
Comparison of solution representations for
scheduling in the unrelated machines

environment

Marko Đurasević, Domagoj Jakobović
Faculty of Electrical Engineering and Computing, Zagreb, Croatia

Email: marko.durasevic@fer.hr, domagoj.jakobovic@fer.hr

Abstract – Most scheduling problems belong to the class of
NP hard problems. Because of that reason, search based
approaches are often used in order to find solutions for
scheduling problems. In this paper we compare several
search-based approaches for finding solutions for the
unrelated machines scheduling problem. These search based
approaches use two different solution representations for
the aforementioned problem and the representations are
compared with each other. The first representation uses a
permutation vector to encode the solution, while the second
one uses a vector of floating point numbers. The results of
the search based approaches are compared to several
existing heuristics developed especially for solving the
unrelated machines scheduling problem. We also perform a
complexity analysis of the search-based approaches, in
which we compute the time needed for them to outperform
the problem specific heuristics.

I. INTRODUCTION

Scheduling can be defined as a decision-making
process concerned with the allocation of scarce resources
to tasks over a given time in order to optimize one or more
objectives [1], [2]. A great number of scheduling
problems belong to the class of NP hard problems,
meaning that no efficient algorithms exist which could
find the optimal solution in a reasonable amount of time.
Therefore, such problems are often solved by using
different heuristic algorithms. Based on the nature of how
the solutions are generated, heuristic algorithms are
divided into two groups: the first group, denoted as
search-based, consists of metaheuristic approaches which
search the whole solution space in order to find the
optimal solution, while the second group consists of
problem specific heuristics which iteratively construct the
solution [3].

Search-based approaches have the advantage that they
are usually able to find near optimal solutions. However,
this advantage comes at a price, since search-based
approaches are rather slow when compared to approaches
which build the schedule iteratively. Additionally, search-
based approaches can mostly be used in scheduling
environments where all information about the
environment is available beforehand, since they search the
whole solution space. In such cases, when all the
information about the scheduling environment is present
beforehand, these approaches are mostly the methods of
choice, since they outperform simple constructive
scheduling heuristics.

One of the most important design choices in search-
based algorithms is the solution representation of the
given problem. The overall effectiveness of search-based
approaches can, to a great extent, depend on the chosen
solution representation [4]. Most commonly a solution
representation which can best represent the given problem
is chosen, but that may not always be the best choice,
since some other solution representations could produce
better results. Because of that, this paper will compare two
solution representations for scheduling in the unrelated
machines environment. The first representation is a
permutation representation similar to the ones used in the
literature. The second representation uses a vector of
floating point numbers in order to represent the schedule.
To the best of our knowledge, the second representation
has not yet been used to represent solutions for the
unrelated parallel machines environment. The results of
those two approaches will be compared to several iterative
scheduling heuristics. Additionally, this paper will
examine the time complexity of genetic algorithms (using
the aforementioned solution representations) when
compared to some traditional heuristic methods for
creating schedules for the unrelated parallel machines
environment.

The paper is organized as follows: in the second
section a short overview of the unrelated machines
environment is given. The third section describes the two
solution representations in more detail. The results are
presented in the fourth section, while a discussion about
the results is given in the fifth section. Finally, a short
conclusion and future research directions are presented in
the sixth section.

II. RELATED WORK

A lot of work has been invested in solving different
scheduling problems by using various metaheuristic
methods [5], [6], [7], [8], [9], [10]. Unfortunately, very
little research has been done in the area of the unrelated
machines environment. In [11] the authors propose a
hybrid algorithm combining ant colony optimization,
simulated annealing and variable neighborhood search in
order to solve scheduling problems for parallel unrelated
machine environment. The ant colony optimization
algorithm was also used in [12], where the authors
propose several new ideas in order to improve the
performance of the algorithm. A Greedy Randomized

MIPRO 2016, May 30 - June 3, 2016, Opatija, Croatia

1336

Adaptive Search Procedure (GRASP) metaheuristic was
proposed in [13]. A Competitive Evolutionary Strategy
Memetic Algorithm which for optimizing two objectives
simultaneously was proposed in [14].

Genetic algorithms have also been used to solve the
unrelated machines problem on several occasions. For
example, in [15], the author adapts a genetic algorithm
for the unrelated machines environment and shows
promising results. In [16] a genetic algorithm using a
permutation representation and several local search
operators was proposed. It was shown that the proposed
method achieved excellent performance, when compared
to other similar methods. GARP, a genetic algorithm
combined with variable neighborhood descent and path
relinking was proposed in [17]. In [18] a hybrid genetic
algorithm was proposed for the unrelated machines
environment with worker allocations. This article
additionally examines several solution representations for
the given problem. Solving the unrelated parallel
machines environment as a subset of the flexible flow
shop problem was discussed in [19].

III. SCHEDULING IN THE UNRELATED MACHINES
ENVIRONMENT

The unrelated machines environment consists of n jobs
which compete in order to be processed on one of the m
machines [2]. Each job is defined by several properties
including the processing time ijp , which defines the
execution time of job with the index j on the machine with
the index i; the release time jr , which defines the time
when the job arrives in the system; the due date jd , which
defines a point in time by which the job should finish with
its execution, otherwise a certain cost will be caused by its
delay; and a weight jw , which denotes the importance of
a job.

A. Scheduling Criteria
In order to assess the quality of a given schedule,

certain scheduling criteria need to be defined. Since the
number of the proposed scheduling criteria is numerous,
four of the most prominent criteria from the literature are
chosen. But before defining the criteria for the entire
schedule, it is essential to first define certain criteria for
individual jobs, which will then in turn be used to define
the scheduling criteria.

For each job the following criteria are defined [1]:

� Finish time jC – denotes the point in time in
which the job ended with its execution

� Flowtime jF – denotes the amount of time a
certain job spent in the system before it
finished with its execution, which is defined
as: j j jF C r� � ,

� Tardiness jT – denotes the amount of time
that the job was executing after its due date. It
is defined as: max(,0)j j jT C d� �

� Is tardy jU – denotes if a job is tardy or not.

It is defined as:
1: 0
0 : 0

j
j

j

T
U

T
��

� � ��
In this paper the following four scheduling criteria will

be optimized:

� Makespan maxC – represents the maximum
finishing time of all jobs. It is defined as:

max max()jC C�

� Total flowtime Ft – represents the sum of
all job flowtimes. It is defined as:

j
j

Ft F�	

� Total weighted tardiness Twt – represents
the weighted sum of the tardiness values of
all jobs, and is defined as: j j

j
Twt w T�	

� Weighted number of tardy jobs Uwt –
represents the weighted sum of tardy jobs. It
is defined as: j j

j
Uwt w U�	

B. Scheduling Conditions
Scheduling problems can be classified into several

classes depending on some of their properties. For
example, based on the availability of system parameters
(for example, the information about all jobs which will
arrive to the system) scheduling problems can be divided
into offline scheduling, in which all information is
available from the start, and online scheduling, in which
the information about a job becomes available only when
that concrete job enters the system). On the other hand,
scheduling problems can also be divided based on when
the schedule is created. In static scheduling, the entire
schedule is created before the system begins with its
execution, while in dynamic scheduling the schedule is
built simultaneously with the execution of the system.

Scheduling conditions can have a great influence on
the algorithms which can be used for creating schedules.
For example, search-based approaches can mostly be used
in static offline scheduling; on the other hand, methods
which build the schedule iteratively are mostly used in
dynamic online scheduling, but can be also used in static
and offline scheduling.

In this paper we presume the static scheduling
conditions, where all the parameters are known before the
jobs enter the system.

1337

C. Constructive Scheduling Heuristics
Constructive scheduling heuristics are simple iterative

procedures which build the schedule incrementally. The
main concept of all such heuristics is the same: each time
a machine becomes available and there are jobs to be
scheduled, the heuristic selects one of the jobs and
schedules it on the available machine. Specific heuristics
then differ from each other based on the rule which is used
to select the job. This rule can, for example, select jobs in
the following ways: the job with the shortest processing
time, the job with the highest weight, the job with the
closest due date, etc. For the unrelated machines
scheduling environment, there exists a wide variety of
different scheduling heuristics, but for this article, we will
limit ourselves to the following four popular scheduling
heuristics: min-min [20], max-min [21], sufferage [22]
and min-max [23].

IV. SOLUTION REPRESENTATIONS IN GENETIC
ALGORITHMS FOR SCHEDULING PROBLEMS

A. Genetic Algorithms
Genetic algorithms are a stochastic optimization

technique which can be used in order to find high quality
solutions for a wide variety of problems [24], including
for different scheduling problems. The main idea of
genetic algorithms is to simulate the process of natural
evolution in order to find good solutions. The algorithm
starts with a randomly generated population of solutions,
where each solution is called an individual. In order to
compare individuals with each other, a fitness function
needs to be defined. The role of the fitness function is to
determine how “good” a certain individual is. Based on
that information the selection operator chooses “better”
individuals to survive, while trying to eliminate the
“worse” individuals. Other operators, like crossover and
mutation are used to explore the search space of the
problem. Crossover usually tries to combine two
individuals into a single individual which contains
features of both parents, and which will hopefully
represent a better solution. Mutation, on the other hand,
introduces random changes into an individual, in order to
extend the search to less covered regions. The algorithm
iteratively applies the aforementioned genetic operators on
a population, until a given stopping criteria is met.

Since each solution representation uses a different set
of genetic operators, the actual list of used genetic
operators will be given in the following subsections with
the descriptions of the representations.

B. Permutation representation
The permutation representation is commonly used in

order to represent solutions to scheduling problems.
Throughout the literature many different variations of
permutation representations have been used [4]. Which
variant will be used, greatly depends on the scheduling
environment and scheduling conditions of the problem.

In this paper, a representation consisting of two
vectors will be used. The first vector will represent a
permutation of jobs, which determines the sequence in
which the jobs will be executed. But with this information

alone it is not possible to determine on which machine a
certain job should be executed. Because of that, a second
vector of integers is used to denote on which machine a
certain job will be executed.

Figure 1 represents an example of a solution
representation for a scheduling problem with three
machines and ten jobs. This solution represents a schedule
in which the jobs with the indices 9, 2, 0 and 1 will be
executed (in that order) on the machine with the index 0,
jobs with the indices 7, 8 and 6 will be executed on the
machine with the index 1, while jobs with indices 4, 3 and
5 will be executed on the machine with index 2.

Since this representation uses two vectors, where the
first one represents a permutation, while the second
represents just a normal array of integers, two different
sets of genetic operators were used for each vector. For
the first vector, 13 different crossover operators have been
used, including OBX, OX, PBX, PMX and CX [10]. The
operators are combined in a way that each time a
crossover is performed, a randomly selected operator is
applied.

For the second vector, only the uniform crossover
operator was used. This operator takes two parent integer
vectors and combines them into a single child vector,
where at each position a value from a randomly selected
parent is copied into the child.

Regarding the mutation operators, three have been
used for the permutation vector (insert, inverse and swap
mutation) and one for the integer vector (simple
mutation). The simple mutation changes a value at the
randomly selected position in the vector.

C. Floating point representation
The floating point representation, which usually

consists of one vector holding floating point numbers, is
most commonly used for solving continuous problems.
Since scheduling problems are not continuous but
combinatorial, a decoding scheme which will transform
the floating point vector into a schedule needs to be
devised.

The presented representation uses a floating point
vector with size equal to the number of jobs. Each element
in the vector is a number in the interval [0, 1]. These
numbers denote priorities for each job, where 0 represents
the highest priority, while 1 represents the smallest
priority. This information is still not enough in order to
create a complete schedule, since the mapping between
jobs and machines is still undefined. For that reason, the
interval [0, 1] is divided into m subintervals and

Figure 1 Solution representation in the permutation
based GA

1338

depending to which subinterval the priority value belongs,
it will be mapped to the appropriate machine.

Figure 2 represents an example solution for a
scheduling problem with three machines and ten jobs,
encoded in the floating point representation. Since the
scheduling problem contains three machines, the interval
[0, 1] is divided into three subintervals: [0, 0.33> for the
machine with index 0, [0.33, 0.66> for the machine with
index 1 and finally [0.66, 1] for the machine with index 2.
When a priority value belongs to a certain subinterval, it
means that the job to which that priority value belongs
will be mapped to the corresponding machine. In this
example, the jobs with indices 0, 1, 2 and 9 will be
mapped to the machine with index 0, jobs with indices 6,
7 and 8 will be mapped to the machine with index 1, and
jobs with indices 3, 4 and 5 will be mapped to the machine
with index 2. Since the mapping from each job to each
machine has been resolved, only the sequences of those
jobs on each machine need to be determined. For the first
machine the job with index 9 has the smallest priority
value, which means that this job will be scheduled first,
following by jobs with indices 2, 0 and 1. The sequence
for the other jobs is determined in the same way.

For this solution representation we used 15 different
crossover operators, including BLX, arithmetic, one point
and heuristic [25]. The crossover operators are combined
in the same way as for the permutation encoding. As for
the mutation, only the simple mutation operator is used,
which changes the value of a randomly selected element
of the vector.

D. Algorithms
Both the permutation and floating point encoding are

used within a genetic algorithm that employs the same
selection method. In this paper a steady state genetic
algorithm is used with the tournament size of k = 3
individuals, which is given in Figure 3.

The floating point representation has an additional
advantage that it can be used with existing continuous
optimization algorithms other than GA. To illustrate that,

in this paper we also experiment with a memetic genetic
algorithm, which incorporates a local search method. The
search method in this case is based on pattern search
Hooke-Jeeves deterministic algorithm [26]. The goal of
incorporating a local search method is to guide the
algorithm towards the nearest local optimum, in the hope
it will also represent a globally optimal solution. This
usually comes at a cost of a higher number of evaluations
needed to reach the same objective value. The analysis of
efficiency of different local search methods is out of the
scope of this paper, but we include an example of this
approach to demonstrate its applicability.

V. RESULTS

In this section, results for both solution representations
will be presented. The genetic algorithm with the
permutation solution representation will be denoted as
GA-PERM, while the genetic algorithm with the floating
point representation will be denoted as GA-FP. An
additional memetic algorithm which uses Hooke-Jeeves
local search, coupled with floating point encoding only, is
denoted with GA-HJ.

A. Benchmark setup
 In order to test the different representations, a

benchmark set consisting of 60 scheduling problem
instances was prepared. In order to test the algorithms on
scheduling problems with different characteristics, the
problem instances were designed with different number of
jobs and machines. Depending on the specific problem
instance, the number of machines can be 3, 6 or 10 and the
number of jobs can be 12, 25, 50 or 100. More details
about the design of the problem instances can be found on
the project website [27]. In order for the benchmarks to be
statistically significant, the algorithms were executed 30
times for each problem instance. The complete result for
each algorithm is calculated as the sum of the best
achieved solutions over all problem instances.

B. Parameter tuning
Since it is known that parameter values can have a

significant influence on the obtained results, it is of great
importance to perform a thorough optimization of the
algorithm parameters, not only to obtain better results, but
also in order to make the comparison as fair as possible
and to determine the sensitivity of algorithms to the
parameter values. First off, the maximum number of
function evaluations has been set as the common
termination criterion to allow for a fair comparison
between different algorithms. The maximum number of
function evaluations has been set to one million in order to
give all algorithms enough time to converge. Two other
parameters, population size and mutation probability, have
been optimized for each algorithm separately. Both
parameters were tuned by optimizing the Twt criterion,
and then used for the other three criteria.

Table 1 represents the results achieved for various
population sizes by the three genetic algorithm variants,
with the best result bolded for each algorithm. The quality
of solutions found by GA-PERM steadily increases with
the increase of the population size, achieving best results

Figure 2 Solution representation in the floating point
based GA

Figure 3. Pseudo-code of the steady state tournament
GA

Steady-state tournament selection
{ randomly select k individuals;
 remove the worst of k selected;
 child = crossover(best two of k selected);
 perform mutation on child, with given
 individual mutation probability;
 insert child into population;
}

1339

for a population size of 1000 individuals. The other two
approaches show best results for the smallest population
size of 30 individuals. While the solution quality degrades
with the increase of population size for the GA-HJ
algorithm, for the GA-FP algorithm, the solution quality
drops for the population size of 100 individuals, but then
for greater population sizes the solution quality slowly
increases.

Table 2 represents the results for various mutation
probability values. From the results it is apparent that all
algorithms prefer higher mutation values. Both GA-
PERM and GA-HJ achieve the best results for the highest
mutation probability of 0.7, while GA-FP achieves the
best results for a mutation probability of 0.5.

C. Result comparison
Table 3 shows the results for all the tested criteria

achieved by the search based approaches, and additionally
by four constructive scheduling heuristics selected from
the literature: min-min, max-min, sufferage and min-max.
The best values achieved by either the group of scheduling
heuristics and search based approaches have been bolded.
As it can be seen from the table, there does not exist a
single scheduling heuristic which achieves supreme
results for all criteria. The sufferage heuristic and min-min
heuristic each achieve the best results for two criteria. The
max-min heuristic, on the other hand, achieved the overall
worst results for all criteria.

From the genetic algorithm approaches, GA-PERM
and GA-FP achieved results which were better than results
from all the scheduling heuristics. GA-HJ, on the other
hand, was able to surpass the results of scheduling
heuristics in only a few cases, and was generally not very
effective. When the genetic algorithm approaches are
compared with each other, GA-FP found the best solutions
for all criteria, followed closely by GA-PERM. GA-HJ

came last with the significantly worst results from all three
search-based approaches.

D. Execution time comparison
Apart from the obtained solution quality, the execution

time very often represents an important factor in the
choice of algorithms for solving a certain problem.
Because of that, it is important to be aware of the time
complexities of all the different approaches.

In order to compare the execution time of genetic
algorithms with the constructive heuristics, we examine
the quality level of the GA during its execution. When a
solution is found by the GA which is of equal or better
quality than that of a corresponding heuristic, we record
the time at which that solution was obtained. The same
process is repeated for 30 independent runs, and the
resulting average time is used for runtime comparison.

Note that the GA is in general not guaranteed to
converge to a better solution for every problem instance;
in that case, a maximum runtime needed for one million
evaluations is recorded. In our experiments, both GA-
PERM and GA-FP were always able to find a better
solution. The GA-HJ variant, however, was consistently
worse and is therefore excluded from the comparison.

Table 4 represents the average execution times of the
scheduling heuristics, GA-PERM and GA-FP. The first
column represents which scheduling heuristic is used as a
reference, the second column represents the criterion
which was optimized, the third column represents the
execution times of the scheduling heuristics, while the rest
of the columns represent results for GA-PERM and GA-
FP. It can be seen that the scheduling heuristics can
construct the schedule for all 60 problem instances in
around 0.2 seconds (depending on the heuristic). On the
other hand, the time needed by the GA-PERM and GA-HJ
algorithms to reach solutions of the same quality ranged
from around 3 minutes up until 22 minutes, depending on
the criterion. Regarding the algorithm, it can be seen that
the GA-FP was able to find solutions of the necessary
quality in less time than GA-PERM. Depending on the
criteria, GA-PERM and GA-FP need more time to find the
necessary solutions for the Cmax and Ft criteria, than for
the Twt and Nwt criteria, but that behavior is expected
since these scheduling heuristics are more suited to the

Table 1 Weighted tardiness optimization with
different population sizes

Algorithm Population size
30 100 200 1000

GA-
PERM

11.14 10.42 10.15 9.816

GA-FP 9.577 9.850 9.70 9.617
GA-HJ 17.68 22.20 25.69 41.99

Table 2 Weighted tardiness optimization with
different mutation probabilities

Algorithm Mutation probability
0.05 0.1 0.3 0.5 0.7

GA-
PERM

9.837 9.920 9.816 9.773 9.725

GA-FP 9.767 9.673 9.577 9.533 9.566
GA-HJ 17.45 18.38 17.68 17.50 16.77

Table 3 Complete results for all scheduling criteria

Algorithm Criteria
Twt Nwt Ft Cmax

Constructive
Min-min 16.71 7.143 157.2 38.31
Max-min 22.06 8.138 195.8 38.83
Min-max 17.49 7.793 167.3 38.06
Sufferage 16.65 7.194 160.9 37.92
Search-
based

GA-PERM 9.725 5.615 151.2 37.14
GA-FP 9.533 5.340 140.8 36.79
GA-HJ 16.77 6.395 232.1 41.67

1340

former two criteria (which can also be seen from the
results).

VI. DISCUSSION

Based on the results outlined in the previous section,
several things can be concluded. First of all, it was shown
that GA-FP achieved the best results for every scheduling
criterion. GA-PERM came second, achieving results
which are a few percent worse than those of GA-FP. This
could come as a bit of a surprise, considering that the
permutation representation is much more intuitive to
represent solutions of scheduling problems. But on the
other hand, the permutation representation needs two
vectors to represent a complete solution, while the floating
point representation encodes everything in a single vector.
As a consequence, GA-PERM needs to perform genetic
operators on both vectors, and it seems that this proves to
be more challenging than performing genetic operators on
only a single vector.

GA-HJ on the other hand achieved the worst results
among the three GA approaches. This behavior was
certainly not expected, since the Hooke-Jeeves local
search was introduced to improve the results. In order to
detect the cause of such behavior, results for each test
instance of GA-HJ were compared to results of GA-
PERM and it was noticed that both approaches achieve
similar or the same results on smaller scheduling problems
with 12 or 25 jobs. On the other hand, GA-HJ performs
significantly worse on the larger problem instances with
50 and 100 jobs. This is probably the consequence of the
local search algorithm, which in each iteration probes at
least one additional point in every dimension and
evaluates it, thus significantly increasing the function
evaluation count. It could be possible that this algorithm

would need much more evaluations in order to reach
solutions of the same quality, but this is not an acceptable
solution, since the maximum evaluation count is already
large enough.

When compared to scheduling heuristics, GA-PERM
and GA-FP have obtained better results, which is expected
since they search the whole solution space in order to find
the best schedule. The differences are more prominent for
the Twt and Nwt criteria, since the constructive heuristics
do not consider due dates of the jobs.

The execution time of the constructive heuristics is
almost negligible, since they can create schedules for 60
problem instances in only 0.2 seconds. This characteristic
makes these approaches applicable in dynamic and real
world environments, where scheduling decisions need to
be made very fast, and the algorithm needs to be able to
quickly react to changes in the environment (such as the
arrival of new jobs).

In order to find solutions of the same quality as those
found by the scheduling heuristics, GA-PERM and GA-
FP needed much more time, which ranged from 3 minutes
up until 22 minutes, depending on the algorithm and
optimization criterion. In all cases GA-PERM needed
more time in order to find those solutions than the GA-FP
algorithm. This behavior could also be the consequence of
GA-PERM operating on two vectors, thus needing more
time in order to reach good solutions. Additionally, since
genetic algorithms are stochastic, there is no guarantee
that they will be able to locate good solutions on the first
try. As a consequence, these algorithms need to be
executed several times in order to ascertain that good
solutions have really been found.

Table 4 Execution time comparison between scheduling heuristics and genetic algorithms

Scheduling
heuristic (SH) Criterion

SH
execution
time (s)

GA-PERM
execution
time (s)

GA-FP
execution
time (s)

Ratio
GA-

PERM/SH

Ratio
GA-

FP/SH

Ratio GA-
PERM/GA

-FP

Sufferage

Cmax

0.197

1188.2 820 6031 4162 1.45
Ft 1184.8 609.6 6014 3094 1.94

Nwt 525.1 219.6 2665 1114 2.39
Twt 265.2 200 1346 1015 1.33

Min-min

Cmax

0.097

1139.2 806.3 11744 8312 1.41
Ft 1296.4 644.4 13364 6643 2.01

Nwt 496.5 209.7 5118 2161 2.37
Twt 264.6 203.5 2727 2097 1.30

Min-max

Cmax

0.215

1182.8 848.3 5501 3945 1.39
Ft 1127.9 562.2 5246 2614 2.01

Nwt 479.8 228.5 2231 1062 2.10
Twt 259.6 206.8 1207 961 1.25

Max-min

Cmax

0.213

1057.6 728 4965 3417 1.45
Ft 1002.8 458.8 4707 2153 2.19

Nwt 416.6 200.5 1955 941 2.08
Twt 237.7 176.7 1115 829 1.35

1341

VII. CONCLUSION

This paper compares two different solution
representations for scheduling problems in the unrelated
machines environment. Although both representations
were able to obtain good results, the floating point
representation achieved the best results for all criteria.
Unfortunately, contrary to our initial expectations, by
adding a local search operator for the floating point
representation, we were not able to improve the results of
the genetic algorithm approach. Additionally, the genetic
algorithm approaches were compared to several
constructive scheduling heuristics, and it was shown that
they are able to find much better solutions than scheduling
heuristics, but with substantially longer execution time.
This just shows that there is a tradeoff between solution
quality and the time needed to find those solutions. The
choice of the appropriate approach will then depend on the
scheduling environment and user requirements.

 For future research it is planned to further investigate
some other solution representations, and compare them to
the representations analyzed in this paper. Additionally,
other local search mechanisms will also be tried out for
both solution representations.

REFERENCES

[1] M. P. Pinedo, “Scheduling: theory, algorithms, and systems,”
Springer Science \& Business Media, 2012.

[2] J. Y-T. Leung, “Handbook of Scheduling: Algorthms, Models, and
Performance Analysis”, Chapman & Hall/CRC, 2004.

[3] A. Jones, L. Rabelo, “Survey of job shop scheduling techniques,”
tech rep., NISTIR, National Institute of Standards and
Technology.

[4] E. Hart, P. Ross, D. Corne, “Evolutionary Scheduling: A Review,”
Genetic Programming and Evolvable Machines, 6, pp. 191–220,
2005.

[5] H. Zhou, Y. Feng, L. Han, “The hybrid heuristic genetic algorithm
for job shop scheduling,” Computers and Industrial Engineering,
pp. 191-200, 2001.

[6] L. Wang, H. Siegel, V. Roychowdhury, A. Maciejewsky, “Task
Matching and Scheduling in Heterogeneous Computing
Environments Using a Genetic-Algorithm-Based Approach,”
Journal of Parallel and Distributed Computing, pp. 8-22, 1997.

[7] H. Zhou, W. Cheung, L. Leung, “Minimizing weighted tardiness
of job-shop scheduling using a hybrid genetic algorithm,”, pp.
637-649, 2009.

[8] W. Cheung, H. Zhou, “Using genetic algorithms and heuristics for
job shop scheduling with sequence-dependent setup times”,
Annals of Operations Research, pp. 65-81, 2001.

[9] S. Petrovic, E. Castro, “A Genetic Algorithm for Radiotherapy
Pre-treatment Scheduling”, Applications of Evolutionary
Computation, pp. 462-471, 2010.

[10] F. Werner, “Genetic Algorithms for Shop Scheduling Problems: a
Survey”.

[11] J. Behnamian, M. Zandieh, S. M. T. Fatemi Ghomi, “Parallel-
machine scheduling problems with sequence-dependent setup

times using an ACO, SA and VNS hybrid algorithm”, Expert
Systems with Application, 9637-9644, 2009

[12] C. W. Lin, Y. K. Lin, H. T. Hsieh, “Ant colony optimization for
unrelated parallel machine scheduling”, International Journal of
Advanced Manufacturing, 35-45, 2013.

[13] J. P. C. M. Nogueira, J. E. C. Arroyo, H. M. M. Villadiego, L. B.
Goncalves, “Hybrid GRASP Heuristics to Solve an Unrelated
Parallel Machine Scheduling Problem with Earliness and
Tardiness Penalties”, Electronic Notes in Theoretical Computer
Science, 53-72, 2014.

[14] C. C. Chyu, W. S. Chang, “A Competitive Evolution Strategy
Memetic Algorithm for Unrelated Parallel Machine Scheduling to
Minimize Total Weighted Tardiness and Flow Time”, Computers
and Industrial Engineering, 1-6, 2010.

[15] S. Balin, “Non-identical parallel machine scheduling using genetic
algorithm”, Expert Systems with Applications, 6814-6821, 2011.

[16] E. Vallada, R. Ruiz, “A genetic algorithm for the unrelated
parallel machine scheduling problem with sequence dependent
setup times”, 612-622, 2011.

[17] M. N. Haddad, I. M. Coelho, L. S. Ochi, M. J. F. Souza, H. G.
Santos, “GARP: A New Genetic Algorithm for the Unrelated
Parallel Machine Scheduling Problem with Setup Times”,
International Conference of the Chilean Computer Science
Society, 2012.

[18] A. Costa, F. Cappadonna, S. Fichera, “A hybrid genetic algorithm
for job sequencing and worker allocation in parallel unrelated
machines with sequence-dependent setup times”, International
Journal of Advanced Manufacturing Technology, pp. 2799-2817,
2013.

[19] H. C. Chang, H. T. Tsai, T. K. Liu, “Application of Genetic
Algorithm to Optimize Unrelated Parallel Machines of Flexible
Job-Shop Scheduling Problem”, International Conference on
Control & Automation, 2014.

[20] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen,
et al., “A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed
computing systems,” Journal of Parallel and Distributed
computing, pp. 810-837, 2001.

[21] E. Davis, J. M. Jaffe, “Algorithms for scheduling tasks on
unrelated processors,” Journal of the ACM, pp. 721-736, 1981.

[22] D. Hensgen, R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems,”
Journal of Distributed Computing.

[23] H. Izakian, A. Abraham, V. Snasel, “Comparison of heuristics for
scheduling independent tasks on heterogeneous distributed
Environments,” Computational Sciences and Optimization, 2009.
CSO 2009. International Joint Conference on, pp. 8–12, 2009.

[24] Z. Michalewicz, “Genetic Algorithms + Data Structures =
Evolutionary Programs”, Springer-Verlag, Berlin, 1992.

[25] S. Picek, D. Jakobović, “From fitness landscape to crossover
operator choice,” Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, pp. 815-822, 2014.

[26] R. Hooke, T. A. Jeeves, “”Direct search” Solution of Numerical an
Statistical Problems,” Journal of the ACM, pp. 212-229, 1961.

[27] D. Jakobović, “Test case design,”
http://gp.zemris.fer.hr/scheduling/Test_cases_design.pdf

1342

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

