
Evolutionary Construction of Perfectly Balanced
Boolean Functions

No Authors Given

Abstract—Finding Boolean functions suitable for crypto-
graphic primitives is a complex combinatorial optimization
problem, since they must satisfy several properties to resist
cryptanalytic attacks, and the space is very large, which grows
super exponentially with the number of input variables. Recent
research has focused on the study of Boolean functions that satisfy
properties on restricted sets of inputs due to their importance
in the development of the FLIP stream cipher. In this paper, we
consider one such property, perfect balancedness, and investigate
the use of Genetic Programming (GP) and Genetic Algorithms
(GA) to construct Boolean functions that satisfy this property
along with a good nonlinearity profile. We formulate the related
optimization problem and define two encodings for the candidate
solutions, namely the truth table and the weightwise balanced
representations. Somewhat surprisingly, the results show that
GA with the weightwise balanced representation outperforms
GP with the classical truth table phenotype in finding highly
nonlinear WPB functions. This finding is in stark contrast to
previous findings on the evolution of globally balanced Boolean
functions, where GP always performs best.

Index Terms—Boolean functions, balancedness, nonlinearity,
genetic algorithms, genetic programming

I. INTRODUCTION

Boolean functions are mathematical objects that are used
in various domains like combinatorial design [1], [2], coding
theory [3], [4], cryptography [5], and telecommunications [6].
Since Boolean functions are widely used, it stands to rea-
son that the design requirements also differ, necessitating
diverse construction options. Commonly, Boolean functions
are constructed by following some algebraic construction,
random search, or heuristics. Comparing those approaches,
we can conclude that heuristics are uniquely positioned as
they allow the search for Boolean functions with any specific
properties. Naturally, whether such an approach will yield an
acceptable solution is difficult to predict as it depends on the
problem difficulty (the combinations of properties that Boolean
functions need to fulfill) and the size of Boolean functions that
should be used. One well-explored family of techniques to
design Boolean functions are evolutionary algorithms (EAs).

Recently, Boolean functions started to be used in a new
interesting scenario in cryptography, requiring them to be re-
stricted over subsets of input vectors. Such Boolean functions
can then be used in modern stream ciphers like FLIP [7].
In this context, we are interested in Boolean functions of n
variables where all restrictions of Hamming weights between
1 and n−1 are balanced (i.e., have the same number of zeros
and ones). Such functions are called Weightwise Perfectly
Balanced (WPB) Boolean functions.

In general, finding Boolean functions that fulfill specific
properties is not easy if they depend on a large number
of inputs. Since the search space for n-variable Boolean
functions is 22

n

, an exhaustive search is already impossible
for n = 6. Furthermore, while it is known that WPB Boolean
functions need to have a required number of monomials in
their algebraic normal form, there are only a few known
algebraic constructions for WPB functions. Thus, heuristic
algorithms provide an interesting perspective to construct this
kind of functions.

Finding WPB functions is a relevant problem from the
algebraic perspective as such functions are relatively “new”
and cryptographic perspective as they can be used in specific
types of stream ciphers. What is more, due to limited results
up to now, it is also not known what the best possible crypto-
graphic properties are (e.g., nonlinearity) that such functions
can reach. Indeed, the currently known bounds are rather
loose, and improvements could be possible. Finding them with
evolutionary algorithms would prove that such techniques have
their place even in the domains traditionally reserved for more
deterministic approaches.

To the best of our knowledge, no existing works use heuris-
tics to design WPB functions. Still, if we consider the body
of works (see Section III) that use evolutionary algorithms to
evolve Boolean functions with various properties, it provides
us with optimism that interesting results are possible.

This work concentrates on evolving WPB Boolean functions
with eight inputs. To this end, we use a genetic algorithm (GA)
and a genetic programming (GP) technique. More precisely,
we start by analyzing the main difficulties in such a process
and discuss how evaluating the nonlinearity property becomes
a bottleneck as it is not possible to use efficient algorithms.
Then, we discuss how calculation can still be improved
by restricting our attention to only part of the calculation.
Finally, we experiment with different variants of evolutionary
algorithms, where for some we impose requirements that the
solutions must be balanced to reduce the search space size and
make the optimization process more efficient.

Our results show that both GA and GP can reach a good
performance on this problem, and moreover GA based on the
weightwise balanced representation can even surpass GP with
the classic tree-to-table encoding. This represents a remarkable
result as it gives us Boolean functions with good restricted
nonlinearities, but also becomes one of the rare scenarios
where GA outperforms GP when evolving Boolean functions.

II. BACKGROUND

Here we recall the basic definitions and results related to
Boolean functions and their cryptographic properties used in
the remainder of the paper. We refer the reader to Carlet’s
book [8] for a more thorough treatment of the subject.

Let F2 = {0, 1} be the finite field with two elements, with
the sum (i.e., XOR) and multiplication (i.e., AND) operations
respectively denoted by ⊕ and concatenation. For any n ∈ N,
we denote by Fn

2 the n-dimensional vector space over F2, with
the vector sum defined coordinate-wise. Given x, y ∈ Fn

2 , their
dot product is given by x · y =

⊕n
i=1 xiyi. The Hamming

distance dH(x, y) of x and y is the number of coordinates
in which they differ. The Hamming weight wH(x) of a
vector x is the Hamming distance between x and the null
vector 0. Equivalently, the Hamming weight of vector x can
be defined as the cardinality of the support of x, that is,
wH(x) = |supp(x)| = |{i : xi ̸= 0}|.

An n-variable Boolean function is a mapping f : Fn
2 → F2.

The most common way to uniquely represent f is through its
truth table, which is the 2n-bit vector specifying the values
of f for all possible input vectors in Fn

2 , assuming they are
lexicographically ordered. The Hamming weight of f is then
simply defined as the weight of its truth table, and it is
denoted as wH(f); further, f is balanced if wH(f) = 2n−1,
or equivalently if its truth table is composed of an equal
number of zeros and ones. Balancedness is a fundamental
cryptographic criterion for Boolean functions used in stream
and block ciphers designs: indeed, unbalanced functions have
a statistical bias that can be exploited in attacks [8].

The Algebraic Normal Form (ANF) is another common
method used in cryptography to uniquely represent a Boolean
function. Given f : Fn

2 → F2, and observing that each element
in F2 is idempotent (that is, x2 = x for all x ∈ F2), the ANF
of f is defined as the following multivariate polynomial in the
quotient ring F2[x1, · · · , xn]/(x

2
1 ⊕ x1, · · · , x2

n ⊕ xn):

Pf (x) =
⊕

I∈2[n]

aI

(∏
i∈I

xi

)
, (1)

where 2[n] denotes the power set of [n] = {1, · · · , n}. The
coefficients aI ∈ Fn

2 that determine the ANF polynomial can
be recovered from the truth table of f via Möbius inversion:

aI =
⊕

x∈Fn
2 :supp(x)⊆I

f(x) . (2)

Then, the algebraic degree of f is defined as the largest
monomial in the ANF of f , or equivalently as the cardinality
of the largest I ∈ 2[n] such that aI ̸= 0.

Boolean functions of degree at most 1 are also called
affine functions. Remark that the ANF of an affine function
is basically an XOR of a subset of the input variables and a
constant, or equivalently a · x ⊕ b with a ∈ Fn

2 and b ∈ F2.
When b = 0, the resulting function a · x is also called linear.
The nonlinearity of a Boolean function f : Fn

2 → F2 is the
minimum Hamming distance of f from the set of all n-variable
affine functions. This criterion is very important in symmetric

ciphers. Indeed, Boolean functions with a high nonlinearity (or
equivalently, that are hard to approximate by affine functions)
have better resistance towards fast-correlation attacks in stream
ciphers and linear cryptanalysis in block ciphers.

The Walsh-Hadamard Transform can be used to determine
the nonlinearity of a Boolean function. Given f : Fn

2 → F2

and a vector a ∈ Fn
2 , the corresponding Walsh-Hadamard

coefficient is defined as:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x . (3)

In other words, Wf (a) measures the correlation between f
and the linear function a · x. The nonlinearity of f is then:

nl(f) = 2n−1 − 1

2
·max
a∈Fn

2

|Wf (a)| . (4)

The nonlinearity of any Boolean function is bounded above
by the inequality nl(f) ≤ 2n−1 − 2

n
2 −1, which corresponds

to the covering radius bound for the first-order Reed-Muller
code (1, n). Such bound is tight only for n even, and the
functions which satisfy it are called bent. Although they
reach the highest possible nonlinearity, bent functions are
also unbalanced and therefore unsuitable for cryptographic
purposes. Determining the maximum nonlinearity achievable
is an open problem for any odd number of variables n > 7.

Recently, the research on cryptographic properties of
Boolean functions restricted over subsets of input vectors
gained prominence, especially within the context of the FLIP
stream cipher [9]. Subsets of particular interests are those
collecting all input vectors in Fn

2 of a fixed Hamming weight
k, defined as En,k = {x ∈ Fn

2 : wH(x) = k} for k ∈ [n]. The
cardinality of En,k is

(
n
k

)
, since it corresponds to the number

of ways one can set k ones in an n-bit string. The restriction
of f : Fn

2 → F2 to En,k is denoted by f(k). The function f is
called Weightwise Perfectly Balanced (WPB) if all restrictions
f(k) of weight between 1 and n− 1 are balanced:

wH(f(k)) =
|E|
2

=
1

2
·
(
n

k

)
, (5)

for all k ∈ {1, · · · , n − 1}. Obviously, k = 0 and k = n
are excluded since

(
n
0

)
=
(
n
n

)
= 1. Furthermore, to obtain a

function that is also globally balanced, one needs to impose the
constraint that f(0) ̸= f(1). In what follows, we will assume
that f(0) = 0 and f(1) = 1.

A function f : Fn
2 → F2 is WPB if and only if n is a

power of 2. This is a consequence of Lucas’s theorem, which
states that

(
n
k

)
≡ 1 mod 2 if and only if bin(k) ⪯ bin(n),

i.e., if and only if bin(k)i ≤ bin(n)i for all positions i in the
binary expansions bin(n) and bin(k) of n and k. The WPB
condition can be relaxed by imposing that each restriction f(k)
has Hamming weight 1

2

((
n
k

)
± 1
)

and 1
2

(
n
k

)
respectively when(

n
k

)
is odd and even. Functions satisfying this condition are

also called Weightwise Almost Perfectly Balanced (WAPB),
and they exist also when n is not a power of 2. However,
in this paper we consider only the perfectly balanced case.
Hence, in what follows we assume that n = 2m for m ∈ N.

The nonlinearity property is straightforwardly adapted to
the case of restricted inputs with a fixed Hamming weight.
In particular, the Walsh-Hadamard transform of f : Fn

2 → F2

over En,k is defined for all a ∈ Fn
2 as:

Wf(k)
(a) =

∑
x∈En,k

(−1)f(x)⊕a·x . (6)

Remark that the only difference between Equations (3) and (6)
is that, in the latter, the sum ranges over En,k instead of Fn

2 .
Similarly, the restricted nonlinearity of f is defined in terms
of the coefficients Wf(k)

(a):

nlk(f) = 2n−1 − 1

2
·max
a∈Fn

2

|Wf(k)
(a)| . (7)

Remark that, in particular, the maximum absolute value in
Equation (7) is considered among all coefficients a ∈ Fn

2 , not
only those of weight k. In other words, nlk(f) measures the
distance between the restriction of f to inputs of weight k and
all affine functions of n variables. The analogous version of
the covering radius bound for nlk is:

nlk(f) ≤
1

2
·
(
n

k

)
− 1

2
·

√(
n

k

)
. (8)

Carlet et al. [9] showed that even when
(
n
k

)
is a square, the

above bound is not tight, and observed that it is an open
question to determine when the floor of the right-hand side of
Eq. (8) can be satisfied with equality. Mesnager et al. proved
a tighter bound in [10] and claimed that, in general, it could
be much lower than the covering radius bound analog.

We conclude this section with a consideration on the alge-
braic normal forms of WPB functions. Carlet et al. [9] proved
that if f : Fn

2 → F2 is WPB and n > 4, then its ANF
must be made of at least 3

4n + 1 monomials. The authors
also remark that it is not known whether this is the smallest
number possible since, in that work, they managed to find a
construction of a WPB function with n− 1 monomials.

As an example, Table I reports a WPB function of n = 4
variables. The first two columns correspond to the global truth
table of the function, with input vectors listed in lexicographic
order. The remaining three columns respectively give the
Hamming weights 0 ≤ k ≤ 4, the input vectors in En,k

(again in lexicographic order), and the output value of the
corresponding restriction f(k).

III. RELATED WORKS

Evolutionary algorithms have been used to evolve Boolean
functions with specific cryptographic properties for more than
two decades already. While there is an abundance of works
in the literature, we can consider an algorithmic perspective
and an objective perspective. From the objective side, the two
dominant goals are to evolve either bent Boolean functions
or balanced Boolean functions – with high nonlinearity and,
possibly, some additional cryptographic properties. From the
algorithmic perspective, most research works either use genetic
algorithms (GA) or genetic programming (GP).

TABLE I: Example of a WPB function of n = 4 variables.

F4
2 f(x) k E4,k f(k)

(0, 0, 0, 0) 0 0 (0, 0, 0, 0) 0

(0, 0, 0, 1) 1

1

(0, 0, 0, 1) 1
(0, 0, 1, 0) 0 (0, 0, 1, 0) 0
(0, 0, 1, 1) 1 (0, 1, 0, 0) 0
(0, 1, 0, 0) 0 (1, 0, 0, 0) 1

(0, 1, 0, 1) 0

2

(0, 0, 1, 1) 1
(0, 1, 1, 0) 1 (0, 1, 0, 1) 0
(0, 1, 1, 1) 0 (0, 1, 1, 0) 1
(1, 0, 0, 0) 1 (1, 0, 0, 1) 0
(1, 0, 0, 1) 0 (1, 0, 1, 0) 1
(1, 0, 1, 0) 1 (1, 1, 0, 0) 0

(1, 0, 1, 1) 0

3

(0, 1, 1, 1) 1
(1, 1, 0, 0) 1 (1, 0, 1, 1) 0
(1, 1, 0, 1) 1 (1, 1, 0, 1) 0
(1, 1, 1, 0) 1 (1, 1, 1, 0) 1

(1, 1, 1, 1) 1 4 (1, 1, 1, 1) 1

The first paper investigating the evolutionary algorithms
approach for the evolution of Boolean functions with cryp-
tographic properties was published by Millan et al. [11].
There, the authors used GA to evolve Boolean functions
with high nonlinearity. Expanding on the previous results,
Millan et al. used GA, hill climbing, and a resetting step to
evolve highly nonlinear balanced Boolean functions with up
to 12 inputs [12]. Mariot and Leporati [13] investigated the
spectral inversion approach, originally pioneered by Clark et
al. [14], by proposing a GA to evolve Walsh spectra of pseudo-
Boolean functions satisfying good cryptographic properties.
Picek and Jakobovic considered a different approach where
instead of evolving Boolean functions, they evolved secondary
constructions of Boolean functions [15]. Jakobovic et al.
investigated the difficulty of evolving Boolean functions with
specific properties where they used fitness landscape analysis
based on Local Optima Networks [16].

The works discussed up to now considered “classical”
Boolean functions. There are, however, also some works that
consider different types of Boolean functions. Picek et al.
investigated how to evolve quaternary bent Boolean func-
tions [17]. There, instead of using the common binary case
{0,1}, both the domain and the output of the truth table
representation range over four possible values, namely {0,
1, 2, 3}. Finally, Mariot et al. experimented with hyper-
bent Boolean functions, which represent a significantly more
difficult task to evolve than bent Boolean functions [18].

IV. METHODOLOGY

This section delves into the details of the evolutionary
algorithms that we used to search for WPB functions, namely
GA and GP. We start with some considerations on the search
space underlying the optimization problem and then introduce
the encodings for the candidate solutions, as well as the
variation operators used to generate them. We then define the
fitness functions that drive the search of GA and GP.

A. Search Space Analysis

The most straightforward way to search for WPB functions
is to explore the whole space of n-variable Boolean functions
Fn = {f : Fn

2 → F2}. A basic combinatorial argument
shows that the size of this set is super-exponential in n.
Indeed, each function is uniquely identified by its truth table,
which is a vector of 2n bits; therefore, Fn is composed of
22

n

functions. Exhaustive enumeration of all solutions in Fn

becomes unfeasible already for n > 5. Since WPB functions
exist only when n is a power of 2, the only two instances
where WPB functions can be exhaustively searched are n = 2
and n = 4, which are too small for any interesting application
or for obtaining theoretical insights about their structure. As
an example, for n = 4 there are 720 WPB functions, 288
of which are linear (i.e., all their weightwise restrictions are
linear), while the remaining ones all have nl1 = nl3 = 0 and
nl2 = 1. The next interesting instance is thus n = 8, where
the search space is composed of 22

8 ≈ 1.16 · 1077 Boolean
functions, clearly beyond reach for any attempt of exhaustive
search. This basic remark is the first motivation to employ
EAs for studying the structure of WPB functions.

A first refinement is to consider only the space of balanced
Boolean functions, which we denote by Bn for all n ∈ N.
Since we impose f(0) = 0 and f(1) = 0 on the WPB
functions to ensure that their truth tables are globally balanced,
it makes sense to restrict the search space to Bn, whose
cardinality is

(
2n

2n−1

)
for all n ∈ N. However, the gain from

this reduction is not very significant, since for n = 8 one
has that

(
256
128

)
≈ 5.77 · 1076. Moreover, this set still considers

candidate solutions that are not WPB functions in general.
Taking the approach above further, we can derive a counting

formula for the set of all WPB functions of n ∈ N variables,
denoted by Wn in what follows. As explained in Section II,
for each weight 1 ≤ k ≤ n − 1 the space En,k is composed
of
(
n
k

)
input vectors. Since the restricted truth table over this

set must be balanced, it follows that we can choose how to
set the 1

2

(
n
k

)
ones in it in the following number of ways:

B(n,k) =

((
n
k

)
1
2 ·
(
n
k

)) . (9)

Observing that the truth table of each restriction f(k) is
independent from the others, we finally obtain that the number
of WPB functions of n variables is:

Wn =

n−1∏
k=1

((
n
k

)
1
2 ·
(
n
k

)) . (10)

For n = 8, one thus obtains a search space of Wn ≈ 5.18·1070
elements in total, which is slightly better by a few orders of
magnitudes than the cardinalities of Fn and Bn. Further, the
search process explores only WPB functions, which allows one
to focus the optimization effort on the restricted nonlinearities.

Table II compares the sizes of the search spaces of all
Boolean functions (#Fn), balanced functions (#Bn) and
WPB functions (#Wn) up to n = 16. Remark that the
restricted Walsh-Hadamard transforms can be computed only

TABLE II: (Approximate) search space sizes for various n.

n #Fn #Bn #Wn

2 16 6 2
4 65536 12870 720
8 1.16 · 1077 5.77 · 1076 5.28 · 1070
16 2.01 · 1019729 6.24 · 1019727 1.84 · 1019704

in a naive fashion, i.e., by iterating through all terms in the
sum of Equation (6), which gives a quadratic complexity of
22n operations. Contrarily, with the general Walsh-Hadamard
transform defined in Equation (3), there exists a Fast Walsh
Transform (FWT) algorithm with a logarithmic complexity of
n2n operations [8]. This explains why, in previous works on
the evolution of Boolean functions, researchers could scale
up to n = 16 variables and beyond in their experiments.
However, since the FWT algorithms depend on a divide-and-
conquer strategy, it requires that the number of coefficients is
a power of 2, something which does not hold in general for
the weightwise subsets En,k over which the restricted Walsh
transform is defined. For this reason, in our experiments, we
considered only the problem instance with n = 8 variables.

B. Solutions Encoding and Variation Operators

In principle, each representation of the search space of
interest can be used to formulate a proper encoding for
the candidate solutions searched by EAs. In this paper, we
considered two encodings stemming from the discussion in the
previous section, namely the basic truth table representation
and the weightwise balanced representation.

In the truth table representation, each candidate solution is
encoded by a string of 2n bits, corresponding to the truth table
vector of an n-variable Boolean function. We adopted this
representation to evolve WPB functions with a standard GA,
using classic one-point crossover and flip mutation. Clearly,
these operators do not preserve the Hamming weight of a
Boolean function, let alone its restricted balancedness over
the weightwise subsets En,k. Therefore, our GA based on this
truth table representation searches in the whole set Fn of all
n-variable Boolean functions.

We also adopted the truth table representation for our GP
experiments, although a further encoding step is required in
this case. Indeed, GP manipulates syntactic trees instead of
bitstrings. As usual in related works on GP and cryptographic
Boolean functions, we represent a candidate solution by
a tree whose leaf nodes correspond to the input variables
x1, · · · , xn ∈ F2. The internal nodes are Boolean operators
that combine the inputs received from their children and
propagate their output to the respective parent nodes. The
Boolean functions used by the GP are OR, XOR, AND,
AND2, XNOR, and function NOT that takes a single argu-
ment. The function AND2 behaves the same as the function
AND but with the second input inverted, whereas the IF
function takes three arguments and returns the second one if
the first one evaluates to true and the third one otherwise.
Thus, the output of the root node is the output value of

the Boolean function. The corresponding truth table of the
function f : Fn

2 → F2 is determined by evaluating the tree
over all possible 2n assignments of the input variables at the
leaf nodes. We then employed standard GP variation operators
such as subtree crossover and subtree mutation, which are not
generally weight-preserving. Hence, similarly to the standard
GA with the truth table representation, our GP searches the
whole set of n-variable Boolean functions Fn.

Remark that with the truth table representation we always
force f(0) = 0 and f(1) = 1 on the candidate solutions before
evaluating their fitness, to ensure that the WPB functions
evolved through GA and GP are also globally balanced.

Unlike the truth table, the weightwise balanced representa-
tion allows to search only inside the space of WPB functions
Wn. This is accomplished as follows. Given the target number
of variables n ∈ N, we formally define the genotype of a
candidate solution C as:

C =

{
cn,k ∈ F(

n
k)

2 : 1 ≤ k ≤ n− 1, wH(cn,k) =
1

2

(
n

k

)}
.

(11)
In other words, C is a set of n−1 bitstrings, where the length
of each bitstring cn,k is the cardinality of the restricted subset
En,k. Further, the Hamming weight of each cn,k is half of its
length, which means that the restriction f(k) whose truth table
is defined by cn,k is balanced. The phenotype corresponding
to C is the function fC : Fn

2 → F2 defined as fC(0) = 0,
fC(1) = 1, and f(x) = cn,k[i] for all x ∈ Fn

2 such that
wH(x) = k for 1 ≤ k ≤ n− 1. Here, cn,k[i] denotes the i-th
bit of cn,k, where i corresponds to the position of x in En,k in
lexicographic order. The last column of Table (I) can be taken
as an example of a weightwise balanced representation for
n = 4 variables; in this case, the chromosome is the following:

C = {1001, 101010, 1001} . (12)

We employed the weightwise balanced representation only
with GA, since in this case it is possible to define variations
operators that preserve the Hamming weights of the candidate
solutions. Manzoni et al. [19] performed a thorough statistical
analysis of three balanced crossover operators over different
combinatorial optimization problems, some of which related
to the cryptographic properties of Boolean functions. For our
experiments, we adopted the counter-based (CB) and map-
of-ones (MO) balanced crossovers, which were found by the
authors of [19] to have better performances over the zero-
length crossover. In our weightwise balanced representation,
the CB and MO crossovers are applied independently on each
substring. Given two chromosomes C = {cn,1, · · · cn,n−1}
and D = {dn,1, · · · dn,n−1}, an offspring chromosome O is
obtained through CB (respectively, MO) crossover by defining
on,k = CB(cn,k, dn,k) (respectively, on,k = MO(cn,k, dn,k))
for all 1 ≤ k ≤ n− 1.

Concerning mutation, we employed a simple swap-based
operator that, for each position i in cn,k, exchanges with
probability pmut the bit cn,k[i] with cn,k[j], where j is chosen
at random. The swap position j must be selected inside cn,k,
to preserve the WPB property of the candidate solution.

C. Fitness Functions

To optimize the WPB property of Boolean functions, a pos-
sible way is to incorporate a penalty factor in the fitness that
punishes unbalancedness over the subsets of fixed Hamming
weight. The Hamming weight of the restriction f(k) is related
to the Walsh-Hadamard coefficient of the null vector Wf(k)

(0)
via the following equation [8]:

wH(f(k)) =
#En,k −Wf(k)

(0)

2
, (13)

where # denotes the cardinality of a set. This formula has
the advantage that it is not necessary to evaluate the Ham-
ming weight of each restriction separately from the Walsh-
Hadamard spectrum, thus saving some computations. The
unbalancedness of f with respect to En,k is then defined for
all k ∈ [n − 1] as the deviation of its truth table from being
balanced, that is:

unbk(f) =

∣∣∣∣#En,k

2
− wH(f(k))

∣∣∣∣ . (14)

In other words, unbk(f) is the number of bits that need to be
changed in the truth table of f(k) to make it balanced.

Clearly, the penalty factor for the WPB property must take
into account the unbalancedness of f with respect to all subsets
of inputs. For this reason, we define it as the sum of all
unbalancedness factors with k ∈ [n− 1]:

pen(f) =

n−1∑
k=1

unbk(f) . (15)

Eq. (15) is always non-negative since it is a sum of absolute
values. Therefore, one can subtract it in the fitness function to
effectively minimize it.

The second property to be optimized are the nonlinearities
over the restricted subsets En,k. For this part, we tested two
different strategies:
(a) Maximize the sum of the nonlinearities.
(b) Maximize the minimum nonlinearity.

Remark that Liu and Mesnager [20] showed that nl1(f) = 0
for any WPB function f . The authors also proved that the
restricted nonlinearities of WPB functions are symmetric with
respect to the Hamming weight, that is, nlk(f) = nln−k(f)
for 1 ≤ k ≤ n

2 . Hence, it is possible to optimize the
computation of the nonlinearities for the two strategies above
by taking into account only the weights 2 ≤ k ≤ n/2. This is
a considerable gain in evaluating the fitness functions since the
restricted Walsh-Hadamard transforms can only be computed
with the naive algorithm.

Hence, the two fitness functions maximized by our EAs are
formally defined as follows:

fit1(f) = δpen ·

n/2∑
k=2

nlk(f)

− pen(f) , (16)

fit2(f) = δpen ·
(

min
2≤k≤n/2

{nlk(f)}
)
− pen(f) , (17)

where δpen is equal to 1 when pen(f) = 0 (i.e., the function
is WPB) and 0 otherwise. This forces the EA first to optimize
the unbalancedness penalty factor and then focus on the
nonlinearities while retaining the WPB property, which allows
considering only the weights between 2 and n/2.

Obviously, the penalty factor can be safely omitted from
the fitness functions when using GA with balanced variation
operators since there the candidate solutions are always WPB.

V. EXPERIMENTS

This section presents the experimental evaluation of our
approach to constructing WPB functions with EAs. We start by
describing the experimental setting adopted for both GA and
GP and then report the results obtained from our experiments.

A. Experimental Settings

As remarked in Section IV-A, we considered only Boolean
functions of n = 8 as a problem instance. Our GA and
GP employed a steady-state operator with a 3-tournament
elimination concerning the selection process. This means that,
in each iteration, three individuals are chosen at random from
the population for the tournament, and the worst one in terms
of fitness value is eliminated. The other two remaining indi-
viduals in the tournament are used by the crossover operator
to generate a new child individual, which then undergoes
mutation with probability pmut. Finally, the mutated child
takes the place of the eliminated individual in the population.

We performed a preliminary tuning phase to select the
best population sizes. In particular, for GA, we chose a
population of 200 individuals, while for GP, the population
was set to 1000 individuals. The mutation rate pmut for
both GA and GP ranged in the set {0.1, 0.3, 0.5, 0.7, 0.9}.
Further, the maximal depth for trees evolved by GP was
set to 5. The genetic operators used by GP are simple tree
crossover, uniform crossover, size fair, one-point, and context
preserving crossover (selected at random at each crossover
event) and subtree mutation [21]. On the other hand, for
GA, we considered one-point crossover and flip mutation for
the truth table representation, while counter-based, map-of-
ones crossover, and swap-based mutation were used for the
weightwise balanced representation [19].

Further common experimental parameters include the num-
ber of fitness evaluations, which was set to 500000 since no
improvements in both fitness functions were observed after
that. Finally, each experiment was repeated for 30 runs.

B. Results

In what follows, we denote by GA-OP the GA with truth
table representation, and by GA-CB and GA-MO the GA with
weightwise balanced representation respectively equipped with
the counter-based and map-of-ones crossover operators. For
each of the four considered EA variants (GA-OP, GA-CB,
GA-MO, and GP), we recorded the fitness value of the best
individual in the population at the end of each experimental
run. The first remarkable finding is that there is no difference
among the four EAs concerning the second fitness function

0.1 0.3 0.5 0.7 0.9
Mutation

48

50

52

54

56

58

60

Fi
tn

es
s

Algorithm
GP
GA-OP
GA-CB
GA-MO

Fig. 1: Best fitness distributions of the four EAs for various
mutation probabilities.

fit2, i.e., the one that maximizes the minimum restricted
nonlinearity and minimizes the WPB penalty factor when
the truth table representation is used. As a matter of fact,
all considered EAs achieved the same best fitness value of
10 across all runs. Therefore, in what follows, we focus on
the results obtained with the first fitness function fit1, which
instead computes the sum of all restricted nonlinearities nlk
for k ∈ {2, 3, 4}.

Figure 1 plots the distribution of the best fitness obtained
by the four EA variants across all considered mutation rates.

The boxplots clearly show a stark difference in perfor-
mances depending on the solutions encoding. In particular, the
EAs based on the truth table representation generally behave
worse than those exploiting the weightwise balanced encoding.
Further, within those using the truth table encoding, GP
generally has better a performance than GA-OP. On the other
hand, there are no significant differences between the best
fitness achieved by GA-CB and GA-MO, which indicates that
the weightwise balanced representation plays a key role rather
than the specific crossover operator employed. Finally, for each
considered EA, there are no significant differences concerning
the mutation rates, suggesting that the behavior of both GA
and GP is robust with respect to this parameter. Thus, in our
subsequent analysis, we selected the mutation rate yielding the
highest number of occurrences of the maximum best fitness for
each of the four considered EAs. This resulted in pmut = 0.1
for GA-OP, GA-CB and GA-MO, and pmut = 0.9 for GP.

Table III summarizes the main statistical indicators for the
best fitness obtained by the four algorithms according to the
selected mutation rates. From the table, one can see better the
difference between the EAs that respectively adopt the truth
table the weightwise balanced representation. To show even
more in detail such difference, in Figure 2 we plot the distribu-
tions of the best fitness across all 30 experimental runs. Each
bin reports the number of occurrences of the corresponding

TABLE III: Caption

Algorithm Average Std. Dev. Median Min Max

GA-OP 55.07 1.80 55 50 58
GA-CB 60.13 0.36 60 60 61
GA-MO 59.97 0.32 60 59 61

GP 58.03 0.76 58 57 59

50 55 60
Fitness

0

5

10

15

20

25

Co
un

t Algorithm
GA-OP
GP
GA-CB
GA-MO

Fig. 2: Best fitness distributions for the four EA variants.

fitness value, with each EA represented by different colors.
Combinations of the four key colors represent overlappings
between distributions. The performance gap becomes sharply
evident by looking at these distributions. Indeed, one can
see that GA-OP is the worst performing algorithm, having
the widest dispersion of fitness values. Moreover, the most
frequent best fitness for GA-OP is 55, which is the lower
among all four considered EAs. GP scores a considerably
better performance since its best fitness values range in the
interval [57, 59], and the corresponding distribution has a lower
standard deviation than GA-OP. Finally, the best performing
variants are represented by the GA with the weightwise
balanced representation, i.e., GA-CB and GA-MO, which both
achieve the highest observed fitness values of 60 and 61. More-
over, the two EAs always converge to one of these two values,
leading to the distributions with the lowest standard deviations.
Although there are no significant differences between the two
distributions, one can observe that the counter-based crossover
is slightly better than the map-of-ones operator, since the GA
evolved four solutions of fitness 61 with the former, as opposed
to only one with the latter.

VI. DISCUSSION

The most interesting remark arising from the results pre-
sented in the previous section is that GA was able to out-
perform GP by using the weightwise balanced representation.
This is somewhat surprising, as the empirical evidence gained
so far in the relevant literature is that GP is usually better than
GA when evolving the cryptographic properties of Boolean
functions [22]. Previous authors linked this gap in perfor-
mances to the underlying representation, with the GP trees

likely having an advantage over the direct bitstring used by
GA to encode the truth table of a Boolean function. As shown
by Manzoni et al. [19], the use of balanced operators such as
counter-based and map-of-ones crossovers improves the GA
performance over the classic one-point crossover. However,
this improvement is still far from reaching the same GP results
when evolving highly nonlinear balanced Boolean functions,
especially for larger sizes.

On the opposite, the situation in the WPB functions problem
addressed in this paper is reversed, with the weightwise bal-
anced representation providing an advantage to GA, allowing
it to score better fitness values than GP. We suspect that this
is due to the highly constrained structure of the space of
WPB functions. Indeed, one may argue that the improvement
given by balanced crossover operators to GA when evolving
globally balanced Boolean functions is no match for GP for
a twofold reason. First, as we observed in Section IV-A, the
reduction in the size of the search space granted by the use of
balanced operators is not really significant when compared to
the space of all Boolean functions, with a difference of only an
order of magnitude when n = 8. Furthermore, one may also
argue that minimizing the global unbalancedness of a generic
Boolean function is a rather easy optimization objective for
GP. Therefore, only a few fitness evaluations are needed before
GP converges over a balanced solution. On the other hand,
GP is dealing with several unbalancedness penalty factors
for WPB functions, namely one for each Hamming weight
k between 1 and n− 1. This induces more constraints for the
feasible solutions of the problem, and it might be the case that
GP is wasting many fitness evaluations just to minimize the
penalty factor, which leaves less room to optimize the sum of
nonlinearities once a WPB function is reached.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the construction of weightwise
perfectly balanced Boolean functions by means of GP and
GA. Such functions recently became relevant in the design
of stream ciphers based on the filter permutator paradigm,
such as FLIP. Although the Boolean functions involved in
those designs are defined over hundreds of input variables
– which prevents the use of any traditional metaheuristic to
construct them –, the structure of the space of WPB functions
is still largely unknown in general. This makes the use of EAs
interesting to investigate the properties of WPB functions of
small sizes. In particular, here, we considered functions of
n = 8 variables since it is the only problem instance where
the restricted Walsh transforms can be computed using the
naive method in a reasonable amount of time. We considered
two different encodings for the candidate solutions, namely the
classic truth table representation (largely used in other related
works on EAs and Boolean functions) and the weightwise
balanced representation. The latter stems from the observation
that one can limit a GA to explore only among the space of
WPB functions, which allows one to focus the optimization
effort on maximizing the restricted nonlinearities. In this
case, the GA can leverage on the use of balanced crossover

operators [19] to preserve such encoding in the offspring
solutions. In particular, these operators here need to be applied
independently on each subset En,k of inputs with Hamming
weight k. We experimented with two fitness functions, one
maximizing the sum of restricted nonlinearities and the other
maximizing the minimum nonlinearity. When using the truth
table representation, the fitness functions also optimized an
unbalancedness penalty factor to converge on a WPB function.

Our results show that contrarily to the evidence gathered
in related works on EA and Boolean functions, GA with
balanced crossover operators achieve the best fitness over
all experimental runs and outperforms by far GP with the
truth table representation. We elaborated on this finding by
observing that most of the previous work on the design of
Boolean functions with EA focuses on the global balancedness
property – something which can be easily achieved by GP even
with the classic tree-to-table representation. In this problem,
the penalty factor minimized by GP instead requires a much
more considerable optimization effort before obtaining a WPB
function. On the other hand, a GA based on a weightwise bal-
anced representation already starts from a population of WPB
functions and can therefore concentrate only on maximizing
the restricted nonlinearities.

There are several directions for future research on this
optimization problem. A first idea would be to explore more
in detail the potential of the weightwise balanced represen-
tation in designing WPB functions with high nonlinearity
profiles. For example, it could be interesting to apply partially
balanced crossover operators such as the “tip the balance”
strategy proposed in [23]. Additionally, we believe it would
be interesting to explore whether it is possible to evolve
secondary constructions of WPB Boolean functions for future
work. While EAs can evolve such Boolean function, we
see a problem with scalability due to the computation cost
of calculating the Walsh-Hadamard spectrum with a naive
approach. Thus, having constructions that generalize to any
input size does seem the best option.

REFERENCES

[1] O. Rothaus, “On “bent” functions,” Journal of Combinatorial Theory,
Series A, vol. 20, no. 3, pp. 300 – 305, 1976.

[2] A. Bernasconi, B. Codenotti, and J. M. Vanderkam, “A characterization
of bent functions in terms of strongly regular graphs,” IEEE Transactions
on Computers, vol. 50, no. 9, pp. 984–985, Sep 2001.

[3] S. Kavut, S. Maitra, and M. D. Yucel, “Search for boolean functions with
excellent profiles in the rotation symmetric class,” IEEE Transactions
on Information Theory, vol. 53, no. 5, pp. 1743–1751, May 2007.

[4] A. Kerdock, “A class of low-rate nonlinear binary codes,” Information
and Control, vol. 20, no. 2, pp. 182 – 187, 1972.

[5] C. M. Adams, “Constructing symmetric ciphers using the cast design
procedure,” Designs, Codes and Cryptography, vol. 12, no. 3, pp. 283–
316, Nov 1997.

[6] K. Paterson, “On Codes With Low Peak-to-Average Power Ratio for
Multicode CDMA,” IEEE Transactions on Information Theory, vol. 50,
pp. 550 – 559, 04 2004.

[7] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet, “Towards stream
ciphers for efficient fhe with low-noise ciphertexts,” in Advances in
Cryptology – EUROCRYPT 2016: 35th Annual Int. Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2016,
pp. 311–343.

[8] C. Carlet, Boolean functions for cryptography and coding theory.
Cambridge University Press, 2021.

[9] C. Carlet, P. Méaux, and Y. Rotella, “Boolean functions with restricted
input and their robustness; application to the FLIP cipher,” IACR Trans.
Symmetric Cryptol., vol. 2017, no. 3, pp. 192–227, 2017.

[10] S. Mesnager, Z. Zhou, and C. Ding, “On the nonlinearity of boolean
functions with restricted input,” Cryptogr. Commun., vol. 11, no. 1, pp.
63–76, 2019.

[11] W. Millan, A. Clark, and E. Dawson, “An Effective Genetic Algorithm
for Finding Highly Nonlinear Boolean Functions,” in First Int. Con-
ference on Information and Communication Security, ser. ICICS ’97.
Springer, 1997, pp. 149–158.

[12] ——, “Heuristic design of cryptographically strong balanced Boolean
functions,” in Advances in Cryptology - EUROCRYPT ’98, 1998, pp.
489–499.

[13] L. Mariot and A. Leporati, “A genetic algorithm for evolving plateaued
cryptographic boolean functions,” in Theory and Practice of Natural
Computing - Fourth International Conference, TPNC 2015, Mieres,
Spain, December 15-16, 2015. Proceedings, ser. Lecture Notes in
Computer Science, A. Dediu, L. Magdalena, and C. Martı́n-Vide, Eds.,
vol. 9477. Springer, 2015, pp. 33–45.

[14] J. A. Clark, J. L. Jacob, S. Maitra, and P. Stanica, “Almost boolean
functions: The design of boolean functions by spectral inversion,”
Comput. Intell., vol. 20, no. 3, pp. 450–462, 2004.

[15] S. Picek and D. Jakobovic, “Evolving algebraic constructions for de-
signing bent boolean functions,” in Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference, Denver, CO, USA, July 20
- 24, 2016, T. Friedrich, F. Neumann, and A. M. Sutton, Eds. ACM,
2016, pp. 781–788.

[16] D. Jakobovic, S. Picek, M. S. R. Martins, and M. Wagner,
“Toward more efficient heuristic construction of boolean functions,”
Appl. Soft Comput., vol. 107, p. 107327, 2021. [Online]. Available:
https://doi.org/10.1016/j.asoc.2021.107327

[17] S. Picek, K. Knezevic, L. Mariot, D. Jakobovic, and A. Leporati, “Evolv-
ing bent quaternary functions,” in 2018 IEEE Congress on Evolutionary
Computation (CEC), 2018, pp. 1–8.

[18] L. Mariot, D. Jakobovic, A. Leporati, and S. Picek, “Hyper-bent boolean
functions and evolutionary algorithms,” in EuroGP, ser. Lecture Notes
in Computer Science, vol. 11451. Springer, 2019, pp. 262–277.

[19] L. Manzoni, L. Mariot, and E. Tuba, “Balanced crossover operators in
genetic algorithms,” Swarm Evol. Comput., vol. 54, p. 100646, 2020.

[20] J. Liu and S. Mesnager, “Weightwise perfectly balanced functions with
high weightwise nonlinearity profile,” Des. Codes Cryptogr., vol. 87,
no. 8, pp. 1797–1813, 2019.

[21] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to
genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008, (With
contributions by J. R. Koza). [Online]. Available: http://www.
gp-field-guide.org.uk

[22] S. Picek, D. Jakobovic, J. F. Miller, L. Batina, and M. Cupic, “Crypto-
graphic boolean functions: One output, many design criteria,” Appl. Soft
Comput., vol. 40, pp. 635–653, 2016.

[23] L. Manzoni, L. Mariot, and E. Tuba, “Tip the balance: Improving
exploration of balanced crossover operators by adaptive bias,” CoRR,
vol. abs/2004.11331, 2020.

https://doi.org/10.1016/j.asoc.2021.107327
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

	Introduction
	Background
	Related Works
	Methodology
	Search Space Analysis
	Solutions Encoding and Variation Operators
	Fitness Functions

	Experiments
	Experimental Settings
	Results

	Discussion
	Conclusions and Future Work
	References

