.2)

for all i = 1, 2, ..., r. Best way of looking at this is if we take a look at the structure

of a computer processor which has an accumulator and is capable of three operations

LDA, STA and ADD. The processor begins with the number 1 in its accumulator and

computes the number n by adding together previous results. For the sake of under-

standing the following example of how addition chains help ease exponentiation is

given, for the number a15 :

a15 = a3[(a3)2]2 (3.3)

The main question is, how many multiplications takes in 3.3? Lets start with b = a3,

we have to bring a to the power of 3 and there is no other way than to multiply a three

times consecutively, that is two multiplications to start with ((a ∗ a) ∗ a). Now we

need to calculate c = (a3)2 and that is only one multiplication, we obtained a3 earlier.

Now we are only left with two multiplications b ∗ c2, c2 is one multiplication and then
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multiplying with b is the other. In the end our computation of 3.3 amounts to r = 5

multiplications.

The shortest length r, for which there exists an addition chain for n is denoted by

l(n). In the rest of this section we will analyze the function l(n) and go through some

proven theorems that describe it. The problem of calculating the function l(n) was

first raised by H. Dellac in 1894 and it hasn’t been solved to this day. The rest of this

section is heavily based on the mathematical proofs stated in (Knuth, 2002) where it is

described in more detail.

We will now define two auxiliary functions for convenience in our subsequent dis-

cussion:

λ(n) = blog nc (3.4)

ν(n) = number of 1s in the binary respresentation of n. (3.5)

Thus λ(17) = 4, ν(17) = 2. In terms of these functions, the binary addition chain for

n requires exactly λ(n) + ν(n)− 1 steps, this becomes

l(n) ≤ λ(n) + ν(n)− 1. (3.6)

Earlier we have said in the definition of addition chains that for 1 ≤ i ≤ r, ai = aj+ak

has to hold for some j and k, 0 ≤ k ≤ ji. If this relation holds for more than one pair

(j, k), we let j be as large as possible. Let us say that step i of the addition chain

is a doubling, if j = k = i − 1; then ai has the maximum possible value 2ai−1 that

can follow the ascending chain 1, a1, ..., ai−1. If j (but not necessarily k) equals i− 1,

let us say that step i is a star step. Finally let us say that step i is a small step if

λ(ai) = λ(ai−1. Since ai−1 < ai ≤ 2ai−1 the quantity λ(ai) is always equal to either

λ(ai−1) or λai − 1 + 1; it follows that, in any chain, the length r is equal to λ(n) plus

the number of small steps.

Several elementary relations hold between these types of steps: Step 1 is always

a doubling. A doubling is a star step, but never a small step. A doubling must be

followed by a star step. Furthermore if step i is not a small step, then step i+1 is either

a small step or a star step, or both; putting this another way, if step i+1 is neither small

nor star, step i must have been small.
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A star chain is an addition chain that involves only star steps. This means that each

term ai is the sum of ai−1 and a previous ak. A simple processor we’ve discussed earlier

makes use only of the operations STA and ADD, LDA is not needed since each new

term of the sequence utilizes the preceding result in the accumulator. The minimum

length of a star chain for n is denoted by l∗(n), the following holds:

l(n) ≤ l∗(n) (3.7)

Theorem A. If the addition chain includes d doublings and f = r− d nondoublings,

then

n ≤ 2d−1Ff+2 (3.8)

Proof. By induction on r = d + f , we see that 3.6 is certainly true when r = 1.

When r > 1, there are three cases: If step r is a doubling, then 1
2
n = ar−1 ≤ 2d−2Ff+3;

hence (14) follows. If steps r and r− 1 are both nondoublings, then ar−1 ≤ 2d−1Ff+1;

hence n = ar ≤ ar−1 + ar−2 ≤ 2d−1(Ff+2 + Ff+1) = 2d−1Ff+3 by the definition of

the Fibonacci sequence. Finally, if step r is a nondoubling but step r− 1 is a doubling,

then ar−2 ≤ 2d−2Ff+2 and n = ar ≤ ar−1 + ar−2 = 3ar−2. Now 2Ff+3 − 3Ff+2 =

Ff+1 − Ff ≥ 0; hence n ≤ 2d−1Ff+3 in all cases.

The method of proof we have used shows that the inequality 3.8 is best possible

under the stated assumptions. The addition chain

1, 2, ..., 2d−1, 2d−1F3, 2
d−1F4, ..., 2

d−1Ff+3 (3.9)

has d doublings and f nondoublings.

Corollary. If the addition chain includes f nondoublings and s small steps, then

s ≤ f ≤ 3.271s. (3.10)

Proof. Obviously s ≤ f . We have 2λ(n) ≤ n ≤ 2d−1Ff+3 ≤ 2dφf = 2λ(n)+s(φ/2)f ,

since d + f = λ(n) + s, and since Ff+3 ≤ 2φf when f ≥ 0. Hence 0 ≤ s ln 2 +

f ln(φ/2), and the corollary follows from the fact that ln 2/ ln(2/φ) ≈ 3.2706

Values of l(n) for special n. It is easy to show by induction that ai ≤ 2i, and there-

fore log n ≤ r in any addition chain. Hence

l(n) ≥ dlog ne (3.11)
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This lower bound, together with the upper bound 3.6 given by the binary method gives

us the values

l(2A) = A (3.12)

l(2A + 2B) = A+ 1, if A > B. (3.13)

In other words, the binary method is optimum when ν(n) ≤ 2. With some further

calculation we can extend these formulas to the case ν(n) = 3:

Theorem B.
l(2A + 2B + 2C) = A+ 2, if A > B > C. (3.14)

Proof. All addition chains with exactly one small step have one of the following six

types (where all steps indicated by "..." represent doublings):

1. Type: 1, ..., 2A, 2A + 2B, ..., 2A+C + 2B+C ;A > B ≥ 0, C ≥ 0.

2. Type: 1, ..., 2A, 2A + 2B, 2A+1 + 2B, ..., 2A+C+1 + 2B+C ;A > B ≥ 0, C ≥ 0.

3. Type: 1, ..., 2A, 2A + 2A−1, 2A+1 + 2A−1, 2A+2, ..., 2A+C ;A > 0, C ≥ 2.

4. Type: 1, ..., 2A, 2A + 2A−1, 2A+1 + 2A, 2A+2, ..., 2A+C ;A > 0, C ≥ 2.

5. Type: 1, ..., 2A, 2A+2A−1, ..., 2A+C+2A+C−1, 2A+C+1+2A+C−2, ..., 2A+C+D+1+

2A+C+D−2;A > 0, C > 0, D ≥ 0

6. Type: 1, ..., 2A, 2A + 2B, 2A+1, ..., 2A+C ;A > B ≥ 0, C ≥ 1

By the corollary to Theorem A, there are at most three nondoublings when there is

one small step; this maximum occurs only in sequences of type 3. All of the above are

star chains, except type 6 when B < A - 1.

The theorem now follows from the observation that l(2A + 2B + 2C) ≤ A + 2 and

l(2A + 2B + 2C) must be greater than A+ 1, since none of the six possible types have

ν(n) > 2.

The calculation of l(2A + 2B + 2C) ≤ A + 2 when A > B > C > D,is more

involved. By the binary method it is at most A + 3, and by the proof of Theorem B it

is at least A + 2. The value A + 2 is possible, since we know that the binary method

is not optimal when n = 15 or n = 23. The complete behavior when ν(n) = 4 can be

determined.
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Theorem C If ν(n) ≥ 4 then l(n) ≥ λ(n)+3, except in the following circumstances

when A > B > C > D and l(2A + 2B + 2C + 2D) equals A+ 2:

1. Case: A−B = C −D. (Example: n = 15)

2. Case: A−B = C −D + 1. (Example: n = 23)

3. Case: A−B = 3, C −D = 1.(Example: n = 39)

4. Case: A−B = 5, B − C = C −D = 1. (Example: n = 135)

Proof. When l(n) = λ(n) + 2, there is an addition chain for n having just two small

steps; such an addition chain starts out as one of the six types in the proof of Theorem

B, followed by a small step, followed by a sequence of nonsmall steps. Let us say that

n is "special" if n = 2A+2B +2C +2D for one of the four cases listed in the theorem.

We can obtain chains of the required form for each special n, therefore it remains

for us to prove that no chain with exactly two small steps contains any elements with

ν(ai) > 4 except when ai is special.(Knuth, 2002)

Theorem D

lim
n→∞

l∗(n)

λ(n)
= lim

n→∞

l(n)

λ(n)
= 1 (3.15)

Proof. The addition chain for the 2k-ary method is a star chain if we delete the

second occurrence of any element that appears twice in the chain; for if ai is the first

element among 2d0, 4d0, ... of the second line that is not present in the first line, we

have ai ≤ 2(m−1); hence ai = (m−1)+aj in the first line. By totaling up the length

of the chain, we have

λ(n) ≤ l(n) ≤ l∗(n) < (1 + 1/k) log n+ 2k (3.16)

for all k ≥ 1. The theorem follows if we choose, say, k = b1
2
lgλ(n)c.(Knuth, 2002)

Theorem E Let ε be a positive real number. The number of addition chains such that

λ(n) = m, r ≤ m+ (1− ε)m/λ(m) (3.17)

is less than αm, for some α < 2, for suitably large m. (In other words, the number of

addition chains so short that 3.17 is satisfied is substantially less than the number of

values of n such that λ(n) = m, when m is large).
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Proof. We want to estimate the number of possible addition chains, and for this

purpose our first goal is to get an improvement of Theorem A that enables us to deal

more satisfactory with nondoublings, because the proof of the theorem is rather long

for the more interested readers it can be found in (Knuth, 2002).

Corollary. The value of l(n) is asymptotically λ(n) + λ(n)/λλ(n), for almost all n.

More precisely, there is a function f(n) such that f(n)→ 0 as n→∞, and

Pr(|l(n)− λ(n)− λ(n)/λλ(n)| ≥ f(n)λ(n)/λλ(n))) = 0. (3.18)

where Pr is the probability function for the occurrence of that event.(Knuth, 2002)

*Star chains. Optimistic people find it reasonable to suppose that l(n) = l∗(n);

given an addition chain of minimal length l(n), it appears hard to believe that we

cannot find one of the same length that satisfies the (apparently mild) star condition.

But in 1958 Walter Hansen proved the remarkable theorem that, for certain large values

of n, the value of l(n) is definitely less than l∗(n), and he also proved several related

theorems but for which we shall not go in deeper in this paper.(Knuth, 2002)

To sum up this section has gone through some math describing addition chains with

which it can be concluded that this problem was and is pretty fascinating still which

hopefully gives some motivation for an attempt to find the optimal addition chains for

exponentiation.
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3.2. Differential Addition Chains

In the earlier section we have explained what are addition chains and how they

benefit the process of calculating large exponents. It is obligatory that we also mention

differential addition chains.

Differential addition chains (also known as strong addition chains, Lucas chains,

Chebyshev chains) are a special category of addition chains in which each sum is

already accompanied by a difference or to put it delicately whenever a new chain ele-

ment is formed by adding P and Q the difference P −Q was already in the chain. An

example of a differential addition chain would be the following:

0→ 1→ 2→ 3→ 4→ 7→ 11→ 18→ 29→ 40→ 51→ 91 (3.19)

of course it is clear that we have to observe the chain starting with 0 and working

our way up because the numbers 1 and 2 have to be in the addition chain, to satisfy the

differential addition chain rule when we add 1 + 1 to get 2 the difference 1 − 1 = 0

was already in the the chain. If we analyze this addition chain it is clear that all the

elements satisfy that rule.(J.Bernstein, 2006)

1. 2 = 1 + 1, 1− 1 = 0

2. 3 = 2 + 1, 2− 1 = 1

3. 4 = 3 + 1, 3− 1 = 2

4. 7 = 4 + 3, 4− 3 = 1

5. 11 = 7 + 4, 7− 4 = 3

6. 18 = 11 + 7, 11− 7 = 4

7. 29 = 18 + 11, 18− 11 = 7

8. 40 = 29 + 11, 29− 11 = 18

9. 51 = 40 + 11, 40− 11 = 29

10. 91 = 51 + 40, 51− 40 = 11

11



3.3. Addition-subtraction Chains

Addition-subtraction chains are not strictly addition chains, we allow them more

"freedom" so to speak. The definition of addition-subtraction chains is as follows:

A sequence of numbers a0, a1...an that satisfies

a0 = 1, for k > 0, ak = ai ± aj, for some 0 ≤ i, j < k (3.20)

Logically, there are more addition-subtraction chains for one exponent that addition

chains. Best to demonstrate addition-subtraction chains with the following example of

the exponent 31:

1→ 2→ 4→ 8→ 16→ 32→ 31 (3.21)

This addition-subtraction enables us to get to the exponent 32 in 4 additions and 2

subtractions which is shorter than the optimal addition chain for the exponent of length

7. Here is a more thorough analysis of the addition-subtraction chain in steps:

1. 2 = 1 + 1

2. 4 = 2 + 2

3. 8 = 4 + 4

4. 16 = 8 + 8

5. 32 = 16 + 16

6. 31 = 32− 1

So we have come to the result where addition-subtraction chains seem to be a bet-

ter solution for exponentiation that addition chains, but is that so? The problem with

addition-subtraction chains is the division, which is more costly to a computer proces-

sor than multiplication. For this reason addition-subtraction chains are a rather less

interesting method of exponentiation than addition chains.
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3.4. Differential Addition-subtraction Chains

Earlier we have mentioned addition-subtraction chains as an alternative to expo-

nentiation to addition chains so it is only fair to define what are differential addition-

subtraction chains just for everything to be concise and not to confuse the reader.

We said that the characteristic of differential addition chains is that every addition is

preceded by the subtraction of the addition members. Lets put that into context with the

addition subtraction chain rule 3.20, in addition-subtraction chains we have addition

and subtraction, so what happens when we subtract? The twist is that in differential

addition-subtraction chains every addition is preceded by the subtraction result and

every subtraction is preceded by the addition result. To put it simply there are two

cases:

1. If we obtain a new member by addition: P + P , P > Q then the subtraction

result of P −Q must already be in the chain.

2. If we obtain a new member by subtraction P−Q, P > Q then the addition result

of P +Q must already be in the chain.

No examples are needed for this section because the understanding is assumed from

the previous sections on differential addition chains and addition-subtraction chains.
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4. Optimizing Addition Chains

In this section we shall try to find optimal addition chains using some methods in

evolutionary computation, we will go through the results and analyze the difference in

the process of generating the solutions in different algorithm settings, but firstly before

digging in deeper in optimizing addition chains we should define the algorithms we

are going to use in the process and the framework in which the algorithms will be

implemented.

4.1. Evolutionary Computational Framework

It would be extremely impractical to write the algorithms from scratch in this case

because this isn’t the central theme of the paper, in this section describes a few things

about the framework that was used to rather concentrate on the subject of addition

chains and their analysis and not the very construction of the algorithms.

ECF (Evolutionary Computational Framework) is a framework for evolutionary com-

putation designed on the Faculty of Electrical Engineering and Computing. The frame-

works base programming language is C++, this enables it to excel in performance

which is important in the case of evolutionary computation to produce the best possi-

ble results in the shortest period of time. It supports a various number of evolutionary

algorithms and their variations, the process of optimization is reduced to defining an

input file with the algorithm parameters and defining a fitness function that will guide

the algorithms evaluation of an individual i.e. a solution. If a user wishes to speed up

the process of optimization ECF also supports parallelization.

14



4.2. Genetic Algorithm Optimization

We shall embark on our journey of optimizing addition chains with maybe the most

popular algorithm in evolutionary computation which was invented by John Holland

(Čupić, 2013), the genetic algorithm. This algorithm draws its method from the very

theory of evolution established by Charles Darwin. The basic idea is that we have a

population of individuals that represent our solution which we advance through gener-

ations with mutation and crossover.

As it was mentioned mentioned earlier the genetic algorithm has its roots in evo-

lution theory and is strongly dependent on the operators of mutation, crossover and

selection which will be described in this section. Also, it is important to understand

that there are many possibilities for the representation of an individual which will also

be analyzed.

4.2.1. Selection Operator

The first operator that needs to be considered is the selection operator, as it was

mentioned earlier we have a generation of individuals that has to be evaluated, after

the evaluation the algorithm needs to make a selection of individuals that will progress

to the next generation and participate in reproduction (the creation of new individuals),

this is very important because we want to preserve the good individuals and their ge-

netic information. The rest of this section will go through some methods of selection

that are extensively used in the genetic algorithm more thoroughly explained in (Čupić,

2013).

Roulette Wheel Selection. The genetic algorithm that uses this kind of selection

is called a generational genetic algorithm. This kind of selection generates a new

population from the old one that has the same number of individuals as the previous

population. The algorithm of roulette wheel selection can be simply states as follows:

Algorithm 1 Roulette wheel selection
1. Sum Calculate sum of all chromosome fitness values in the population - sum S

2. Select Generate random number from interval (0, S) - r

3. Loop Go through the population and sum fitness values from 0 - sum s, When

sum s is greater than r, stop and return the chromosome where the loop stopped.
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Tournament selection. This kind of selection takes k individuals from the popula-

tion, compares them and copies the best individual in the reproduction pool over which

the genetic algorithms will take action in the next step after which we produce a new

individual for the next generation. This is repeated till we generate a population that is

the same size as the previous population

Steady-state selection. The central objective of this selection is to choose the bad

solutions and replace them with new ones using the genetic operators. Firstly the bad

solutions are erased from the population, after that we apply the genetic operators on

the remaining good solutions. Because of this process there is a danger of producing

solutions that are the same as previous solution so that should also be taken care of

accordingly.

Elitism. There is a danger of losing a good solution after many iterations if the ge-

netic operators deform it, therefore there is a need for a mechanism of protection for

the best individuals, that mechanism is called elitism. As a result, the genetic algorithm

with built-in elitism progresses asymptotically toward the global optimum.

4.2.2. Individual Representation

The representation of an individual is of great importance for the algorithm, it drives

the way the fitness function will be constructed. For the purpose of this paper we will

concentrate on a bit string representation of an individual, specifically for the genetic

algorithm we refer to an individual as a chromosome, the reason for this is the very

nature of the genetic algorithm, the chromosome consists of pieces of information we

call genes which are the carriers of information in biology. The bit string representation

is the simplest and the most used representation, it’s also the most intuitive which we

will see when we analyze the crossover and the mutation operators. It also needs to

be mentioned that there are other representations of individuals such as the binary

code representation or gray code representation or variations that will be left to a more

interested readers research.
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Figure 4.1: Bit string example

4.2.3. Genetic Operators

The genetic operators play a central role in producing new, interesting solutions in

the population, through them we are grabbing solutions from the search space. The

genetic operators in the genetic algorithm are mutation and crossover.

Mutation

Mutation is a genetic operator which causes the change of one or multiple genes, the

result of the mutation is an altered individual.

The parameter that determines the probability of mutation pm of one bit is a parame-

ter of the algorithm. If the probability of the mutation converges to 1 then the algorithm

becomes a random search algorithm. On the other hand, if it converges to 0 then the

process will probably be stuck in a local optimum.(Golub, 2004)

The kind of mutation used in this paper is called simple mutation where every bit has

the same probability of mutation pm but of course there are different kinds of variations

on the mutation operator.
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Figure 4.2: Mutation examples

Crossover

In the crossover process there are two important players, two individuals which are

called parents. After crossover is applied one or more new individuals are generated

which are called children. From the name of the actors in the operator it is logical to

conclude that the whole point is that the children are created on the base of the parents

genes, this way the children may represent better solutions than the parents.(Golub,

2004)

There are many different types of crossover but we will concentrate on the main one

that will be used in this paper, uniform crossover. The uniform crossover operation can

be easily represented with one formula. Let us say that A and B are parents and let R

be a chromosome that is generated randomly, this would be the uniform crossover:

CHILD = AB +R(A⊕B) (4.1)

This crossover operator is also the fastest because of its use of logical operators which

are directly supported by the computer architecture.

Figure 4.3: Example of crossover
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Algorithm Parameters

Now that all the actors in the genetic algorithm have been analyzed it is obvious that the

algorithm parameters have to be defined before running the algorithm on a optimization

problem. Those parameters are mutation probability, size of the population, number of

generations and the probability of crossover. The probability of crossover is typical for

generational genetic algorithms, if we take a steady-state algorithm then it is redundant

and is replaced by the number of individuals that will be eliminated.

Table 4.1: Genetic algorithm parameters example (Golub, 2004)

Parameter Sign Small population value Large population value

Population size PS 30 100

Crossover probability pc 0.9 0.6

Mutation Probability pm 0.01 0.001

4.2.4. Algorithm Application

Now that the mechanisms behind the genetic algorithm are explained the concrete

solution for the problem of addition chains can be analyzed. Firstly we will begin with

the explanation of the encoding that is being used, the fitness function and then we will

analyze the results that are obtained when applying the genetic algorithm.

Individual Encoding

The encoding for our individual in the case of addition chains is as suggested in

(Nedjah and de Macedo Mourelle). The basic idea is to store the addition chain as a bit

string. Each position in the bit string represents a number that occurs in the addition

chain or does not, depending on the value of the position (1 being for occurs in the

chain and 0 being for doesn’t occur).

Figure 4.4: Addition chain encoding

It is obvious that this representation isn’t memory efficient, suppose that we have

to calculate large exponents like it is needed in real life application, every number from
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1 to the exponent has to be represented by a position in the bit string so we end up with

a bit string which is the same length as the exponent size. Disregarding memory-wise

inefficiency it is also time consuming which will be seen when the fitness function is

defined.

Fitness Function

The fitness function that will be used is fairly straightforward and follows the formal

definition of addition chains and it is as follows:

Algorithm 2 Addition Chain Fitness Function
Input: bit string S

fitness = 0

for i = 2; i < sizeof(S); i++ do
if S[i] is set then
fitness+ = 1

for j = 1; j ≤ i; j ++ do
for k = 1; k ≤ j; k ++ do

if k + j = i and S[k] is set and S[j] is set then
The solution is valid

end if
end for

end for
if The solution isn’t valid then
fitness+ = largePenalty

end if
end if

end for

Basically the algorithm tells us that for every number in a supposed addition chain

we have to loop through the previous numbers in the chain and test if there exists a

pair of numbers that satisfy the addition chain definition i.e. there must be a k and a j

for which i = j + k + 1, the one is there because the indexes start from 0 and our first

number in the chain is 1. The extra looping can be avoided by breaking out of the loop

which is checking if the position is valid when a specimen that confirms that is found.
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4.2.5. Addition Chain Fitness Function Variations

If we want to compute the minimal differential addition chain the variation is fairly

simple and it amounts to adding one more condition while evaluating the bit string

individual in the fitness function.

Algorithm 3 Differential Addition Chain Fitness Function
Input: bit string S

fitness = 0

for i = 2; i < sizeof(S); i++ do
if S[i] is set then
fitness+ = 1

for j = 1; j ≤ i; j ++ do
for k = 1; k ≤ j; k ++ do

if k + j = i and S[k] is set and S[j] is set and S[j − k] is set then
The solution is valid

end if
end for

end for
if The solution isn’t valid then
fitness+ = largePenalty

end if
end if

end for

As it can be seen the alteration is minimal, we simply add the test if the subtraction

result of i and j exists in the if condition. Such alterations can be done for addition-

subtraction chains and differential addition-subtraction chains as we can see in the

algorithms 4 and 5.
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Algorithm 4 Addition-subtraction Chain Fitness Function
Input: bit string S

fitness = 0

for i = 2; i < sizeof(S); i++ do
if S[i] is set then
fitness+ = 1

for j = 1; j ≤ i; j ++ do
for k = 1; k ≤ i; k ++ do

if (k + j = i or j − k = i and S[k] is set and S[j] is set then
The solution is valid

end if
end for

end for
if The solution isn’t valid then
fitness+ = largePenalty

end if
end if

end for
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Algorithm 5 Differential Addition-subtraction Chain Fitness Function
Input: bit string S

fitness = 0

for i = 2; i < sizeof(S); i++ do
if S[i] is set then
fitness+ = 1

for j = 1; j ≤ i; j ++ do
for k = 1; k ≤ i; k ++ do

if (k + j = i and S[j − k] is set or j − k = i and S[j + k] is set) and S[k]

is set and S[j] is set then
The solution is valid

end if
end for

end for
if The solution isn’t valid then
fitness+ = largePenalty

end if
end if

end for

The algorithms used for addition-subtraction were suggested in (Nedjah and de Macedo Mourelle),

the question is are they efficient, this will be checked in the following sections.
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4.2.6. Optimized Parameter Values

As it was said earlier, the parameters of the genetic algorithm are an important com-

ponent in order to optimize the optimization process so to speak, the parameters set in

this case were obtained through the optimization method specified in (Tomola-Fabro,

2013). The parameters that were optimized are mutation probability and population

size, the optimal parameters obtained through this optimization method based on the

exponents computed are:

Table 4.2: Fitness values for the optimization (Golub, 2004)

Exponent Mutation probability Population size

23 208-223 0.625-0.6875

55 208-223 0.4375-0.5

130 255-269 0.9375-1

250 294-300 0.625-0.75

768 121-128 0.78125-0.875

Because of the limited computational resources the experiments will be limited to

500 generations with a terminal stagnation of 100, which means that the experiment

will end if there is no improvement over a period of 100 generations. All of that

considered, for each exponent there will be 30 runs of one experiment setting and the

results are obtained from the best run.
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4.2.7. Addition Chain Optimization Results

Table 4.3: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 6 54 7.35909 6.66985

55 8 65 13.2045 16.3243

130 9 142 17.6692 32.6997

250 12 516 34.71 75.112

768 18 788 89.0923 223.741

Table 4.4: The optimal chains obtained through optimization

Exponent Chain Length

23 1->2->3->5->10->13->23 7

55 1->2->3->5->10->11->22->33->55 9

130 1->2->4->6->10->20->30->50->80->130 10

250 1->2->4->8->10->18->19->26->45->53->106->125->250 14

768
1->2->3->5->10->11->22->32->54->65->68->130->

136->168->204->298->434->564->768
19
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Figure 4.5: Algorithm convergence for exponent 23
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Figure 4.6: Algorithm convergence for exponent 55
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Figure 4.7: Algorithm convergence for exponent 130
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Figure 4.8: Algorithm convergence for exponent 250
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Figure 4.9: Algorithm convergence for exponent 768
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4.2.8. Differential Addition Chain Optimization Results

Table 4.5: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 7 102 9.54091 12.3138

55 8 175 15.4773 21.9311

130 9 270 19.6423 37.7292

250 15 267 39.37 74.5881

768 23 793 105.938 239.611

Table 4.6: The optimal chains obtained through optimization

Exponent Chain Length

23 0->1->2->3->4->5->9->14->23 9

55 0->1->2->3->5->6->11->22->33->55 10

130 0->1->2->3->5->10->15->25->40->65->130 11

250 0->1->2->3->5->8->11->13->14->15->25->30->35->55->70->125->250 17

768
0->1->2->3->5->6->7->11->13->16->17->19->22->34->

38->41->54->75->76->108->109->184->292->476->768
24
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Figure 4.10: Algorithm convergence for exponent 23
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Figure 4.11: Algorithm convergence for exponent 55
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Figure 4.12: Algorithm convergence for exponent 130
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Figure 4.13: Algorithm convergence for exponent 250
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Figure 4.14: Algorithm convergence for exponent 768
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4.2.9. Differential Addition-subtraction Chain Optimization Results

Table 4.7: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 7 127 8.71818 10.2775

55 8 176 14.4409 20.9075

130 10 142 24.7269 41.6079

250 12 1015 39.69 104.155

768 26 796 97.0692 223.695

Table 4.8: The optimal chains obtained through optimization

Exponent Chain Length

23 0->1->2->4->5->10->15->25->30->55 10

55 0->1->2->3->5->10->15->25->30->55 10

130 0->1->2->3->4->7->11->18->29->47->65->130 12

250 0->1->2->4->6->10->16->22->38->44->54->98->152->250 14

768
0->1->2->3->5->7->8->11->12->14->15->17->20->28->29->40

->43->45->47->52->54->59->87->92->146->238->384->768
28
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Figure 4.15: Algorithm convergence for exponent 23
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Figure 4.16: Algorithm convergence for exponent 55
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Figure 4.17: Algorithm convergence for exponent 130
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Figure 4.18: Algorithm convergence for exponent 250

35



●●

●
●

●

●
●●
●

●

●●●●●●
●●●●
●●
●●●●
●●●
●●
●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
50

10
0

15
0

20
0

Generation

F
itn

es
s

Figure 4.19: Algorithm convergence for exponent 768
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4.2.10. Addition-subtraction Chain Optimization Results

Table 4.9: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 6 53 8.2 8.21992

55 8 65 13.2045 16.3243

130 9 141 19.6962 35.9506

250 13 265 34.03 69.7326

768 21 791 80.3 205.955

Table 4.10: The optimal chains obtained through optimization

Exponent Chain Length

23 0->1->2->4->5->9->14->23 8

55 0->1->2->4->5->10->15->25->30->55 10

130 0->1->2->4->5->9->14->28->37->65->130 11

250 0->1->2->3->6->8->11->14->20->25->45->70->90->160->250 15

768
0->1->2->4->8->10->18->19->23->25->37->43->47->

56->90->146->180->202->348->349->529->731->768
23
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Figure 4.20: Algorithm convergence for exponent 23
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Figure 4.21: Algorithm convergence for exponent 55
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Figure 4.22: Algorithm convergence for exponent 130

●

●●
●

●

●

●●

●

●
●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
50

10
0

15
0

20
0

Generation

F
itn

es
s

Figure 4.23: Algorithm convergence for exponent 250
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Figure 4.24: Algorithm convergence for exponent 768
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4.3. Genetic Annealing Optimization

After seeing the results of the genetic algorithm we can test out more advanced

options like the genetic annealing algorithm . Genetic annealing is a combination of

the genetic algorithm and simulated annealing, the reason for combining the two is that

the genetic algorithm, although a global search strategy doesn’t guarantee the escape

from local minima, the simulated annealing algorithm does.(Bertsimas and Tsitsiklis)

4.3.1. Genetic Annealing Algorithm

Because the genetic algorithm has been explained this section won’t dig in deeper in

the genetic part of the algorithm, the thing that needs to be explained is the simulated

annealing algorithm which is an additional tool for the genetic algorithm in this case,

when the simulated annealing process is clear then the genetic annealing process will

be much easier to understand. The genetic annealing algorithm is a hybrid, random-

search technique that uses the best of both worlds, that is, the genetic algorithm and the

simulated annealing algorithm. Like the genetic algorithm it creates new solutions by

exchanging genetic material between members of a population but instead of holding

a tournament to decide which individuals will progress to the next generation the ge-

netic annealing algorithm uses an adaptive, thermodynamic criterion based on a simple

feedback scheme.

Simulated annealing

The simulated annealing algorithm is a probabilistic method for finding the global

minimum of a cost function that may possess several local minima. It works by emu-

lating the physical process whereby a solid is slowly cooled so that when eventually its

structure is "frozen", this happens at a minimum energy configuration. It was originally

inspired from the process of annealing in metal work. Annealing involves heating and

cooling of a material to alter its physical properties due to the changes in its internal

structure. As the metal cools its new structure becomes fixed, consequently causing

the metal to retain its newly obtained properties. In simulated annealing we keep a

temperature variable to simulate this heating process. We initially set the temperature

high and then allow it to slowly ’cool’ in the process. While this temperature variable

is high the algorithm will be allowed, with more frequency, to accept solutions that are

worse than our current solution. This gives the algorithm the ability to jump out of any

local minima it finds itself in at the early stages of execution.(Bertsimas and Tsitsiklis)
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Algorithm 6 Simulated Annealing Algorithm

s← s0; e← E(s)

sbest← s; ebest← e

k ← 0

while k < kmax and e > emax do
T ← temperature(k/kmax)

snew ← neighbour(s)

enew ← E(snew)

if P(e,enew,T ) > random() then
s← snew; e← enew

end if
if enew < ebest then
sbest← snew; ebest← enew

end if
k ← k + 1

end while
return sbest

Basically this code is what was mentioned earlier, the state s at the beginning is the

start state s0 and the energy of the system e is the energy of the start state. At the

start logically we set the start state as the best state sbest and its energy is the best

known energy ebest. Before the annealing process we would like to define the maxi-

mum number of annealing iterations kmax to limit the annealing process, this is also

a way that we calculate the temperature which is a stop criteria. At the beginning of

the iteration the temperature is calculated and we obtain the new state by the function

neighbour(s) which returns a neighbor solution. The central function to the algorithm

is the acceptance probability function P which decides will the algorithm move to the

neighbor solution or not. The implementations of the acceptance probability func-

tion, energy function and the temperature function are critical to the efficiency of the

simulated annealing algorithm.

Now after this short introduction the simulated annealing algorithm we can define

the optimization process for the genetic annealing algorithm, the simulated annealing

algorithm can be combined in many ways with the genetic algorithm, the way ex-

plained here is implemented in the Evolutionary Computational Framework used for

optimization.
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Acceptance criteria

In the genetic annealing approach, you assign an energy threshold to each individ-

ual. Initially each threshold equals the energy of the individual to which it is assigned.

A individuals threshold, not its energy, determines which trial mutations constitute

acceptable improvements. If the energy of a mutant exceeds the threshold if the indi-

vidual that spawned it, the mutant is rejected and the algorithm moves on to the next

individual. However, if its energy is less than or equal to the threshold, the algorithm

accepts the mutant as a replacement for its progenitor.(Price, 1994)

The genetic annealing algorithm uses the fitness of the individual to drive the anneal-

ing process. It uses an energy bank, represented by the real variable DE, to keep track

of the energy liberated by successful mutants. Whenever a mutant passes the threshold

test, the difference between the threshold and the mutant’s energy is added to DE for

temporary storage. Once this quantum of heat is accounted for, the threshold is reset

so that it equals the energy of the accepted mutant and then the algorithm moves on to

the next bit string.(Price, 1994)

Reheating

After each individual has been subjected to a random mutation the population is

reheated so to speak by raising each threshold a little. The size of the increase de-

pends both on the amount of energy accumulated in the energy bank and on the rate at

which one desires to cool the population. If N equals the number of individuals in the

population, then the average contribution to the energy bank is just DE/N . To fully

reheat the population DE/N needs to be added to each threshold. Annealing results

from the repeated cycles of collecting energy from successful mutants (spontaneous

cooling) and then redistributing nearly all of it by raising the threshold energy of each

population member equally (uniform reheating).

After they have been reheated, thresholds are higher than the energies of the indi-

viduals to which they have been assigned. This means that sometimes the algorithm

is forced to accept a mutant even though its energy is not as low as the energy of the

individual it replaces. Replacing an individual with a worse one may seem counterpro-

ductive, but these occasional reversals of fortune provide floundering individuals with

helpful energy boost. In essence, the entire population acts like a giant heat reservoir

that exchanges energy among its members. Less successful individuals can escape
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suboptimal configurations by borrowing energy they need from the more successful

versions.(Price, 1994)

The cooling constant

To relax the individuals into their optimal condition, they must be cooled very

slowly. In a genetic annealing program the rate of cooling is controlled with the cool-

ing constant, C, a real number from 0 to 1. For example C = 1 holds the population at

a constant temperature by using all the energy stored in DE to reheat thresholds. By

contrast, C = 0 releases all the stored energy in DE from the system and leaves the

thresholds unaltered.(Price, 1994)

Algorithm 7 Genetic Annealing
Input: Generation g

energyBank = 0

for each individual do
mutant = mutate(individual)

if fitness(mutant) < fitness(individual) + threshold(individual) then
diff = fitness(individual) + threshold(individual) - fitness(mutant)

energyBank += diff

replace individual with mutant

end if
energyDiff = energyBank * C / N

for each individual do
threshold(individual) += energyDiff

end for
end for
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4.3.2. Algorithm Application

In this section we will analyze the implementation of the genetic annealing algo-

rithm in this case. If it isn’t clear it has to be stated that the fitness function we are

using in the genetic annealing algorithm is the same as in the genetic algorithm, noth-

ing has changed. One can look at the genetic annealing algorithm the same as the

standard genetic algorithm augmented with simulated annealing to conquer the local

minima problem we’ve talked about. Also we are sticking to the bit string individual

representation of the solution.

4.3.3. Addition Chain Optimization Results

Table 4.11: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 6 30 7.33636 5.1361

55 8 64 10.7227 11.7186

130 10 141 20.0423 34.6713

250 12 263 39.5133 78.3195

768 22 792 92.9154 222.706

Table 4.12: The optimal chains obtained through optimization

Exponent Chain Length

23 1->2->3->5->10->20->23 7

55 1->2->4->5->9->11->22->33->55 9

130 1->2->4->5->7->12->13->26->52->65->130 11

250 1->2->4->5->8->9->14->22->36->58->67->125->250 13

768
1->2->4->5->6->10->15->17->32->38->43->47->62->86->

133->143->145->231->246->290->521->522->768
23
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Convergence Graphs
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Figure 4.25: Algorithm convergence for exponent 23
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Figure 4.26: Algorithm convergence for exponent 55
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Figure 4.27: Algorithm convergence for exponent 130
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Figure 4.28: Algorithm convergence for exponent 250
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Figure 4.29: Algorithm convergence for exponent 768
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4.3.4. Differential Addition Chain Optimization Results

Table 4.13: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 7 31 8.65455 5.66804

55 8 64 13.4045 16.1899

130 11 142 22.0038 36.2507

250 14 265 48.9167 86.660

768 32 801 144.046 271.828

Table 4.14: The optimal chains obtained through optimization

Exponent Chain Length

23 0->1->2->3->5->8->13->18->23 9

55 0->1->2->3->5->10->15->25->30->55 10

130 0->1->2->3->4->7->10->17->24->31->48->65->130 13

250 0->1->2->3->5->7->9->11->18->25->29->32->61->64->125->250 16

768

0->1->2->3->5->8->10->11->12->19->21->22->24->25->

29->30->38->45->46->50->55->59->75->84->89->120->139->

150->189->239->259->379->389->768

34
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Figure 4.30: Algorithm convergence for exponent 23
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Figure 4.31: Algorithm convergence for exponent 55
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Figure 4.32: Algorithm convergence for exponent 130
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Figure 4.33: Algorithm convergence for exponent 250
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Figure 4.34: Algorithm convergence for exponent 250
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4.3.5. Differential Addition-subtraction Chain Optimization Results

Table 4.15: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 7 32 8.50455 5.53486

55 8 64 13.4091 16.1668

130 12 143 26.8846 41.2729

250 12 263 40.2867 79.2459

768 24 793 100.808 231.29

Table 4.16: The optimal chains obtained through optimization

Exponent Chain Length

23 0->1->2->3->4->7->8->15->23 9

55 0->1->2->3->5->10->15->25->30->55 10

130 0->1->2->3->5->6->9->11->17->20->28->37->65->130 14

250 0->1->2->3->5->7->8->9->17->25->50->75->125->250 14

768
1->2->3->5->6->11->12->15->24->35->38->76->

111->116->123->131->234->365->403->768
26
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Figure 4.35: Algorithm convergence for exponent 23
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Figure 4.36: Algorithm convergence for exponent 55
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Figure 4.37: Algorithm convergence for exponent 130
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Figure 4.38: Algorithm convergence for exponent 250
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Figure 4.39: Algorithm convergence for exponent 768
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4.3.6. Addition-subtraction Chain Optimization Results

Table 4.17: Fitness values for the optimization

Exponent Minimal value Max value Average value Standard deviation

23 6 30 7.05909 4.53612

55 8 64 12.7636 15.3581

130 9 140 17.9692 32.8383

250 13 264 36.1933 72.2702

768 19 788 60.3077 173.69

Table 4.18: The optimal chains obtained through optimization

Exponent Chain Length

23 1->2->4->5->9->14->23 7

55 1->2->4->5->9->14->23->46->55 9

130 1->2->3->5->10->15->30->60->65->130 10

250 1->2->4->5->10->12->17->24->36->48->84->101->125->250 14

768
1->2->3->5->6->11->12->15->24->35->38->76->

111->116->123->131->234->365->403->768
20
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Convergence Graphs
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Figure 4.40: Algorithm convergence for exponent 23
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Figure 4.41: Algorithm convergence for exponent 55
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Figure 4.42: Algorithm convergence for exponent 130
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Figure 4.43: Algorithm convergence for exponent 250
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Figure 4.44: Algorithm convergence for exponent 768

60



4.4. Genetic Optimization Results Analysis

As it can be seen from the results obtained in the optimization, the genetic algorithm

obtains better results in the optimization in most cases, but not in all cases. From

the convergence graphs it is safe to deduct that the convergence of both algorithms is

relatively equal. In the case of the addition-subtraction chains and differential addition-

subtraction chains the results yield an interesting fact, the algorithms converge toward a

standard addition chain solution or differential addition chain solution rather than using

the benefits of subtraction to ease the exponentiation, therefore the algorithm proposed

for addition-subtraction chain optimization in (Nedjah and de Macedo Mourelle) is not

satisfactory for the problem solution and a better algorithm is needed.

The time consumption of the experiments also needs to be mentioned. The experi-

ments were conducted on a laptop with an Intel i5 CPU, for the exponents lower than

250 this didn’t present a problem, but for larger exponents the time consumption of the

experiments becomes drastically worse, concretely for the exponent 768 the average

run time is about 1531 seconds.
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4.5. Particle Swarm Optimization

The particle swarm optimization algorithm was discovered by C.W.Reynolds. The

algorithm is a population-type algorithm, the population consists of particles that fly

through a multidimensional search space and change their position based on their ex-

perience and their close neighbors experience. Throughout the optimization process

an individual has access to the info of its best found solution so far and the globally

best found solution so far, that way the algorithm combines the global search with the

local search i.e. local fine tuning.(Čupić, 2013)

4.5.1. Particle Representation

We will implement the algorithm that will only handle legal addition chains so we

need not concern ourselves with their validity in the fitness function.

Each particle is directly represented by the addition chain, that is, the elements of the

particle are the elements of the addition chain. For example, for the exponent e = 79,

a possible addition chain is the following: 1 → 2 → 4 → 6 → 12 → 24 → 30 →
60→ 72→ 78→ 79.(Leon-Javier et al., 2009)

4.5.2. Algorithm Initialization

First off we need to initialize the algorithm because we will be building valid ad-

dition chains from the start. The code to generate particles for a given exponent e is:

Algorithm 8 Swarm Initialization
for n = 1 to n = PopulationSize do

Set pn1 = 1

Set pn2 = 2

for i = 3 to pni = e do
repeat

Randomly select k with 1 ≤ k < i

pi = pk + pi−1

until pi > e

end for
end for
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4.5.3. Fitness Function

The fitness function in trivial, as we mentioned we are dealing with valid addition

chains, thus in the example of the exponent e = 79 the addition chain is 1 → 2 →
4 → 6 → 12 → 24 → 30 → 60 → 72 → 78 → 79 and its fitness value is 10 (the

real value of 11 was subtracted by 1 to maintain congruency with previously known

works).(Leon-Javier et al., 2009)

4.5.4. Velocity Values

The velocity chain is associated with the particle, the particles and the velocity

chains are of the same length. A velocity chain contains at each elements position

the index of the element that was added to obtain it. As we can see in figure 4.46

Figure 4.45: A particle and its velocity chain(Leon-Javier et al., 2009)

the number 30 in the particle chain is at position 6, in the velocity chain we have the

number 3 which is the index of the number 6 in the particle chain. Therefore we can

conclude that the number 30 in the chain was obtained by adding 6 to 24.

4.5.5. Particles and Velocities Updating

The particles position is affected by the particle’s best experience (pBest) and its

neighborhoods best experience (gBest). For this case the neighborhood is composed

of all the elements in the swarm.(Leon-Javier et al., 2009)

We scan the values in each particle. Then, at each step, we randomly select if the

particle is affected by the rule in the velocity chain associated with: (1) the particle’s

best experience (pBest) or, (2) the particle’s best neighbor (gBest) or, (3) its own

velocity. This procedure is applied for each particle. (Leon-Javier et al., 2009)
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Algorithm 9 Particles and Velocities Updating
for i = 2 to l do

if 2pi−1 < e then
if flip(Pb) then

if pBest’s length < i then
pi = pi−1 + pvpBesti

vi = vpBesti

else
vi = random(0, i− 1)

pi = pi−1 + pvi

end if
else if flip(Pg) then

if gBest′s length < i then
pi = pi−1 + pvgBesti

vi = vgBesti

else
vi = random(0, i− 1)

pi = pi−1 + pvi

end if
else

if vi < i then
pi = pi + pvi

else
vi = random(0, i− 1)

pi = pi−1 + pvi

end if
end if

else
if pi−1! = e then

for m = i− 2 to 0 do
if pi−1+ ≤ e then
pi = pi−1 + pm

vi = m

break

end if
end for

end if
end if

end for
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4.5.6. Optimization Results

Because this is an interesting fresh method it’s worth mentioning the results of the

optimization process, the results stated here are obtained from (Leon-Javier et al.,

2009).

Figure 4.46: Results for particle swarm optimization (Leon-Javier et al., 2009)

Clearly when comparing the results obtained with the particle swarm optimization

algorithm with the genetic algorithm and the genetic annealing algorithm the particle

swarm optimization algorithm has a certain edge over the two, the greatest difference

can be seen for exponents greater than 700, where the particle swarm algorithm outper-

forms its rivals substantially. On the other hand, the problem of addition-subtraction

chains, differential addition chains and differential addition subtraction chains for this

algorithm is not defined mainly because of the difficulty in defining the fitness function.
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5. Conclusion

From the undertaken experiments it can be concluded that the particle swarm op-

timization algorithm has a clear advantage over the genetic and genetic annealing al-

gorithm in the larger exponents which is achieved with its continuous construction of

valid addition chains that make the validity checking redundant. When comparing the

genetic annealing algorithm and the genetic algorithm a small difference in conver-

gence can be seen thanks to the annealing that conquers the local minima although the

genetic annealing algorithm (the ECF implementation) didn’t provide better results in

every case.

Concretely when observing the algorithm provided for addition-subtraction chains

and differential addition chains it can be concluded that the methods suggested so far

rather converge to a clear addition chain or differential addition chain than use the sub-

traction benefit, therefore, there is a need for exploring better methods in optimizing

addition-subtraction chains in future research. The processing power needed to com-

pute small addition chains and their variants although using methods of evolutionary

computation remains an expensive and a decisive factor in the problem. All in all, the

area of addition chains remains an interesting subject for future research and enhance-

ment.
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Abstract

This paper is about optimizing exponentiation and analyzes some past exponentia-

tion techniques before focusing on addition chains as the means of optimal exponen-

tiation. It also provides some mathematical basis for understanding addition chains

and their variations such as differential addition chains, addition-subtraction chains

and differential addition-subtraction chains. The papers core theme is finding optimal

addition chains through methods of evolutionary computation with algorithms such as

the genetic algorithm, genetic annealing and particle swarm optimization for which

results of optimization are given and compared.

Keywords: addition chains, strong addition chains, differential addition chains, addition-

subtraction chains, exponentiation, evolutionary computation, particle swarm opti-
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