
IT Systems 2013; e-Health & m-Health 2013 

1

 
GPU Implementation of a Medical Imaging Data Compression Algorithm  
   

1, 2 3 
1 FER, dino.santl@fer.hr 

2 FER, marko.durasevic@fer.hr 
3 FER, josip.knezovic@fer.hr 

 
Abstract: In this paper an algorithm for compressing medical images on GPUs is described and its energy consumption 
and computational performance analyzed. The objectives of this implementation are to reduce the demands of storing 

medical pictures, improve the execution time and reduce the  consumption of electrical energy. The  compression 
algorithm is based on a computationally complex prediction model of pixels and a contextual coding of the given 

prediction errors. The above implementation is compared with a serial implementation and with an implementation in 
a stream programming model in terms of execution time and electrical energy consumption. Experimental results show 
improvements in  execution speed and savings in consumption of electrical energy using the proposed implementation. 

Keywords:  Medical Visual Data Compression, General Purpose GPU Programming, Lossless Coding Parallelization, Data-
Intensive Computing. 

 

1. INTRODUCTION 
Current information systems used in different human sectors, such as in medicine, are very complex in 

nature. The need for computational power and storing large amounts of data grows each day. Because 
processors are reaching their limits in terms of speed, multiprocessor systems are used more commonly. Apart 
from the need for high computational power, there is also a need for managing large amounts of data. Instead of 
storing data in raw format, different data compression algorithms are used in order to use storage space more 
rationally. Compression algorithms are divided in two different groups: losy and lossless. Losy algorithms have a 
much better compression rate, which comes at the cost that the original image cannot be restored without data 
loss from the compressed image. Lossless compression algorithms, on the other hand, have a lower compression 
rate, but allow for the image to be restored with no data loss. With the growth of computational power, energy 
consumption becomes more of a problem [1]. Therefore, beside raw performance, energy management for large 
systems is becoming more and more important. Hospital information systems are a typical example of such 
complex systems. One of their main characteristics is the need to store huge amounts of data. 

In this paper we propose an implementation of a lossless compression algorithm CBPC for hospital 
information systems [2,3]. This algorithm consists of a very computational intensive pixel predictive part. As a 
solution to this problem we present a parallel implementation of this computational intensive part using 
commodity graphics processing units [4, 5]. The concept of using graphical processors as an accelerator for 
general purpose applications is a new concept that is becoming more popular. In the proposed implementation 
we chose the CUDA programming model and environment [6]. 

This paper is organized as follows. In section two we give a short overview of the CBPC algorithm and it's 
main characteristics. In section three we present the implementation details of the proposed solution. The 
experimental results for energy consumption and algorithm execution time between different implementations 
are given in section four. Finally, section five gives a short conclusion about this topic. 

2. CBPC COMPRESSION ALGORITHM 
Images and texts are very different types of information. Usual texts are compressed with classical methods 

like dictionary based or entropy coding, while images require a separate statistical redundancy removal step, 
most often in the form of a pixel predicting method. The basic idea for image compression is based on the 
prediction of image elements.  

The prediction is based on a mathematical model. We know an image element and the prediction for this 
element. Prediction depends on the model and image elements which are relatively near to the observed image 
element. The prediction error is defined as the difference between the original image element value and the 
value of prediction. The error distribution acquired through such a method is much more convenient for 
compression then the original image elements. The mentioned compression algorithm is lossless. This is an 
important property for medical usage, because losing any information can be fatal for patients.  

Steps of the CBPC algorithm are the following (shown on Figure 1)[7]: 

1. Input - importing image elements from one image or from a medicinal study  image elements (pixels) are 
processed in raster order from the top left, down to the lower right corner. 

2. PM - Predicting modeling - prediction of the current image element and prediction error computing. 

317



2

3. CM - Contextual modeling - prediction error classification and generating a different distribution for every 
class of error. 

4. EN - Entropy modeling - using classical entropy coding for variable bit symbol generation of prediction 
error. 

5. Output - save compressed image  saving the generated bit stream in compressed format. 

Figure 1: CBPC algorithm steps 

Prediction is based on image elements neighbors. Neighbors of an image element are caled regions. In this 
algorithm a region is a set of image elements defined with relative coordinates from point (x,y) as shown in 
figure 2.  

Figure 2:  Pixel region 

Prediction of current image element is computed using the equation (1) 

        (1) 

Prediction error for current element with blending is computed using the equation (2) 

     (2) 

This algorithm is based on blending prediction function (1). All functions have some influence in the equation 
and their part depends on their penalty. 

      (3) 

Equation (3) represents a nice mathemathical model for implicit region type detection, where Gk represents 
the penalty and  the prediction value. We use k prediction functions. Each one of this functions fk is good for 
predicting some types of the image region. For example some functions fk are good on noisy regions of an image, 
and other functions are good for the edges. The main problem is to detect the type of region on the image. The 
role of the parameter Gk is  to force down the functions which are not good on predicting the current image 
region. Cell is set of image elements which are the nearest to the current image element region. The distance 
between regions is computed with a certain metric. We use the Euclidean metric.  is the causal context used by 
the predictor (as can be seen on figure 1 in the predictive model). Image elements in this set are candidates for 
the cell. M is the number of image elements in the cell. We call this set the blending context .  

Parameters in the algorithm are: 

1. R - size casual context (diameter)  
2. M - number of image elements in the blending context 
3. fk - set of prediction functions 

 
 

318



3

3. IMPLEMENTATION 
Implementation was built based on a streaming programming model. Because image elements are 

independent, fine-grained data splitting was used. The implementation goal was to achieve a good algorithm 
design, so that the tradeoffs between good design and an optimized code could have been made. It was 
previously shown that the algorithm can be pipelined in five steps. We use the same steps in our implementation 
design. The implementation copies the whole image on from the main memory into the GPU global memory. The 
first step is to make regions of image elements. Then for every image element their region is computed. This 
information is then further used for creating cells. At this point the algorithm has all the information for 
prediction computing. When the prediction was computed the parallel part of algorithm is finished and data is 
ready for classical coding using an entropy coder of choice. It is important to note that only the prediction part of 
the algorithm is parallelized because it alone executes around 85% of the total algorithm execution time. 

The implementation was made using the CUDA programming model [6]. Every thread handles one image 
element. After each algorithm step synchronization between all threads is performed because all the information 
computed in one step has to be available in the next step. Two types of optimizations were made. The first was 
memory optimizations. Access to global memory on the GPU is very expensive and slow. CUDA offers some 
possibility for memory optimization. When neighboring threads access neighboring memory locations it gives a 
possibility for the second memory access to be serialized. The second type of optimization is finding the optimal 
number of threads and blocks. Empirically it was shown that the best strategy is when only one block was used 
and the number of threads was equal to number of image elements in one row. Unfortunately, these results are 
dependent on the specific graphics card which is used.   

The main parts in the CUDA implementation are the following: 

1. Finding the blending context for every image element

2. Calculating predictions for every image element

3. Computing the error and context 

These three steps are running sequentially, but each step is run in parallel for every image element. In the 
first step, the algorithm computes the blending context or every image element. In step two, the algorithm 
computes the prediction for the current image element. In the end of the algorithm the error and context are 
computed for every image element. 

During the execution of the algorithm, the image is stored into the global memory the on graphics device. The 
image is then separated into blocks of the same size, which are then further used during the execution of the 
algorithm.  

4. EXPERIMENTAL RESULTS 
The proposed solution has been compared against a serial implementation of the same algorithm 

(implemented in C++), and with an implementation of the algorithm using the streaming programming model 
and the programming language StreamIt [8]. The measurements were obtained on five different sets of medical 
images. All the images were in stored in the PGM format and had dimensions of 512x512 pixels. Basic image 
characteristics are shown in Table 1. 

4.1. Compression execution time 
One of the most important evaluation criteria is the execution time needed for compressing whole sets of 

medical images. Such sets can contain large amounts of data, equaling in hundreds of megabytes as shown in 
Table 1. Therefore, it is crucial that the compression of such large amounts of data can be completed as fast as 
possible.   

Table 1: Medical sets used for measurements 

Medical set name Number of images Total size of set [MB] 

mr-breast-dm 2534 486,43

mr-breast 2241 559,53

mr-pelvis 383 95,76

ct-mix 3003 750,79

ot 1373 343,27
 
Figure 3 shows the execution times of the three different implementations for the five medical image sets. As 

expected, the implementation on the GPU delivers the best results for all medical sets. Overall, it was 2.47 times 
faster when compared to the serial implementation while compressing the medical test sets. On the other hand, 
the StreamGate implementation executes slower than expected, but nevertheless provides a certain speed up 
when compared to the serial implementation. The problem with the StreamGate implementation is that it 

319



4

repeatedly creates and destroys threads for each image it compresses, which proved to have a large influence on 
the performance of the implementation. 

 

Figure 3: Execution time of all three implementations on the test sets  

 

4.1. Energy consumption 

Because parallel implementations of algorithms use more computational power and more resources, the 
 

shows the energy consumption for compressing all medical sets with all implementations. Although the GPU unit 
generally does consume more power than the CPU unit, because of the high speed up, the energy consumption is 
overall lower when using the GPU implementation. For the smaller medical sets the consumption is mostly the 
same, because the speed up is not high enough to compensate for the higher consumption of the GPU. When 
compared to the serial implementation, the CUDA implementation achieves an overall reduction in energy 
consumption of 32%. 

 

0

50000

100000

150000

200000

250000

Medical set

Energy consumption per medical set

CUDA

Serial

StreamGate

Figure 4: Energy consumption of all implementations for the test sets 

 

5. CONCLUSION 
In this paper we present a lossless compression algorithm implementation on the GPU which can significantly 

improve system performances. The compression factor is almost the same as in serial algorithm (the serial 
algorithm has some additional optimizations which were not included in the GPU implementation) but the GPU 
implementation needs less electrical energy for compressing the same size of image data. This property is very 
important for large systems where a huge amount of energy is consumed. Compression is also very important for 

0

500

1.000

1.500

2.000

2.500

3.000

D
ur

at
io

n(
s)

 

Medical set 

Execution time 

CUDA

Serial

StreamGate

320



5

systems where large amounts of data are stored. Finding methods and new algorithms which can make achieve a 
better compression factor and have other additional properties (like data parallelism) is important for real 
systems. The proposed algorithm implementation can further be improved and this is not the final step of our 
work on the GPU implementation, but rather a proof of concept to show that such an implementation has its 
benefits and advantages for usage in real systems. 

 

LITERATURE 
[1] Soomro T. R. and Sarwar M.: Green Computing: From Current to Future Trends, In World Academy of Science, 

Engineering and Technology, 2012. 
[2] Classification and blending prediction for lossless image compression, In 

Electronic Proceedings 13th IEEE Mediterranean Electrotechnical Conference, (Malaga, Spain), 2006. 
[3] Application of novel lossless 

compression of medical images using prediction and contextual error modeling, Collegium antropologicum, vol. 
31, no. 4, pp. 1143 1150, 2007 

[4] Owens, D. John, Luebke, David, Govindaraju, Naga, Harris, Mark, Kruger, Jens, Lefohn, E. Aaron, Purcell, and J. 
Timothy, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum, pp. 
80 113, March. 

[5] 
IEEE Micro, vol. 31, pp. 7 17, Sept. 2011. 

[6] Cuda Toolkit Documentation; http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html; July 
2013. 

[7] 
Execution on Multicores, Automatika, vol. 53-2012, pp. 272-283, 2012 

[8] StreamIt Cookbook; http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf; July 2013. 

321


