
Journal of the Operations Research 
Society of Japan 

Vol. 42, No. 2, June  1999 

DEPENDENT-CHANCE INTEGER PROGRAMMING 
APPLIED TO CAPITAL BUDGETING 

Kakuzo Iwamura Baoding Liu 
Josuz Unzverszty Tsznghuu Unzverszty 

(Received April 21, 1997; Revised May 2, 1998) 

Abjtruct This paper attempts to model capital budgeting problems by a new technique of dependent- 
chance integer programming as well as dependent-chance multiobjective programming and goal program- 
ming. Some examples are provided to illustrate the potential applications in the area of capital budgeting. 
A stochastic simulation based genetic algorithm is also designed to solve both chance constrained integer 
programming and dependent-chance integer programming models. 

l. Introduction 
The original capital budgeting is concerned with maximizing the total net profit subject to 
budget constraint by selecting appropriate combination of projects. With the requirement of 
considering uncertainty of future demand and multiple conflicting goals, chance constrained 
integer programming was employed to model capital budgeting by Keown and Martin[8] in 
the working capital management and by Keown and Taylor[9] in the production area. De 
et  a1.[2] extended chance constrained goal programming to the zero-one case and applied it 
to capita1 budgeting problems. 

Chance constrained programming models can be converted into deterministic equivalents 
when the stochastic variables are normally distributed. Howeverl it is usually difficult to 
transform them to deterministic forms if the distributions of stochastic variables belong to 
other classes or the constraints are irregular. In order to solve general chance constrained 
programming models (continuous case), Iwamura and Liu[5] proposed a stochastic simula- 
tion based genetic algorithm in which the stochastic simulation is employed to check the 
chance constraints. On the other hand, Liu and Iwamura[15] developed a technique of 
chance constrained programming with fuzzy parameters rather than stochastic parameters 
and designed a fuzzy simulation based genetic algorithm for solving such a kind of models. 
The capital budgeting problems in fuzzy environments have been discussed by the new ap- 
proach in Iwamura and Liu[6]. In factl a unifying tkeatment of uncertain parameters leads 
to that fuzzy capital budgeting models are identical with stochastic models except for the 
facts that stochastic parameters and Pr have been replaced by fuzzy parameters and Posl 
respectively, where Pos represents the possibility of a fuzzy event. 

Dependent-chance programming as well as dependent-chance multiobjective program- 
ming and dependent-chance goal ~rograrnming[ll, 12? 13, 141 are a new type of stochastic 
models. This paper will extend dependent-chance programming to integer case, and show 
some potential applications of this kind of models in the area of capital budgeting. A 
stochastic simulation based genetic algorithm is also designed to solve both chance con- 
strained integer programmig and dependent-chance integer programming models. Finally, 
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we illustrate the effectiveness of stochastic simulation based genetic algorithm by some nu- 
merical examples. 

Capital Budgeting 
We assume that a company has the opportunity to install the machines in a plant. Suppose 
that there are n types of machines available. If we use xi to denote the numbers of type 
i machines selected) i = 1,2, - - ) n, respectively, then xi's are nonnegative integers, i.e., 
xi = 0, l ?  2? 37 - -. Let ai be the level of funds that needs to be allocated to type i machine 
and a be the total capital available for distribution, then we should have 

i.e., the total capital used for buying machines can not exceed the amount available. 
The other constraint is the maximum space availability limitation for the machines. 

Suppose that bi are the spaces used by type i machine? i = l, 2) - - m , n, respectively. If the 
total available space is b7 then we have the following constraint, 

In addition, we suppose that different machines produce different products. Let c; be the 
production capacity of the type i machine for product z ,  then the total amounts of products 
i are cixi, i = l 2) - , n, respectively. We also assume that the future demands for products 
i are di, i = l, 2, a , n. Since the production should satisfy the future demands, we have 

If pi are the net profits per type i machines ) z = l, 2, . , n, respectively, then the total net 
profit is ~ 1 x 1  + ~ 2 x 2  + - - + pnxn. Our objective is to maximize the total net profit) i.e.? 

Thus we have a deterministic model for capital budgeting based on integer programming, 

a l x l +  ~ 2 x 2  + + m + anxn 5 a 
blxl+ b 2 ~ 2  + * a + bnxn 5 b (5) 

c i x i z d i 7  i = 1 7 2 , - . . ) n  
xi, i = l ,  2, - a n9 nonnegative integers. 

Certainly) real capital budgeting problems are much more complex than the above- 
mentioned model. However, this is enough for illustrating the new technique of dependent- 
chance integer programming. 

3. Chance Constrained Programming Models 
Chance constrained programming was pioneered by Charnes and Cooper [l] as a means of 
handling uncertainty by specifying a confidence level at which it is desired that the uncertain 
constraint holds. Here let us model the capital budgeting problems by chance constrained 
programming based on the works[2, 8, 91. 

In practice, the production capacities ci and future demands di are not necessarily de- 
termini~tic~ Here we suppose that they are stochastic variables. Let 4; and $i denote the 
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probability density functions of ci and di, i = l ,  2, - , n, respectively. Then the constraints 
cixi 2 di are uncertain. Suppose that the manager gives ai as the probabilities of meeting 
the demands of products i ,  i = l, 2, , n, respectively. Then we have the following chance 
constraints, 

Pr{cixi 2 di} 2 ai, i = 1,2, - , n  (6) 

where Pr{-} denotes the probability of the event { S ) .  Thus, a chance constrained integer 
programming is immediately formulated as follows, 

a m  + a 2 ~ 2  + + anxn 5 a 
+ b 2 ~ 2  + . a + bnxn 5 b 

Pr{cixi 2 di} 2 ai, i = l, 2, , n 
xi, i = l, 2, - - , n, nonnegative integers. 

Now we suppose that the following target levels and priority structure have been set by 
the manager: 

Strict constraint: The maximum space availability limitation for machines, i.e., blxl + 
b2x2 + - + bnxn 5 b. 

Priority l: Budget goal (the total capital does not exceed the total available capital a as 
much as possible), i.e., 

where d t  will be minimized. 
Priority 2: Demand goal (the probability of meeting the demands achieves the given level 

a as much as possible), i.e., 

where dy will be minimized. 
Priority 3: Profit goal (the total profit is not less than the given level p as much as 

possible), i.e., 

P I X I +  ~ 2 x 2  + + pnxn + d; - d l  = p 

where dg will be minimized. 

Then we have a chance constrained integer goal programming as follows, 

lexmin{dt , d;, dg } 
subject to: 

alxl + a2x2 + + anxn + dy - d t  = a 
Pr{cixi 2 di, i = l, 2, , n} + d; - d t  = a 
~ 1 x 1  + ~ 2 x 2  + + pnxn + dg d: = p 
blxl + b 2 ~ 2  + + bnxn 5 b 
dr,d: 2 0, i = 1,2,3  
xi, i = l , 2 , - W - , n ,  nonnegativeintegers. 

where lexmin represents lexicographical minimization. 
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4. Dependent-Chance Programming Models 
Roughly speaking? dependent-chance programming [l l ,  12? 13, 141 is related to optimizing 
some chance functions of events defined on a so-called stochastic set in a complex uncertain 
decision system. In deterministic models as well as expected value model and chance con- 
strained programming? the feasible set is essentially assumed to be deterministic after the 
real problem is modeled, i0ea7 an optimal solution is always given regardless of whether or 
not it can be performed in practice. However, the given solution may not be performed if the 
realization of uncertain parameter goes to bad cases. So the dependent-chance programming 
model never assumes that the feasible set is deterministic. Although a deterministic solution 

y the dependent-chance programming model, this solution is only requested to be 
performed as much as possible. This special feature of dependent-chance programming is 
very different from the existing stochastic programming techniques else. 

n order to understand general dependent-chance programming correctly, we strongly 
reminds the potential readers that the feasible set of dependent-chance programming is 

owever? from the new applied area presented in this section, we can extend 
our object to the case in which the feasible set is indeed stochastic. This fact leads to that 
there is a common part between chance constrained programming and dependent-chance 
programming* 

he simplest model based on dependent-chance integer programming for capital bud- 
geting is 

maxPr{cixi 2 di, i = 1 , 2 , - . .  ,n}  
subject to: 

alxl + a2x2 + * - + anxn 5 a (9) 
blxl + b 2 ~ 2  + . + bnxn 5 b 
xi, ~ = 1 , 2 ~ * . - , n ,  nonnegativeintegers 

which is concerned with finding the most safe solution, i.e., the one with the maximum 
probability that the productions meet the demands. 

Sometimes? we may wish to maximize the reliability levels of all kinds of demands sepa- 
rately, then the problem may be formulated as the following dependent-chance multiobjec- 
tive programming model, 

In order to balance the multiple conflicting objectives? capital budgeting may be modeled 
by the following dependent-chance goal programming according to the target levels and 
priority structure set by the decision maker, 

subject to: 
Pr{cixi 2 di} + d; - d: = ai, i = 1 7 2 , - - .  , n  
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where Pj = the preemptive priority factor which expresses the relative importance of various 
goals) Pj Pj+l) for all j, uij = weighting factor corresponding to positive deviation for 
goal i with priority j assigned) vij = weighting factor corresponding to negative deviation 
for goal i with priority j assigned) cl: = positive deviation from the target of goal i) d r  = 

negative deviation from the target of goal i )  ai = the target value according to goal i )  l = 
number of priorities. 

We should mention that the dependent-chance integer goal programming (l l) is essen- 
tially identical with chance constrained integer goal programming under our assumptions. 
This means that there is a common part between dependent-chance programming and chance 
constrained programming) i.e., a dependent-chance goal programming degenerates into a 
chance constrained goal programming when the stocllastic feasible set degenerates into a 
deterministic feasible set. However) if some of the parameters U )  b) ui and bi) i = 1) 2) - - m , n in 
(11) are assumed stochastic, then the model is indeed different from the chance constrained 
programming because the feasible set determined by 

is a stochastic set. 

5 .  Stochastic Simulation Based Genetic Algorithm 
Genetic algorithms are a stochastic search method for optimization problems based on the 
mechanics of natural selection and natural genetics) i.e.) the principle of evolution-survival 
of the fittest. Genetic algorithms have demonstrated considerable success in providing good 
solutions to many complex optimization problems and received more and more attentions 
during the past three decades. When the objective functions to be optimized in the opti- 
mization problems are multimodal or the search spaces are particularly irregular) algorithms 
need to be highly robust in order to avoid getting stuck at local optimal solution. The ad- 
vantage of genetic algorithms is just to obtain the global optimal solution fairly. Genetic 
algorithms (including evolution programs and evolution strategies) have been well discussed 
and summarized by numerous literature, such as Goldberg [4] ) Michalewicz[16] and Fogel[3], 
and applied to a wide variety of problems, such as optimal control problems? transporta- 
tion problems, traveling salesman problems) drawing graphs, scheduling) group technology) 
facility layout and location) as well as pattern recognition. 

In this section) we design a stochastic simulation based genetic algorithm for solving 
both chance constrained integer programming and dependent-chance integer programming 
models (including multiobjective programming and goal programming). We will discuss 
representation structure, handling constraints) initialization process, evaluation function, 
selection process, crossover operation and mutation operation in turn. 
5. l Representation structure 
There are two ways to represent a solution of an optimization problem) binary vector and 
floating vector- We can use a binary vector as a chromosome to represent real value of 
decision variable, where the length of the vector depends on the required precision. The 
necessity for binary codings has received considerable criticism. 

An alternative approach to represent a solution is the floating point implementation 
in which each chromosome vector is coded as a vector of floating numbers, of the same 
length as the solution vector. Here we use a vector V = (xl ) x2, - - - , xn) as a chromosome 
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to represent a solution to the optimization problem, where n is the dimension. Certainly, 
in capital budgeting problems all variables xi's will be confined to integer values. In fact, if 
we code the algorithm by C language, then we can ensure that the vector V is integer by 
defining it as an integer array. 

Initialization process 
define an integer pop-size as the number of chromosomes and initialize pop-size chro- 

mosomes randomly. Usually, it is difficult for complex optimization problems to  produce 
feasible chromosome explicitly. So we employ one of the following two ways as the initial- 
ization process, depending on what kind of information the decision maker can give. 

First case is that the decision maker can determine an interior point, denoted by Vo, in 
the constraint set. Thi S very possible for real decision problem. We also need to  define a 
large positive number which ensures that all the genetic operators are probabilistically 
complete for the feasible solutions. This number M is used for not only initialization process 

ut also mutation operatic The pop-size chromosomes will be produced as follows. We 
ornly select a direction in SRn and define a chromosome V as + d if it is feasible 

ality constraints, otherwise, we set M by a random number between 0 and M 
d is feasible. If a new feasible chromosome is not obtained in a given number of 

times, then we take V. as the chromosome. Repeat this process pop-size times and produce 
size initial feasible solutions Vi, V2, a a . , Vpop-size. 
f the decision maker fails to give such an interior point, then he can predetermine a 

region which contains the feasible set. Usually, this region will be designed to have nice 
sharp, for example, an n-dimensional hypercube, because the computer can easily generate 
points from a hypercube. We generate a random point from the hypercube and check the 
feasibility of this point. f it is feasible, then it will be accepted as a chromosome. If 
not, then regenerate a point from the hypercube randomly until a feasible one is obtained. 
Repeat the above process pop-size times, we can make pop-size initial feasible chromosomes 

Evaluation function 
Evaluation function, denoted by eval(V), is to assign a probability of reproduction to each 
chromosome V so that  its likelihood of being selected is proportional to  its fitness relative 
to  the other chromosomes in the population, that is, the chromosomes with higher fitness 
will have more chance to  produce offspring by using roulette wheel selection. 

Let Ifi, V2, , Vpop^size be the pop-size chromosomes at the current generation. One 
well-known method is based on allocation of reproductive trials according to rank rather 
than actual objective values. No matter what kind of mat hematical programming (single- 
objective or multiobjective), it is reasonable to assume that the user can give an order 
relationship among the pop-size chromosomes Vb Vs? - - , Vpop-size such that the pop-size 
chromosomes can be rearranged from good to bad, i.e., the better the chromosome is, the 
smaller ordinal number it has. For example, we can compu all objectives at every priority 
level for a given goal programming by employing the te  
[S, 1 l]. Then, we have the following order relationship for the chromosomes: for any two 
chromosomes, if the higher-priority objectives are equal, then, in the current priority level, 
the one with minimal objective value is better. This relationship is an order on the feasible 
set and can rearrange these chromosomos from good to  bad. If two different chromosomes 
have the same objective values, then we rearrange these chromosomes randomly. 

Now let a parameter a 6 ( 0 , l )  in the genetic system be given, then we can define the 
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so-called rank-based evaluation function as follows, 

eval(V,) = a ( l  - a ) i 1 ,  i = 1,2,  ,pop-size. 

We mention that i = 1 means the best individual, i = pop-size the worst individual. 
5.4 Selection process 
The selection process is based on spinning the roulette wheel pop-size times, each time we 
select a single chromosome for a new population in the following way: 

Step 1. 

Step 2. 
Step 3. 
Step 4. 

Calculate the cumulative probability qi for each chromosome L(, 

qo = 0 
i 

qi = eval(y),  i = 1,2, - - - , pop-size. 
J'=l 

Generate a random real number r in [O, qpopAize]. 

Select the i-th chromosome V^ (1 <, i <, pop-size) such that qi-1 < r <, qi. 
Repeat steps 2 and 3 pop-size times and obtain pop-size copies of chromosomes. 

5.5 Crossover operation 
We define a parameter Pc of a genetic system as the probability of crossover . This probabil- 
ity gives us the expected number Pc - pop-size of chromosomes which undergo the crossover 
operation. 

In order to determine the parents for crossover operation, let us do the following process 
repeatedly from i = 1 to pop-size: generating a random real number r from the interval 
[O, l], the chromosome K is selected as a parent if r < Pc. 

We denote the selected parents as V;, V;, V  ̂ m m . and divide them to the following pairs: 

Let us illustrate the crossover operator on each pair by (V, %). At first, generate a random 
number c from the open interval (0, l), then the crossover operator on V and V will produce 
two children X and Y as follows: 

Generally speaking, this arithmetical crossover does not ensure that both children are fea- 
sible because the feasible set consists of discrete points. So we must check the feasibility 
of each child. If both children are feasible, then we replace the parents by them. If not, 
we keep the feasible one if exists, and then re-do the crossover operator by regenerating the 
random number c until two feasible children are obtained or a given number of cycles is 
finished. In this case, we only replace the parents by the feasible children. 
5.6 Mutation operation 
We define a parameter Pm of a genetic system as the probability of mutation. This prob- 
ability gives us the expected number of Pm - pop-size of chromosomes which undergo the 
mutation operations. 

Similar to the process of selecting parents for crossover operation, we repeat the following 
steps from i = 1 to pop-size: generating a random real number r from the interval [0, l], 
the chromosome V^ is selected as a parent for mutation if r < Pm. 

For each selected parent, denoted by V = (xi, x2, , xn), we mutate it by the following 
way. We choose a mutation direction d in Rn randomly, if V + M d is not feasible for the 
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constraints, then we set M as a random number between 0 and M until it is feasible, where 
is a large positive number defined in the section of Initialization process. If the above 

rocess can not find a feasible solution in a predetermined number of iterations, then sets 
= 0. We replace the parent V by its child 

5.7 Stochastic simulation based genetic algorithm 
Following selection, crossover and mutation, the new population is ready for its next evalu- 
ation. The genetic algorithm will terminate after a given number of cyclic repetitions of the 
above steps. We can summarize the stochastic simulation based genetic algorithm for solving 
both chance constrained integer programming and dependent-chance integer programming 
models as follows. 

Procedure Stochastic Simulation based Genetic Algorithm 
Input parameters: pop-size, Pc, Pm; 
Initialize the chromosomes b y  Initialization Process; 
R E P E A T  

Update chromosomes b y  crossover and mutation operatorq 
Compute the evaluation function for all chromosomes b y  stochastic simulation; 
Select chromosomes b y  sampling mechanism; 

L(terrnination,condition) 

It is known that the best chromosome does not necessarily appear in the last generation. 
So we have to  keep the best one from the beginning. If we find a better one in the new 
population, then replace the old one by it. This chromosome will be reported as the solution 
after finishing the evolution. 

6. Numerical Examples 
The computer code of the stochastic simulation based genetic algorithm for solving both 
chance constrained integer programming and dependent-chance integer programming models 
has been written in C language. To illustrate the effectiveness of the proposed genetic 
algorithm, a set of numerical examples has been performed, and the results are successful. 
Here we give some numerical examples which are all performed on a personal computer with 
the following parameters: 
the population size is 30, the probability of crossover Pc is 0.3, the probability of mutation 
Pm is 0.2, the parameter a in the rank-based evaluation function is 0.05. 

Now we suppose that  there are 5 types of machines which produce 5 different products. 
We assume that the production capacities of type i machines are lognormally distributed. 
Here the density functions &(ci) of ~roduct ion  capacities of type i machines are 

where (p i ,o i )  are (3.0, 1.0), (4.0, 1.6), (5.0, 1.6), (4.0, 1.2) and (3.0, 0.8), i = 1,2; - . ,  5, re- 
spectively. We also assume that the demands di of products i have exponential distribution~, 
i.e., their densities are 

-exp(-$) ,  0 5 d i < c c  
otherwise 
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where /?; are 10, 15, 20, 18 and 16, i = 1,2, - - ,5,  respectively. 
The levels of funds a, that need to be allocated to type i machines are 300, 800, 700, 

900 and 1000, i = 1,2, ,5,  respectively, and the total capital available for distribution a 
is 12500. In addition, the spaces bi used by per type i machines are 20, 30, 50, 30 and 10, 
i = 1,2, - - ,5, respectively, and the maximum available space b is 500. 

If we want to find a capital budgeting plan with the maximum probability that the 
productions meet the demands, then we can model it by the following dependent-chance 
integer programming, 

max Pr{cixi > di, i = 1,2, - ,5} 
subject to: 

300x1 + 800x2 + 700x3 + 900x4 + lOOOx5 < 12500 
20x1 + 30x2 + 50x3 + 30x4 + 10x5 < 500 
xi, i = 1,2, ,5,  nonnegative integers 

where c, and di are stochastic parameters with probability density functions (16) and (17)) 
i = 1,2, ,5,  respectively, and xi, i = 1,2, , 5  are decision variables representing the 
numbers of type i machines selected. A run of the stochastic simulation based genetic 
algorithm with 300 generations shows that the optimal capital budgeting is 

whose reliability level is 85.06%. 
If we set the following target levels and priority structure: 

Strict constraint: Space availability limitation, 

Priority 1: The probability level of meeting the demand dl must achieve 97% as much as 
possible, i.e., 

Pr{clxl 2 di} + d- - df = 0.97 

where d i  is to be minimized. 
Priority 2: The probability level of meeting the demand d2 must achieve 95% as much as 

possible, i.e., 
Pr{c2x2 > d2} + d; - dz = 0.95 

where d; is to be minimized. 
Priority 3: The probability level of meeting the demands d3, d4 and d5 must achieve 90% 

as much as possible, i.e., 

where dz is to be minimized. 
Priority 4: The total capital used for buying machines does not exceed 12500 as much as 

possible, i.e., 

where d$ is to be minimized. 
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According t o  the above mentioned priority structure and target levels, the following dependent- 
chance goal programming is formulated, 

lexmin{d~, dn , d; , d i }  
subject to: 

Pr{csxI 2 ds} + d; - df = 0.97 
Pr{c2x2 2 d2} + d; - d$ = 0.95 
Pr{cixi 2 di, i = 3,4,5} + dg - d: = 0.90 
300x1 + 800x2 + 700x3 + 900x4 + 1000xs + d. - d: = 12500 
20x1 + 3 k 2  + 50x3 + 30x4 + 10x5 < 500 
d ~ , < l t >  0, i = 1,2 ,3 ,4  

, xi, i = 1,2,  - , 5 ,  nonnegative integers. 

A run of the  stochastic simulation based genetic algorithm with 400 generations shows that 
the optimal capital budgeting is 

which satisfies the first three objectives, but the fourth objective is 1200. In fact, we have 

and the total capital that  needs to  be distributed is 13700. 

7. Conclusion 
In this paper we extended dependent-chance programming to integer case and modeled 
capital budgeting problems by dependent-chance integer programming. It was also shown 
that there is a common part between chance constrained programming and dependent- 
chance programming via capital budgeting problems. In addition, we designed a stochastic 
simulation based genetic algorithm for solving both chance constrained integer programming 
and dependent-chance integer programming. Finally, the effectiveness of the stochastic 
simulation based genetic algorithm was illustrated by some numerical examples. 

References 
[l] A. Charnes and W.W. Cooper: Chance-constrained programming. Management Sci- 

ence, 6-1 (1959) 73-79. 
[2] P.K. De, D. Acharya and K.C. Sahu: A chance-constrained goal programming model 

for capital budgeting. Journal of the Operational Research Society, 33 (1982) 635-638. 
[3] D .B. Fogel: An introduction to simulated evolutionary optimization. IEEE Transac- 

tions on Neural Networks, 5 (1994) 3-14. 
[4] D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning 

(Addison- Wesley, 1989). 
[5] K. Iwamura and B. Liu: A genetic algorithm for chance constrained programming. 

Journal of Information & Optimization Sciences, 17-2 (1996) 409-422. 
[6] K. Iwamura and B. Liu: Chance constrained integer programming models for capital 

budgeting in fuzzy environments. to appear in Journal of the Operational Research 
Society. 



Dependen t-Chance Integer Programming 127 

[7] P. Kall and S.W. Wallace: Stochastic Programming (John Wiley & Sons, 1994). 
[8] A.J. Keown and J.D. Martin: A chance constrained goal programming model for work- 

ing capital management. Engng. Econ., 22 (1977) 153-174. 
[g] A.J. Keown and B.W. Taylor: A chance-constrained integer goal programming model 

for capital budgeting in the production area. Journal of the Operational Research So- 
ciety, 31-7 (1980) 579-589. 

[l01 V.V. Kolbin: Stochastic Programming (D.Reide1 Dordrecht, 1977). 
[l11 B. Liu: Dependent-chance programming: a class of stochastic programming. Computers 

& Mathematics with Applications, 34-12 (1997) 89-104. 
[l21 B. Liu and C. Ku: Dependent-chance goal programming and an application. J.  of 

Systems Engineering & Electronics, 4-2 (1 993) 40-47. 
[l31 B. Liu: Dependent-chance goal programming and its genetic algorithm based approach. 

Mathematical and Computer Modelling, 24-7 (1996) 43-52. 
[l41 B. Liu and K. Iwarnura: Modelling stochastic decision systems using dependent-chance 

programming. European Journal of Operational Research, 101-1 (1997) 193-203. 
[l51 B. Liu and K. Iwarnura: Chance constrained programming with fuzzy parameters. 

Fuzzy Sets and Systems, 94-2 (1998) 227-237. 
[l61 Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, 2nd 

ed. (Springer-Verlag, New York, 1994). 
[l71 J.K. Sengupta: Stochastic Programming: Methods and Applications (North-Holland, 

Amsterdam, 1972). 
[l81 S. Vajda: Probabilistic Programming (Academic Press, New York, 1972). 

Kakuzo Iwamura 
Josai University 
Sakado, Saitama 350-02 
E-mail: kiwamuraOmath . j o s a i  . ac . j p  


