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Abstract – Most scheduling problems belong to the class of 
NP hard problems. Because of that reason, search based 
approaches are often used in order to find solutions for 
scheduling problems. In this paper we compare several 
search-based approaches for finding solutions for the 
unrelated machines scheduling problem. These search based 
approaches use two different solution representations for 
the aforementioned problem and the representations are 
compared with each other. The first representation uses a 
permutation vector to encode the solution, while the second 
one uses a vector of floating point numbers. The results of 
the search based approaches are compared to several 
existing heuristics developed especially for solving the 
unrelated machines scheduling problem. We also perform a 
complexity analysis of the search-based approaches, in 
which we compute the time needed for them to outperform 
the problem specific heuristics.  

I. INTRODUCTION

Scheduling can be defined as a decision-making 
process concerned with the allocation of scarce resources 
to tasks over a given time in order to optimize one or more 
objectives [1], [2]. A great number of scheduling 
problems belong to the class of NP hard problems, 
meaning that no efficient algorithms exist which could 
find the optimal solution in a reasonable amount of time. 
Therefore, such problems are often solved by using 
different heuristic algorithms. Based on the nature of how 
the solutions are generated, heuristic algorithms are 
divided into two groups: the first group, denoted as 
search-based, consists of metaheuristic approaches which 
search the whole solution space in order to find the 
optimal solution, while the second group consists of 
problem specific heuristics which iteratively construct the 
solution [3]. 

Search-based approaches have the advantage that they 
are usually able to find near optimal solutions. However, 
this advantage comes at a price, since search-based 
approaches are rather slow when compared to approaches 
which build the schedule iteratively. Additionally, search-
based approaches can mostly be used in scheduling 
environments where all information about the 
environment is available beforehand, since they search the 
whole solution space. In such cases, when all the 
information about the scheduling environment is present 
beforehand, these approaches are mostly the methods of 
choice, since they outperform simple constructive 
scheduling heuristics. 

One of the most important design choices in search-
based algorithms is the solution representation of the 
given problem. The overall effectiveness of search-based 
approaches can, to a great extent, depend on the chosen 
solution representation [4]. Most commonly a solution 
representation which can best represent the given problem 
is chosen, but that may not always be the best choice, 
since some other solution representations could produce 
better results. Because of that, this paper will compare two 
solution representations for scheduling in the unrelated 
machines environment. The first representation is a 
permutation representation similar to the ones used in the 
literature. The second representation uses a vector of 
floating point numbers in order to represent the schedule. 
To the best of our knowledge, the second representation 
has not yet been used to represent solutions for the 
unrelated parallel machines environment. The results of 
those two approaches will be compared to several iterative 
scheduling heuristics. Additionally, this paper will 
examine the time complexity of genetic algorithms (using 
the aforementioned solution representations) when 
compared to some traditional heuristic methods for 
creating schedules for the unrelated parallel machines 
environment. 

The paper is organized as follows: in the second 
section a short overview of the unrelated machines 
environment is given. The third section describes the two 
solution representations in more detail. The results are 
presented in the fourth section, while a discussion about 
the results is given in the fifth section. Finally, a short 
conclusion and future research directions are presented in 
the sixth section. 

II. RELATED WORK

A lot of work has been invested in solving different 
scheduling problems by using various metaheuristic 
methods [5], [6], [7], [8], [9], [10]. Unfortunately, very
little research has been done in the area of the unrelated 
machines environment. In [11] the authors propose a 
hybrid algorithm combining ant colony optimization, 
simulated annealing and variable neighborhood search in 
order to solve scheduling problems for parallel unrelated 
machine environment. The ant colony optimization 
algorithm was also used in [12], where the authors 
propose several new ideas in order to improve the 
performance of the algorithm. A Greedy Randomized 
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Adaptive Search Procedure (GRASP) metaheuristic was 
proposed in [13]. A Competitive Evolutionary Strategy 
Memetic Algorithm which for optimizing two objectives 
simultaneously was proposed in [14].

Genetic algorithms have also been used to solve the 
unrelated machines problem on several occasions. For 
example, in [15], the author adapts a genetic algorithm 
for the unrelated machines environment and shows 
promising results. In [16] a genetic algorithm using a 
permutation representation and several local search 
operators was proposed. It was shown that the proposed 
method achieved excellent performance, when compared 
to other similar methods. GARP, a genetic algorithm 
combined with variable neighborhood descent and path 
relinking was proposed in [17]. In [18] a hybrid genetic 
algorithm was proposed for the unrelated machines 
environment with worker allocations. This article 
additionally examines several solution representations for 
the given problem. Solving the unrelated parallel 
machines environment as a subset of the flexible flow 
shop problem was discussed in [19].

III. SCHEDULING IN THE UNRELATED MACHINES 
ENVIRONMENT

The unrelated machines environment consists of n jobs 
which compete in order to be processed on one of the m
machines [2]. Each job is defined by several properties 
including the processing time ijp , which defines the 
execution time of job with the index j on the machine with 
the index i; the release time jr , which defines the time 
when the job arrives in the system; the due date jd , which 
defines a point in time by which the job should finish with 
its execution, otherwise a certain cost will be caused by its 
delay; and a weight jw , which denotes the importance of 
a job.  

A. Scheduling Criteria 
In order to assess the quality of a given schedule, 

certain scheduling criteria need to be defined. Since the 
number of the proposed scheduling criteria is numerous, 
four of the most prominent criteria from the literature are 
chosen. But before defining the criteria for the entire 
schedule, it is essential to first define certain criteria for 
individual jobs, which will then in turn be used to define 
the scheduling criteria. 

For each job the following criteria are defined [1]: 

� Finish time jC – denotes the point in time in 
which the job ended with its execution 

� Flowtime jF – denotes the amount of time a 
certain job spent in the system before it 
finished with its execution, which is defined 
as: j j jF C r� � , 

� Tardiness jT – denotes the amount of time 
that the job was executing after its due date. It 
is defined as: max( ,0)j j jT C d� �

� Is tardy jU – denotes if a job is tardy or not. 

It is defined as: 
1: 0
0 : 0

j
j

j

T
U

T
��

� � ��
In this paper the following four scheduling criteria will 

be optimized: 

� Makespan maxC – represents the maximum 
finishing time of all jobs. It is defined as: 

max max( )jC C�

� Total flowtime Ft – represents the sum of 
all job flowtimes. It is defined as: 

j
j

Ft F�	

� Total weighted tardiness Twt – represents 
the weighted sum of the tardiness values of 
all jobs, and is defined as: j j

j
Twt w T�	

� Weighted number of tardy jobs Uwt –
represents the weighted sum of tardy jobs. It 
is defined as: j j

j
Uwt w U�	

B. Scheduling Conditions 
Scheduling problems can be classified into several 

classes depending on some of their properties. For 
example, based on the availability of system parameters 
(for example, the information about all jobs which will 
arrive to the system) scheduling problems can be divided 
into offline scheduling, in which all information is 
available from the start, and online scheduling, in which 
the information about a job becomes available only when 
that concrete job enters the system). On the other hand, 
scheduling problems can also be divided based on when 
the schedule is created. In static scheduling, the entire 
schedule is created before the system begins with its 
execution, while in dynamic scheduling the schedule is 
built simultaneously with the execution of the system. 

Scheduling conditions can have a great influence on 
the algorithms which can be used for creating schedules. 
For example, search-based approaches can mostly be used 
in static offline scheduling; on the other hand, methods 
which build the schedule iteratively are mostly used in 
dynamic online scheduling, but can be also used in static 
and offline scheduling.  

In this paper we presume the static scheduling 
conditions, where all the parameters are known before the 
jobs enter the system. 
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C. Constructive Scheduling Heuristics 
Constructive scheduling heuristics are simple iterative 

procedures which build the schedule incrementally. The 
main concept of all such heuristics is the same: each time 
a machine becomes available and there are jobs to be 
scheduled, the heuristic selects one of the jobs and 
schedules it on the available machine. Specific heuristics 
then differ from each other based on the rule which is used 
to select the job. This rule can, for example, select jobs in 
the following ways: the job with the shortest processing 
time, the job with the highest weight, the job with the 
closest due date, etc. For the unrelated machines 
scheduling environment, there exists a wide variety of 
different scheduling heuristics, but for this article, we will
limit ourselves to the following four popular scheduling 
heuristics: min-min [20], max-min [21], sufferage  [22]
and min-max [23]. 

IV. SOLUTION REPRESENTATIONS IN GENETIC 
ALGORITHMS FOR SCHEDULING PROBLEMS

A. Genetic Algorithms 
Genetic algorithms are a stochastic optimization 

technique which can be used in order to find high quality 
solutions for a wide variety of problems [24], including 
for different scheduling problems. The main idea of 
genetic algorithms is to simulate the process of natural 
evolution in order to find good solutions. The algorithm 
starts with a randomly generated population of solutions, 
where each solution is called an individual. In order to 
compare individuals with each other, a fitness function 
needs to be defined. The role of the fitness function is to 
determine how “good” a certain individual is. Based on 
that information the selection operator chooses “better” 
individuals to survive, while trying to eliminate the 
“worse” individuals. Other operators, like crossover and 
mutation are used to explore the search space of the 
problem. Crossover usually tries to combine two 
individuals into a single individual which contains 
features of both parents, and which will hopefully 
represent a better solution. Mutation, on the other hand, 
introduces random changes into an individual, in order to 
extend the search to less covered regions. The algorithm 
iteratively applies the aforementioned genetic operators on 
a population, until a given stopping criteria is met. 

Since each solution representation uses a different set 
of genetic operators, the actual list of used genetic 
operators will be given in the following subsections with 
the descriptions of the representations.  

B. Permutation representation 
The permutation representation is commonly used in 

order to represent solutions to scheduling problems. 
Throughout the literature many different variations of 
permutation representations have been used [4]. Which 
variant will be used, greatly depends on the scheduling 
environment and scheduling conditions of the problem.  

In this paper, a representation consisting of two 
vectors will be used. The first vector will represent a 
permutation of jobs, which determines the sequence in 
which the jobs will be executed. But with this information 

alone it is not possible to determine on which machine a 
certain job should be executed. Because of that, a second 
vector of integers is used to denote on which machine a 
certain job will be executed. 

Figure 1 represents an example of a solution 
representation for a scheduling problem with three 
machines and ten jobs. This solution represents a schedule 
in which the jobs with the indices 9, 2, 0 and 1 will be 
executed (in that order) on the machine with the index 0, 
jobs with the indices 7, 8 and 6 will be executed on the 
machine with the index 1, while jobs with indices 4, 3 and 
5 will be executed on the machine with index 2. 

Since this representation uses two vectors, where the 
first one represents a permutation, while the second 
represents just a normal array of integers, two different 
sets of genetic operators were used for each vector. For 
the first vector, 13 different crossover operators have been 
used, including OBX, OX, PBX, PMX and CX [10]. The 
operators are combined in a way that each time a 
crossover is performed, a randomly selected operator is 
applied. 

For the second vector, only the uniform crossover 
operator was used. This operator takes two parent integer 
vectors and combines them into a single child vector, 
where at each position a value from a randomly selected 
parent is copied into the child. 

Regarding the mutation operators, three have been 
used for the permutation vector (insert, inverse and swap 
mutation) and one for the integer vector (simple 
mutation). The simple mutation changes a value at the 
randomly selected position in the vector. 

C. Floating point representation 
The floating point representation, which usually 

consists of one vector holding floating point numbers, is 
most commonly used for solving continuous problems. 
Since scheduling problems are not continuous but 
combinatorial, a decoding scheme which will transform 
the floating point vector into a schedule needs to be 
devised.  

The presented representation uses a floating point 
vector with size equal to the number of jobs. Each element 
in the vector is a number in the interval [0, 1]. These 
numbers denote priorities for each job, where 0 represents 
the highest priority, while 1 represents the smallest 
priority. This information is still not enough in order to 
create a complete schedule, since the mapping between 
jobs and machines is still undefined. For that reason, the 
interval [0, 1] is divided into m subintervals and 

Figure 1 Solution representation in the permutation 
based GA
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depending to which subinterval the priority value belongs, 
it will be mapped to the appropriate machine. 

Figure 2 represents an example solution for a 
scheduling problem with three machines and ten jobs, 
encoded in the floating point representation. Since the 
scheduling problem contains three machines, the interval 
[0, 1] is divided into three subintervals: [0, 0.33> for the 
machine with index 0, [0.33, 0.66> for the machine with 
index 1 and finally [0.66, 1] for the machine with index 2. 
When a priority value belongs to a certain subinterval, it 
means that the job to which that priority value belongs 
will be mapped to the corresponding machine. In this 
example, the jobs with indices 0, 1, 2 and 9 will be 
mapped to the machine with index 0, jobs with indices 6, 
7 and 8 will be mapped to the machine with index 1, and 
jobs with indices 3, 4 and 5 will be mapped to the machine 
with index 2. Since the mapping from each job to each 
machine has been resolved, only the sequences of those 
jobs on each machine need to be determined. For the first 
machine the job with index 9 has the smallest priority 
value, which means that this job will be scheduled first, 
following by jobs with indices 2, 0 and 1. The sequence 
for the other jobs is determined in the same way. 

For this solution representation we used 15 different 
crossover operators, including BLX, arithmetic, one point 
and heuristic [25]. The crossover operators are combined 
in the same way as for the permutation encoding. As for 
the mutation, only the simple mutation operator is used, 
which changes the value of a randomly selected element 
of the vector.  

D. Algorithms 
Both the permutation and floating point encoding are 

used within a genetic algorithm that employs the same 
selection method. In this paper a steady state genetic 
algorithm is used with the tournament size of k = 3 
individuals, which is given in Figure 3.  

The floating point representation has an additional 
advantage that it can be used with existing continuous 
optimization algorithms other than GA. To illustrate that, 

in this paper we also experiment with a memetic genetic 
algorithm, which incorporates a local search method. The 
search method in this case is based on pattern search 
Hooke-Jeeves deterministic algorithm [26]. The goal of 
incorporating a local search method is to guide the 
algorithm towards the nearest local optimum, in the hope 
it will also represent a globally optimal solution. This 
usually comes at a cost of a higher number of evaluations 
needed to reach the same objective value. The analysis of 
efficiency of different local search methods is out of the 
scope of this paper, but we include an example of this 
approach to demonstrate its applicability. 

V. RESULTS

In this section, results for both solution representations 
will be presented. The genetic algorithm with the 
permutation solution representation will be denoted as 
GA-PERM, while the genetic algorithm with the floating 
point representation will be denoted as GA-FP. An 
additional memetic algorithm which uses Hooke-Jeeves 
local search, coupled with floating point encoding only, is 
denoted with GA-HJ. 

A. Benchmark setup 
 In order to test the different representations, a 

benchmark set consisting of 60 scheduling problem 
instances was prepared. In order to test the algorithms on 
scheduling problems with different characteristics, the 
problem instances were designed with different number of 
jobs and machines. Depending on the specific problem 
instance, the number of machines can be 3, 6 or 10 and the 
number of jobs can be 12, 25, 50 or 100. More details 
about the design of the problem instances can be found on 
the project website [27]. In order for the benchmarks to be 
statistically significant, the algorithms were executed 30 
times for each problem instance. The complete result for 
each algorithm is calculated as the sum of the best 
achieved solutions over all problem instances.  

B. Parameter tuning 
Since it is known that parameter values can have a 

significant influence on the obtained results, it is of great 
importance to perform a thorough optimization of the 
algorithm parameters, not only to obtain better results, but 
also in order to make the comparison as fair as possible 
and to determine the sensitivity of algorithms to the 
parameter values. First off, the maximum number of 
function evaluations has been set as the common 
termination criterion to allow for a fair comparison 
between different algorithms. The maximum number of 
function evaluations has been set to one million in order to 
give all algorithms enough time to converge. Two other 
parameters, population size and mutation probability, have 
been optimized for each algorithm separately. Both 
parameters were tuned by optimizing the Twt criterion, 
and then used for the other three criteria. 

Table 1 represents the results achieved for various 
population sizes by the three genetic algorithm variants, 
with the best result bolded for each algorithm. The quality 
of solutions found by GA-PERM steadily increases with 
the increase of the population size, achieving best results 

Figure 2 Solution representation in the floating point 
based GA

Figure 3. Pseudo-code of the steady state tournament 
GA

Steady-state tournament selection 
{ randomly select k individuals; 
 remove the worst of k selected; 
 child = crossover(best two of k selected); 
 perform mutation on child, with given 
 individual mutation probability; 
 insert child into population; 
} 
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for a population size of 1000 individuals. The other two 
approaches show best results for the smallest population 
size of 30 individuals. While the solution quality degrades 
with the increase of population size for the GA-HJ
algorithm, for the GA-FP algorithm, the solution quality 
drops for the population size of 100 individuals, but then 
for greater population sizes the solution quality slowly 
increases. 

Table 2 represents the results for various mutation 
probability values. From the results it is apparent that all 
algorithms prefer higher mutation values. Both GA-
PERM and GA-HJ achieve the best results for the highest 
mutation probability of 0.7, while GA-FP achieves the 
best results for a mutation probability of 0.5.  

C. Result comparison 
Table 3 shows the results for all the tested criteria 

achieved by the search based approaches, and additionally 
by four constructive scheduling heuristics selected from 
the literature: min-min, max-min, sufferage  and min-max. 
The best values achieved by either the group of scheduling 
heuristics and search based approaches have been bolded. 
As it can be seen from the table, there does not exist a 
single scheduling heuristic which achieves supreme 
results for all criteria. The sufferage heuristic and min-min 
heuristic each achieve the best results for two criteria. The 
max-min heuristic, on the other hand, achieved the overall 
worst results for all criteria.  

From the genetic algorithm approaches, GA-PERM 
and GA-FP achieved results which were better than results 
from all the scheduling heuristics. GA-HJ, on the other 
hand, was able to surpass the results of scheduling 
heuristics in only a few cases, and was generally not very 
effective. When the genetic algorithm approaches are 
compared with each other, GA-FP found the best solutions 
for all criteria, followed closely by GA-PERM. GA-HJ

came last with the significantly worst results from all three 
search-based approaches. 

D. Execution time comparison  
Apart from the obtained solution quality, the execution 

time very often represents an important factor in the 
choice of algorithms for solving a certain problem. 
Because of that, it is important to be aware of the time 
complexities of all the different approaches. 

In order to compare the execution time of genetic 
algorithms with the constructive heuristics, we examine 
the quality level of the GA during its execution. When a 
solution is found by the GA which is of equal or better 
quality than that of a corresponding heuristic, we record 
the time at which that solution was obtained. The same 
process is repeated for 30 independent runs, and the 
resulting average time is used for runtime comparison. 

Note that the GA is in general not guaranteed to 
converge to a better solution for every problem instance; 
in that case, a maximum runtime needed for one million 
evaluations is recorded. In our experiments, both GA-
PERM and GA-FP were always able to find a better 
solution.  The GA-HJ variant, however, was consistently 
worse and is therefore excluded from the comparison. 

Table 4 represents the average execution times of the 
scheduling heuristics, GA-PERM and GA-FP. The first 
column represents which scheduling heuristic is used as a 
reference, the second column represents the criterion 
which was optimized, the third column represents the 
execution times of the scheduling heuristics, while the rest 
of the columns represent results for GA-PERM and GA-
FP. It can be seen that the scheduling heuristics can 
construct the schedule for all 60 problem instances in 
around 0.2 seconds (depending on the heuristic). On the 
other hand, the time needed by the GA-PERM and GA-HJ
algorithms to reach solutions of the same quality ranged 
from around 3 minutes up until 22 minutes, depending on 
the criterion.  Regarding the algorithm, it can be seen that 
the GA-FP was able to find solutions of the necessary 
quality in less time than GA-PERM. Depending on the 
criteria, GA-PERM and GA-FP need more time to find the 
necessary solutions for the Cmax and Ft criteria, than for 
the Twt and Nwt criteria, but that behavior is expected 
since these scheduling heuristics are more suited to the 

Table 1 Weighted tardiness optimization with 
different population sizes

Algorithm Population size
30 100 200 1000

GA-
PERM

11.14 10.42 10.15 9.816

GA-FP 9.577 9.850 9.70 9.617
GA-HJ 17.68 22.20 25.69 41.99

Table 2 Weighted tardiness optimization with 
different mutation probabilities

Algorithm Mutation probability
0.05 0.1 0.3 0.5 0.7

GA-
PERM

9.837 9.920 9.816 9.773 9.725

GA-FP 9.767 9.673 9.577 9.533 9.566
GA-HJ 17.45 18.38 17.68 17.50 16.77

Table 3 Complete results for all scheduling criteria

Algorithm Criteria
Twt Nwt Ft Cmax

Constructive
Min-min 16.71 7.143 157.2 38.31
Max-min 22.06 8.138 195.8 38.83
Min-max 17.49 7.793 167.3 38.06
Sufferage 16.65 7.194 160.9 37.92
Search-
based

GA-PERM 9.725 5.615 151.2 37.14
GA-FP 9.533 5.340 140.8 36.79
GA-HJ 16.77 6.395 232.1 41.67
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former two criteria (which can also be seen from the 
results). 

VI. DISCUSSION

Based on the results outlined in the previous section, 
several things can be concluded. First of all, it was shown 
that GA-FP achieved the best results for every scheduling 
criterion. GA-PERM came second, achieving results 
which are a few percent worse than those of GA-FP. This 
could come as a bit of a surprise, considering that the 
permutation representation is much more intuitive to 
represent solutions of scheduling problems. But on the 
other hand, the permutation representation needs two 
vectors to represent a complete solution, while the floating 
point representation encodes everything in a single vector. 
As a consequence, GA-PERM needs to perform genetic 
operators on both vectors, and it seems that this proves to 
be more challenging than performing genetic operators on 
only a single vector.  

GA-HJ on the other hand achieved the worst results 
among the three GA approaches. This behavior was 
certainly not expected, since the Hooke-Jeeves local 
search was introduced to improve the results. In order to 
detect the cause of such behavior, results for each test 
instance of GA-HJ were compared to results of GA-
PERM and it was noticed that both approaches achieve 
similar or the same results on smaller scheduling problems 
with 12 or 25 jobs. On the other hand, GA-HJ performs 
significantly worse on the larger problem instances with 
50 and 100 jobs. This is probably the consequence of the 
local search algorithm, which in each iteration probes at 
least one additional point in every dimension and 
evaluates it, thus significantly increasing the function 
evaluation count. It could be possible that this algorithm 

would need much more evaluations in order to reach 
solutions of the same quality, but this is not an acceptable 
solution, since the maximum evaluation count is already 
large enough.  

When compared to scheduling heuristics, GA-PERM 
and GA-FP have obtained better results, which is expected 
since they search the whole solution space in order to find 
the best schedule. The differences are more prominent for 
the Twt and Nwt criteria, since the constructive heuristics 
do not consider due dates of the jobs.  

The execution time of the constructive heuristics is 
almost negligible, since they can create schedules for 60 
problem instances in only 0.2 seconds. This characteristic 
makes these approaches applicable in dynamic and real 
world environments, where scheduling decisions need to 
be made very fast, and the algorithm needs to be able to 
quickly react to changes in the environment (such as the 
arrival of new jobs).  

In order to find solutions of the same quality as those 
found by the scheduling heuristics, GA-PERM and GA-
FP needed much more time, which ranged from 3 minutes 
up until 22 minutes, depending on the algorithm and 
optimization criterion. In all cases GA-PERM needed 
more time in order to find those solutions than the GA-FP
algorithm. This behavior could also be the consequence of 
GA-PERM operating on two vectors, thus needing more 
time in order to reach good solutions. Additionally, since 
genetic algorithms are stochastic, there is no guarantee 
that they will be able to locate good solutions on the first 
try. As a consequence, these algorithms need to be 
executed several times in order to ascertain that good 
solutions have really been found.  

Table 4 Execution time comparison between scheduling heuristics and genetic algorithms

Scheduling
heuristic (SH) Criterion

SH
execution 
time (s)

GA-PERM
execution 
time (s)

GA-FP
execution 
time (s)

Ratio
GA-

PERM/SH

Ratio
GA-

FP/SH

Ratio GA-
PERM/GA

-FP

Sufferage

Cmax

0.197

1188.2 820 6031 4162 1.45
Ft 1184.8 609.6 6014 3094 1.94

Nwt 525.1 219.6 2665 1114 2.39
Twt 265.2 200 1346 1015 1.33

Min-min

Cmax

0.097

1139.2 806.3 11744 8312 1.41
Ft 1296.4 644.4 13364 6643 2.01

Nwt 496.5 209.7 5118 2161 2.37
Twt 264.6 203.5 2727 2097 1.30

Min-max

Cmax

0.215

1182.8 848.3 5501 3945 1.39
Ft 1127.9 562.2 5246 2614 2.01

Nwt 479.8 228.5 2231 1062 2.10
Twt 259.6 206.8 1207 961 1.25

Max-min

Cmax

0.213

1057.6 728 4965 3417 1.45
Ft 1002.8 458.8 4707 2153 2.19

Nwt 416.6 200.5 1955 941 2.08
Twt 237.7 176.7 1115 829 1.35
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VII. CONCLUSION

This paper compares two different solution 
representations for scheduling problems in the unrelated 
machines environment. Although both representations 
were able to obtain good results, the floating point 
representation achieved the best results for all criteria. 
Unfortunately, contrary to our initial expectations, by 
adding a local search operator for the floating point 
representation, we were not able to improve the results of 
the genetic algorithm approach. Additionally, the genetic 
algorithm approaches were compared to several 
constructive scheduling heuristics, and it was shown that 
they are able to find much better solutions than scheduling 
heuristics, but with substantially longer execution time. 
This just shows that there is a tradeoff between solution 
quality and the time needed to find those solutions. The 
choice of the appropriate approach will then depend on the 
scheduling environment and user requirements. 

 For future research it is planned to further investigate 
some other solution representations, and compare them to 
the representations analyzed in this paper. Additionally, 
other local search mechanisms will also be tried out for 
both solution representations.  
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