
Journal of the Operations Research
Society of Japan

Vol. 42, No. 2, June 1999

DEPENDENT-CHANCE INTEGER PROGRAMMING
APPLIED TO CAPITAL BUDGETING

Kakuzo Iwamura Baoding Liu
Josuz Unzverszty Tsznghuu Unzverszty

(Received April 21, 1997; Revised May 2, 1998)

Abjtruct This paper attempts to model capital budgeting problems by a new technique of dependent-
chance integer programming as well as dependent-chance multiobjective programming and goal program-
ming. Some examples are provided to illustrate the potential applications in the area of capital budgeting.
A stochastic simulation based genetic algorithm is also designed to solve both chance constrained integer
programming and dependent-chance integer programming models.

l. Introduction
The original capital budgeting is concerned with maximizing the total net profit subject to
budget constraint by selecting appropriate combination of projects. With the requirement of
considering uncertainty of future demand and multiple conflicting goals, chance constrained
integer programming was employed to model capital budgeting by Keown and Martin[8] in
the working capital management and by Keown and Taylor[9] in the production area. De
et a1.[2] extended chance constrained goal programming to the zero-one case and applied it
to capita1 budgeting problems.

Chance constrained programming models can be converted into deterministic equivalents
when the stochastic variables are normally distributed. Howeverl it is usually difficult to
transform them to deterministic forms if the distributions of stochastic variables belong to
other classes or the constraints are irregular. In order to solve general chance constrained
programming models (continuous case), Iwamura and Liu[5] proposed a stochastic simula-
tion based genetic algorithm in which the stochastic simulation is employed to check the
chance constraints. On the other hand, Liu and Iwamura[15] developed a technique of
chance constrained programming with fuzzy parameters rather than stochastic parameters
and designed a fuzzy simulation based genetic algorithm for solving such a kind of models.
The capital budgeting problems in fuzzy environments have been discussed by the new ap-
proach in Iwamura and Liu[6]. In factl a unifying tkeatment of uncertain parameters leads
to that fuzzy capital budgeting models are identical with stochastic models except for the
facts that stochastic parameters and Pr have been replaced by fuzzy parameters and Posl
respectively, where Pos represents the possibility of a fuzzy event.

Dependent-chance programming as well as dependent-chance multiobjective program-
ming and dependent-chance goal ~rograrnming[ll, 12? 13, 141 are a new type of stochastic
models. This paper will extend dependent-chance programming to integer case, and show
some potential applications of this kind of models in the area of capital budgeting. A
stochastic simulation based genetic algorithm is also designed to solve both chance con-
strained integer programmig and dependent-chance integer programming models. Finally,

118 K. Iwamura & B. Liu

we illustrate the effectiveness of stochastic simulation based genetic algorithm by some nu-
merical examples.

Capital Budgeting
We assume that a company has the opportunity to install the machines in a plant. Suppose
that there are n types of machines available. If we use xi to denote the numbers of type
i machines selected) i = 1,2, - -) n, respectively, then xi's are nonnegative integers, i.e.,
xi = 0, l ? 2? 37 - -. Let ai be the level of funds that needs to be allocated to type i machine
and a be the total capital available for distribution, then we should have

i.e., the total capital used for buying machines can not exceed the amount available.
The other constraint is the maximum space availability limitation for the machines.

Suppose that bi are the spaces used by type i machine? i = l, 2) - - m , n, respectively. If the
total available space is b7 then we have the following constraint,

In addition, we suppose that different machines produce different products. Let c; be the
production capacity of the type i machine for product z , then the total amounts of products
i are cixi, i = l 2) - , n, respectively. We also assume that the future demands for products
i are di, i = l, 2, a , n. Since the production should satisfy the future demands, we have

If pi are the net profits per type i machines) z = l, 2, . , n, respectively, then the total net
profit is ~ 1 x 1 + ~ 2 x 2 + - - + pnxn. Our objective is to maximize the total net profit) i.e.?

Thus we have a deterministic model for capital budgeting based on integer programming,

a l x l + ~ 2 x 2 + + m + anxn 5 a
blxl+ b 2 ~ 2 + * a + bnxn 5 b (5)

c i x i z d i 7 i = 1 7 2 , - . .) n
xi, i = l , 2, - a n9 nonnegative integers.

Certainly) real capital budgeting problems are much more complex than the above-
mentioned model. However, this is enough for illustrating the new technique of dependent-
chance integer programming.

3. Chance Constrained Programming Models
Chance constrained programming was pioneered by Charnes and Cooper [l] as a means of
handling uncertainty by specifying a confidence level at which it is desired that the uncertain
constraint holds. Here let us model the capital budgeting problems by chance constrained
programming based on the works[2, 8, 91.

In practice, the production capacities ci and future demands di are not necessarily de-
termini~tic~ Here we suppose that they are stochastic variables. Let 4; and $i denote the

Dependent-Chance Integer Programming 119

probability density functions of ci and di, i = l , 2, - , n, respectively. Then the constraints
cixi 2 di are uncertain. Suppose that the manager gives ai as the probabilities of meeting
the demands of products i , i = l, 2, , n, respectively. Then we have the following chance
constraints,

Pr{cixi 2 di} 2 ai, i = 1,2, - , n (6)

where Pr{-} denotes the probability of the event { S) . Thus, a chance constrained integer
programming is immediately formulated as follows,

a m + a 2 ~ 2 + + anxn 5 a
+ b 2 ~ 2 + . a + bnxn 5 b

Pr{cixi 2 di} 2 ai, i = l, 2, , n
xi, i = l, 2, - - , n, nonnegative integers.

Now we suppose that the following target levels and priority structure have been set by
the manager:

Strict constraint: The maximum space availability limitation for machines, i.e., blxl +
b2x2 + - + bnxn 5 b.

Priority l: Budget goal (the total capital does not exceed the total available capital a as
much as possible), i.e.,

where d t will be minimized.
Priority 2: Demand goal (the probability of meeting the demands achieves the given level

a as much as possible), i.e.,

where dy will be minimized.
Priority 3: Profit goal (the total profit is not less than the given level p as much as

possible), i.e.,

P I X I + ~ 2 x 2 + + pnxn + d; - d l = p

where dg will be minimized.

Then we have a chance constrained integer goal programming as follows,

lexmin{dt , d;, dg }
subject to:

alxl + a2x2 + + anxn + dy - d t = a
Pr{cixi 2 di, i = l, 2, , n} + d; - d t = a
~ 1 x 1 + ~ 2 x 2 + + pnxn + dg d: = p
blxl + b 2 ~ 2 + + bnxn 5 b
dr,d: 2 0, i = 1,2,3
xi, i = l , 2 , - W - , n , nonnegativeintegers.

where lexmin represents lexicographical minimization.

120 K, Iwamura & B. Liu

4. Dependent-Chance Programming Models
Roughly speaking? dependent-chance programming [l l , 12? 13, 141 is related to optimizing
some chance functions of events defined on a so-called stochastic set in a complex uncertain
decision system. In deterministic models as well as expected value model and chance con-
strained programming? the feasible set is essentially assumed to be deterministic after the
real problem is modeled, i0ea7 an optimal solution is always given regardless of whether or
not it can be performed in practice. However, the given solution may not be performed if the
realization of uncertain parameter goes to bad cases. So the dependent-chance programming
model never assumes that the feasible set is deterministic. Although a deterministic solution

y the dependent-chance programming model, this solution is only requested to be
performed as much as possible. This special feature of dependent-chance programming is
very different from the existing stochastic programming techniques else.

n order to understand general dependent-chance programming correctly, we strongly
reminds the potential readers that the feasible set of dependent-chance programming is

owever? from the new applied area presented in this section, we can extend
our object to the case in which the feasible set is indeed stochastic. This fact leads to that
there is a common part between chance constrained programming and dependent-chance
programming*

he simplest model based on dependent-chance integer programming for capital bud-
geting is

maxPr{cixi 2 di, i = 1 , 2 , - . . ,n}
subject to:

alxl + a2x2 + * - + anxn 5 a (9)
blxl + b 2 ~ 2 + . + bnxn 5 b
xi, ~ = 1 , 2 ~ * . - , n , nonnegativeintegers

which is concerned with finding the most safe solution, i.e., the one with the maximum
probability that the productions meet the demands.

Sometimes? we may wish to maximize the reliability levels of all kinds of demands sepa-
rately, then the problem may be formulated as the following dependent-chance multiobjec-
tive programming model,

In order to balance the multiple conflicting objectives? capital budgeting may be modeled
by the following dependent-chance goal programming according to the target levels and
priority structure set by the decision maker,

subject to:
Pr{cixi 2 di} + d; - d: = ai, i = 1 7 2 , - - . , n

Dependent-Chance Integer Programming 121

where Pj = the preemptive priority factor which expresses the relative importance of various
goals) Pj Pj+l) for all j, uij = weighting factor corresponding to positive deviation for
goal i with priority j assigned) vij = weighting factor corresponding to negative deviation
for goal i with priority j assigned) cl: = positive deviation from the target of goal i) d r =

negative deviation from the target of goal i) ai = the target value according to goal i) l =
number of priorities.

We should mention that the dependent-chance integer goal programming (l l) is essen-
tially identical with chance constrained integer goal programming under our assumptions.
This means that there is a common part between dependent-chance programming and chance
constrained programming) i.e., a dependent-chance goal programming degenerates into a
chance constrained goal programming when the stocllastic feasible set degenerates into a
deterministic feasible set. However) if some of the parameters U) b) ui and bi) i = 1) 2) - - m , n in
(11) are assumed stochastic, then the model is indeed different from the chance constrained
programming because the feasible set determined by

is a stochastic set.

5 . Stochastic Simulation Based Genetic Algorithm
Genetic algorithms are a stochastic search method for optimization problems based on the
mechanics of natural selection and natural genetics) i.e.) the principle of evolution-survival
of the fittest. Genetic algorithms have demonstrated considerable success in providing good
solutions to many complex optimization problems and received more and more attentions
during the past three decades. When the objective functions to be optimized in the opti-
mization problems are multimodal or the search spaces are particularly irregular) algorithms
need to be highly robust in order to avoid getting stuck at local optimal solution. The ad-
vantage of genetic algorithms is just to obtain the global optimal solution fairly. Genetic
algorithms (including evolution programs and evolution strategies) have been well discussed
and summarized by numerous literature, such as Goldberg [4]) Michalewicz[16] and Fogel[3],
and applied to a wide variety of problems, such as optimal control problems? transporta-
tion problems, traveling salesman problems) drawing graphs, scheduling) group technology)
facility layout and location) as well as pattern recognition.

In this section) we design a stochastic simulation based genetic algorithm for solving
both chance constrained integer programming and dependent-chance integer programming
models (including multiobjective programming and goal programming). We will discuss
representation structure, handling constraints) initialization process, evaluation function,
selection process, crossover operation and mutation operation in turn.
5. l Representation structure
There are two ways to represent a solution of an optimization problem) binary vector and
floating vector- We can use a binary vector as a chromosome to represent real value of
decision variable, where the length of the vector depends on the required precision. The
necessity for binary codings has received considerable criticism.

An alternative approach to represent a solution is the floating point implementation
in which each chromosome vector is coded as a vector of floating numbers, of the same
length as the solution vector. Here we use a vector V = (xl) x2, - - - , xn) as a chromosome

122 K. Iwamura & B. Liu

to represent a solution to the optimization problem, where n is the dimension. Certainly,
in capital budgeting problems all variables xi's will be confined to integer values. In fact, if
we code the algorithm by C language, then we can ensure that the vector V is integer by
defining it as an integer array.

Initialization process
define an integer pop-size as the number of chromosomes and initialize pop-size chro-

mosomes randomly. Usually, it is difficult for complex optimization problems to produce
feasible chromosome explicitly. So we employ one of the following two ways as the initial-
ization process, depending on what kind of information the decision maker can give.

First case is that the decision maker can determine an interior point, denoted by Vo, in
the constraint set. Thi S very possible for real decision problem. We also need to define a
large positive number which ensures that all the genetic operators are probabilistically
complete for the feasible solutions. This number M is used for not only initialization process

ut also mutation operatic The pop-size chromosomes will be produced as follows. We
ornly select a direction in SRn and define a chromosome V as + d if it is feasible

ality constraints, otherwise, we set M by a random number between 0 and M
d is feasible. If a new feasible chromosome is not obtained in a given number of

times, then we take V. as the chromosome. Repeat this process pop-size times and produce
size initial feasible solutions Vi, V2, a a . , Vpop-size.
f the decision maker fails to give such an interior point, then he can predetermine a

region which contains the feasible set. Usually, this region will be designed to have nice
sharp, for example, an n-dimensional hypercube, because the computer can easily generate
points from a hypercube. We generate a random point from the hypercube and check the
feasibility of this point. f it is feasible, then it will be accepted as a chromosome. If
not, then regenerate a point from the hypercube randomly until a feasible one is obtained.
Repeat the above process pop-size times, we can make pop-size initial feasible chromosomes

Evaluation function
Evaluation function, denoted by eval(V), is to assign a probability of reproduction to each
chromosome V so that its likelihood of being selected is proportional to its fitness relative
to the other chromosomes in the population, that is, the chromosomes with higher fitness
will have more chance to produce offspring by using roulette wheel selection.

Let Ifi, V2, , Vpop^size be the pop-size chromosomes at the current generation. One
well-known method is based on allocation of reproductive trials according to rank rather
than actual objective values. No matter what kind of mat hematical programming (single-
objective or multiobjective), it is reasonable to assume that the user can give an order
relationship among the pop-size chromosomes Vb Vs? - - , Vpop-size such that the pop-size
chromosomes can be rearranged from good to bad, i.e., the better the chromosome is, the
smaller ordinal number it has. For example, we can compu all objectives at every priority
level for a given goal programming by employing the te
[S, 1 l]. Then, we have the following order relationship for the chromosomes: for any two
chromosomes, if the higher-priority objectives are equal, then, in the current priority level,
the one with minimal objective value is better. This relationship is an order on the feasible
set and can rearrange these chromosomos from good to bad. If two different chromosomes
have the same objective values, then we rearrange these chromosomes randomly.

Now let a parameter a 6 (0 , l) in the genetic system be given, then we can define the

Dependen t-Chance Integer Programming

so-called rank-based evaluation function as follows,

eval(V,) = a (l - a) i 1 , i = 1,2, ,pop-size.

We mention that i = 1 means the best individual, i = pop-size the worst individual.
5.4 Selection process
The selection process is based on spinning the roulette wheel pop-size times, each time we
select a single chromosome for a new population in the following way:

Step 1.

Step 2.
Step 3.
Step 4.

Calculate the cumulative probability qi for each chromosome L(,

qo = 0
i

qi = eval(y), i = 1,2, - - - , pop-size.
J'=l

Generate a random real number r in [O, qpopAize].

Select the i-th chromosome V^ (1 <, i <, pop-size) such that qi-1 < r <, qi.
Repeat steps 2 and 3 pop-size times and obtain pop-size copies of chromosomes.

5.5 Crossover operation
We define a parameter Pc of a genetic system as the probability of crossover . This probabil-
ity gives us the expected number Pc - pop-size of chromosomes which undergo the crossover
operation.

In order to determine the parents for crossover operation, let us do the following process
repeatedly from i = 1 to pop-size: generating a random real number r from the interval
[O, l], the chromosome K is selected as a parent if r < Pc.

We denote the selected parents as V;, V;, V ̂ m m . and divide them to the following pairs:

Let us illustrate the crossover operator on each pair by (V, %). At first, generate a random
number c from the open interval (0, l), then the crossover operator on V and V will produce
two children X and Y as follows:

Generally speaking, this arithmetical crossover does not ensure that both children are fea-
sible because the feasible set consists of discrete points. So we must check the feasibility
of each child. If both children are feasible, then we replace the parents by them. If not,
we keep the feasible one if exists, and then re-do the crossover operator by regenerating the
random number c until two feasible children are obtained or a given number of cycles is
finished. In this case, we only replace the parents by the feasible children.
5.6 Mutation operation
We define a parameter Pm of a genetic system as the probability of mutation. This prob-
ability gives us the expected number of Pm - pop-size of chromosomes which undergo the
mutation operations.

Similar to the process of selecting parents for crossover operation, we repeat the following
steps from i = 1 to pop-size: generating a random real number r from the interval [0, l],
the chromosome V^ is selected as a parent for mutation if r < Pm.

For each selected parent, denoted by V = (xi, x2, , xn), we mutate it by the following
way. We choose a mutation direction d in Rn randomly, if V + M d is not feasible for the

124 K. Iwamura & B. Liu

constraints, then we set M as a random number between 0 and M until it is feasible, where
is a large positive number defined in the section of Initialization process. If the above

rocess can not find a feasible solution in a predetermined number of iterations, then sets
= 0. We replace the parent V by its child

5.7 Stochastic simulation based genetic algorithm
Following selection, crossover and mutation, the new population is ready for its next evalu-
ation. The genetic algorithm will terminate after a given number of cyclic repetitions of the
above steps. We can summarize the stochastic simulation based genetic algorithm for solving
both chance constrained integer programming and dependent-chance integer programming
models as follows.

Procedure Stochastic Simulation based Genetic Algorithm
Input parameters: pop-size, Pc, Pm;
Initialize the chromosomes b y Initialization Process;
R E P E A T

Update chromosomes b y crossover and mutation operatorq
Compute the evaluation function for all chromosomes b y stochastic simulation;
Select chromosomes b y sampling mechanism;

L(terrnination,condition)

It is known that the best chromosome does not necessarily appear in the last generation.
So we have to keep the best one from the beginning. If we find a better one in the new
population, then replace the old one by it. This chromosome will be reported as the solution
after finishing the evolution.

6. Numerical Examples
The computer code of the stochastic simulation based genetic algorithm for solving both
chance constrained integer programming and dependent-chance integer programming models
has been written in C language. To illustrate the effectiveness of the proposed genetic
algorithm, a set of numerical examples has been performed, and the results are successful.
Here we give some numerical examples which are all performed on a personal computer with
the following parameters:
the population size is 30, the probability of crossover Pc is 0.3, the probability of mutation
Pm is 0.2, the parameter a in the rank-based evaluation function is 0.05.

Now we suppose that there are 5 types of machines which produce 5 different products.
We assume that the production capacities of type i machines are lognormally distributed.
Here the density functions &(ci) of ~roduct ion capacities of type i machines are

where (p i ,o i) are (3.0, 1.0), (4.0, 1.6), (5.0, 1.6), (4.0, 1.2) and (3.0, 0.8), i = 1,2; - . , 5, re-
spectively. We also assume that the demands di of products i have exponential distribution~,
i.e., their densities are

-exp(-$) , 0 5 d i < c c
otherwise

Dependen t - Chance Integer Programming 125

where /?; are 10, 15, 20, 18 and 16, i = 1,2, - - ,5, respectively.
The levels of funds a, that need to be allocated to type i machines are 300, 800, 700,

900 and 1000, i = 1,2, ,5, respectively, and the total capital available for distribution a
is 12500. In addition, the spaces bi used by per type i machines are 20, 30, 50, 30 and 10,
i = 1,2, - - ,5, respectively, and the maximum available space b is 500.

If we want to find a capital budgeting plan with the maximum probability that the
productions meet the demands, then we can model it by the following dependent-chance
integer programming,

max Pr{cixi > di, i = 1,2, - ,5}
subject to:

300x1 + 800x2 + 700x3 + 900x4 + lOOOx5 < 12500
20x1 + 30x2 + 50x3 + 30x4 + 10x5 < 500
xi, i = 1,2, ,5, nonnegative integers

where c, and di are stochastic parameters with probability density functions (16) and (17))
i = 1,2, ,5, respectively, and xi, i = 1,2, , 5 are decision variables representing the
numbers of type i machines selected. A run of the stochastic simulation based genetic
algorithm with 300 generations shows that the optimal capital budgeting is

whose reliability level is 85.06%.
If we set the following target levels and priority structure:

Strict constraint: Space availability limitation,

Priority 1: The probability level of meeting the demand dl must achieve 97% as much as
possible, i.e.,

Pr{clxl 2 di} + d- - df = 0.97

where d i is to be minimized.
Priority 2: The probability level of meeting the demand d2 must achieve 95% as much as

possible, i.e.,
Pr{c2x2 > d2} + d; - dz = 0.95

where d; is to be minimized.
Priority 3: The probability level of meeting the demands d3, d4 and d5 must achieve 90%

as much as possible, i.e.,

where dz is to be minimized.
Priority 4: The total capital used for buying machines does not exceed 12500 as much as

possible, i.e.,

where d$ is to be minimized.

12G K. Iwamura & B. Liu

According t o the above mentioned priority structure and target levels, the following dependent-
chance goal programming is formulated,

lexmin{d~, dn , d; , d i }
subject to:

Pr{csxI 2 ds} + d; - df = 0.97
Pr{c2x2 2 d2} + d; - d$ = 0.95
Pr{cixi 2 di, i = 3,4,5} + dg - d: = 0.90
300x1 + 800x2 + 700x3 + 900x4 + 1000xs + d. - d: = 12500
20x1 + 3 k 2 + 50x3 + 30x4 + 10x5 < 500
d ~ , < l t > 0, i = 1,2 ,3 ,4

, xi, i = 1,2, - , 5 , nonnegative integers.

A run of the stochastic simulation based genetic algorithm with 400 generations shows that
the optimal capital budgeting is

which satisfies the first three objectives, but the fourth objective is 1200. In fact, we have

and the total capital that needs to be distributed is 13700.

7. Conclusion
In this paper we extended dependent-chance programming to integer case and modeled
capital budgeting problems by dependent-chance integer programming. It was also shown
that there is a common part between chance constrained programming and dependent-
chance programming via capital budgeting problems. In addition, we designed a stochastic
simulation based genetic algorithm for solving both chance constrained integer programming
and dependent-chance integer programming. Finally, the effectiveness of the stochastic
simulation based genetic algorithm was illustrated by some numerical examples.

References
[l] A. Charnes and W.W. Cooper: Chance-constrained programming. Management Sci-

ence, 6-1 (1959) 73-79.
[2] P.K. De, D. Acharya and K.C. Sahu: A chance-constrained goal programming model

for capital budgeting. Journal of the Operational Research Society, 33 (1982) 635-638.
[3] D .B. Fogel: An introduction to simulated evolutionary optimization. IEEE Transac-

tions on Neural Networks, 5 (1994) 3-14.
[4] D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning

(Addison- Wesley, 1989).
[5] K. Iwamura and B. Liu: A genetic algorithm for chance constrained programming.

Journal of Information & Optimization Sciences, 17-2 (1996) 409-422.
[6] K. Iwamura and B. Liu: Chance constrained integer programming models for capital

budgeting in fuzzy environments. to appear in Journal of the Operational Research
Society.

Dependen t-Chance Integer Programming 127

[7] P. Kall and S.W. Wallace: Stochastic Programming (John Wiley & Sons, 1994).
[8] A.J. Keown and J.D. Martin: A chance constrained goal programming model for work-

ing capital management. Engng. Econ., 22 (1977) 153-174.
[g] A.J. Keown and B.W. Taylor: A chance-constrained integer goal programming model

for capital budgeting in the production area. Journal of the Operational Research So-
ciety, 31-7 (1980) 579-589.

[l01 V.V. Kolbin: Stochastic Programming (D.Reide1 Dordrecht, 1977).
[l11 B. Liu: Dependent-chance programming: a class of stochastic programming. Computers

& Mathematics with Applications, 34-12 (1997) 89-104.
[l21 B. Liu and C. Ku: Dependent-chance goal programming and an application. J. of

Systems Engineering & Electronics, 4-2 (1 993) 40-47.
[l31 B. Liu: Dependent-chance goal programming and its genetic algorithm based approach.

Mathematical and Computer Modelling, 24-7 (1996) 43-52.
[l41 B. Liu and K. Iwarnura: Modelling stochastic decision systems using dependent-chance

programming. European Journal of Operational Research, 101-1 (1997) 193-203.
[l51 B. Liu and K. Iwarnura: Chance constrained programming with fuzzy parameters.

Fuzzy Sets and Systems, 94-2 (1998) 227-237.
[l61 Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, 2nd

ed. (Springer-Verlag, New York, 1994).
[l71 J.K. Sengupta: Stochastic Programming: Methods and Applications (North-Holland,

Amsterdam, 1972).
[l81 S. Vajda: Probabilistic Programming (Academic Press, New York, 1972).

Kakuzo Iwamura
Josai University
Sakado, Saitama 350-02
E-mail: kiwamuraOmath . j o s a i . ac . j p

