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Chapter 7

Quadratic assignment
problems: Formulations
and bounds

7.1 Introduction

Quadratic assignment problems belong to the most difficult combinatorial opti-
mization problems. Because of their many real world applications, many authors
have investigated this problem class. For a monograph on quadratic assignment
problems see the book of Çela [152]. A volume with selected papers on this topic
was edited by Pardalos and Wolkowicz [474]. Some of the more recent surveys
are Burkard [108], Pardalos, Rendl and Wolkowicz [473], Burkard, Çela, Pardalos
and Pitsoulis [119], Rendl [508], Loiola, Maia de Abreu, Boaventura-Netto, Hahn
and Querido [412]. The Quadratic Assignment Problem Library (QAPLIB), set
up by Burkard, Karisch and Rendl [128] and currently maintained by P.Hahn at
http://www.seas.upenn.edu/qaplib/, does not only contain many test examples
with computational results, but also a detailed bibliography on this topic and a
survey on latest results.

7.1.1 Models and applications

The Quadratic Assignment Problem (QAP) was introduced by Koopmans and Beck-
mann [378] in 1957 as a mathematical model for the location of indivisible econom-
ical activities. We want to assign n facilities to n locations with the cost being
proportional to the flow between the facilities multiplied by the distances between
the locations plus eventually costs for placing the facilities at their respective lo-
cations. The objective is to allocate each facility to a location such that the total
cost is minimized. We can model this assignment problem by means of three n× n
matrices:

A = (aik), where aik is the flow from facility i to facility k;

B = (bjl), where bjl is the distance from location j to location l;

0Extracted from R.E. Burkard, M. Dell’Amico and S. Martello, Assignment Problems, SIAM,
2008 (home page www.assignmentproblems.com).
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C = (cij), where cij is the cost of placing facility i at location j.

The QAP in Koopmans-Beckmann form can now be written as

min
ϕ∈Sn

n∑

i=1

n∑

k=1

aikbϕ(i)ϕ(k) +

n∑

i=1

ciϕ(i), (7.1)

where, as usual, Sn is the set of all permutations of the integers 1, 2, . . . , n. Each
individual product aikbϕ(i)ϕ(k) is the transportation cost caused by assigning fa-
cility i to location ϕ(i) and facility k to location ϕ(k). Thus each term ciϕ(i) +∑n
k=1 aikbϕ(i)ϕ(k) is the total cost given, for facility i, by the cost for installing it at

location ϕ(i), plus the transportation costs to all facilities k, if installed at locations
ϕ(1), ϕ(2), . . . , ϕ(n).

An instance of the QAP with input matrices A, B and C will be denoted
by QAP (A,B,C). If there is no linear term (hence no matrix C), we just write
QAP (A,B).

In many cases matrix B fulfills the triangle inequality bjl+ blr ≥ bjr for all j, l
and r. In these cases QAP (A,B) is called metric QAP.

A more general version of the QAP was introduced by Lawler [394]. Lawler
introduced a four-index cost array D = (dijkl) instead of the three matrices A, B
and C, and obtained the general form of a QAP as

min
ϕ∈Sn

n∑

i=1

n∑

k=1

diϕ(i)kϕ(k). (7.2)

The relationship with the Koopmans-Beckmann problem is

dijkl = aikbjl (i, j, k, l = 1, 2, . . . , n; i 6= k or j 6= l);

dijij = aiibjj + cij (i, j = 1, 2, . . . , n).

Example 7.1 We consider a Koopmans-Beckmann problem QAP (A,B,C) with
n = 3 and input matrices

A =




1 2 4
3 4 5
5 6 1


 , B =




2 3 6
1 4 7
5 6 2


 and C =




9 7 9
6 5 7
8 9 8


 .

Given a permutation, say ϕ = (2, 1, 3), we can easily compute the corresponding
objective function value by first permuting the rows and columns of B according to
ϕ, as in

Bϕ = (bϕ(i)ϕ(k)) =




4 1 7
3 2 6
6 5 2


 ,

and then deriving from (7.1)

z = (4 + 2 + 28) + (9 + 8 + 30) + (30 + 30 + 2) + (7 + 6 + 8) = 164.
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In order to obtain the equivalent Lawler’s form, we need to define the four-index
matrix D. Let us represent it through n2 square matrices Dij of order n. Matrix
Dij is formed by the elements dijkl with fixed indices i and j and variable indices
k, l = 1, 2, ..., n, for example:

D11 =




11 3 6
4 6 12
8 12 24


 .

In order to compute the objective function value corresponding to the same permu-
tation ϕ = (2, 1, 3), we need the matrices D12, D21 and D33:

D12 =




1 11 7
2 8 14
4 16 28


 , D21 =




6 9 18
14 12 24
10 15 30


 , D33 =




25 30 10
30 36 12
5 6 10


 .

Note that each matrix Dij has the cost ciϕ(i) added to the element stored in row i
and column j. We obtain

z = (11 + 2 + 28) + (9 + 14 + 30) + (30 + 30 + 10) = 164.

It is astonishing how many real life applications can be modeled as QAPs. An
early natural application in location theory was used by Dickey and Hopkins [205] in
a campus planning model. The problem consists of planning the sites of n buildings
on a campus, where bjl is the distance from site j to site l, and aik is the traffic
intensity between building i and building k. The objective is to minimize the total
weekly walking distance between the buildings. Another early application in this
area was described by Steinberg [555] who minimized the number of connections in
a backboard wiring problem, nowadays an outdated technology of historical interest
only. Elshafei [223] used QAPs in hospital planning. Bos [95] described a related
problem for forest parks.

In addition to facility location, QAPs appear in a variety of applications such
as computer manufacturing, scheduling, process communications and turbine bal-
ancing. In the field of ergonomics Pollatschek, Gershoni and Radday [490] as well
as Burkard and Offermann [130] showed that QAPs can be applied to typewriter
keyboard design. The problem is to arrange the keys on a keyboard so as to minimize
the time needed to write texts. Let the set of integers N = {1, 2, . . . , n} denote the
set of symbols to be arranged. Then aik denotes the frequency of the appearance
of the ordered pair of symbols i and k. The entries of the distance matrix bjl are
the times needed to press the key in position l after pressing the key in position
j. A permutation ϕ ∈ Sn describes an assignment of symbols to keys. An optimal
solution ϕ∗ for the QAP minimizes the average time for writing a text. A simi-
lar application related to ergonomic design is the development of control boards in
order to minimize eye fatigue by McCormick [427].

The turbine runner problem was originally studied by Bolotnikov [92] and
Stoyan, Sokolovskii and Yakovlev [557]. The blades of a turbine, which due to man-
ufacturing have slightly different masses, should be welded on the turbine runner
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such that the center of gravity coincides with the axis of the runner. Mosevich [442],
Schlegel [530] as well as Laporte and Mercure [395] applied the QAP model to this
problem. It has been shown that the minimization of the distance between the
center of gravity and the axis of the runner is NP-hard, whereas the maximization
can be obtained in polynomial time (see Burkard, Çela, Rote and Woeginger [120]
and Section 8.4).

Other applications concern the ranking of archeological data (Krarup and
Pruzan [381]), the ranking of a team in a relay race (Heffley [319]), the scheduling
of parallel production lines (Geoffrion and Graves [269]), the analysis of chemical
reactions for organic compounds (Ugi, Bauer, Brandt, Friedrich, Gasteiger, Jochum
and Schubert [576]) and combinatorial data analysis (Hubert [332]).

Quite a number of problems which are studied in combinatorial optimization
are special cases of quadratic assignment problems. We shortly describe in the next
sections combinatorial optimization problems which can be formulated as quadratic
assignment problems.


