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Abstract—Dynamic online scheduling is a difficult problem
which commonly appears in the real world. This is because the
decisions have to be performed in a small amount of time using
only currently available incomplete information. In such cases
dispatching rules (DRs) are the most commonly used methods.
Since designing them manually is a difficult task, this process
has been successfully automatised by using genetic programming
(GP). The quality of the evolved rules depends on the problem
instances that are used during the training process. Previous
studies demonstrated that careful selection of problem instances
on which the solutions should be evaluated during evolution
improves the performance of the generated rules. This paper
examines the application of the ε-lexicase selection to the design
of DRs for the unrelated machines scheduling. This selection
offers a better solution diversity since the individuals are selected
based on a smaller subset of instances, which leads to the
creation of DRs that perform well on the selected instances.
The experiments demonstrate that this type of selection can
significantly improve the results for the Roulette Wheel and
Elimination GP variants, while achieving the same performance
as the Steady State Tournament GP. Furthermore, the ε-lexicase
based algorithms have a better convergence rate, which means
that the increased diversity in the population has a positive effect
on the evolution process.

Index Terms—lexicase, genetic programming, dispatching
rules, scheduling

I. INTRODUCTION

Scheduling problems, in which a set of jobs has to be
allocated to a scarce set of resources, appear in many everyday
situations, such as workforce scheduling [1], manufactur-
ing [2], nurse rostering [3], and similar. Various scheduling
problems became widely studied by practitioners to provide
algorithms which could solve them by optimising one or
multiple criteria. However, most scheduling problems are NP-
hard, which means that they cannot be solved to optimality in a
reasonable amount of time [4]. Because of that, a wide range
of heuristic and metaheuristic methods have been proposed
and applied for solving scheduling problems [5].

This work has been supported in part by Croatian Science Foundation under
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Heuristic methods that are used to solve scheduling prob-
lems are usually divided into two groups, improvement and
constructive heuristics. Improvement heuristics start with one
or more existing, usually randomly generated, solutions which
they improve upon. Various metaheuristic algorithms, like
genetic algorithms or differential evolution, belong into this
group [6], [7]. However, these methods are suitable for static
scheduling problems, i.e. problems in which all the informa-
tion is known beforehand, since they search the entire solution
space. In real world situations, scheduling problems are often
dynamic in their nature, meaning that it is not always known
when jobs which need to be scheduled will appear or what
their characteristics will be [8]. As such, dynamic problems
usually cannot be solved with improvement methods since not
all information is available and it is not possible to search the
entire solution space. In those cases, the most commonly used
methods are constructive heuristics, which start with an empty
schedule and iteratively construct the complete solution. These
methods are most often defined in the form of dispatching
rules (DRs), which are simple heuristics that use a priority
function (PF) to rank the available jobs and schedule the one
with the best priority [9], [10]. Because they only calculate
the priority of available jobs, which can be calculated quickly,
DRs represent the most commonly used methods for solving
scheduling problems under dynamic conditions.

DRs, however, come with a certain drawback. Unlike meta-
heuristics which are general and can easily be adapted and ap-
plied to various scheduling problems, DRs are highly problem
specific. This means that for each scheduling problem variant
and optimisation criterion a different DR may need to be
defined. This becomes evident when it is required to optimise
non-standard criteria defined by users for which a suitable
DR might not exist [11]. As a consequence, a lot of research
is focused on the means of automatically generating DRs.
Although methods like neural networks [12] were applied for
generating DRs, genetic programming (GP), which is a hyper-
heuristic method [13], became the most commonly used one
for the automatic design of DRs [14]. Until now a lot of
studies were done in the area of automatically designing new
DRs [14]–[16], with recent studies focusing on evolving multi-
objective problems [17], [18], applying ensemble methods [8],978-1-7281-8393-0/21/$31.00 ©2021 IEEE



[19], [20], feature selection [21], [22] and similar.
One problem associated with the automatic development of

hyper-heuristics is the construction of the training set that will
be used by GP. The choice of problem instances the training
set will consist of has a significant influence on many aspects
of the training process. First of all, meaningful instances have
to be selected to provide enough information for the GP to be
able to generate efficient DRs. The instances also need to be
diverse enough to allow GP to generate DRs which can react
to different situations. On the other hand, since each solution
needs to be evaluated on the entire training set, the number
and size of problem instances has to be restricted to ensure
that the DRs can be generated in a reasonable amount of time.
As a consequence, several studies focused on the design of the
training set and its usage during the training process.

In [23] the authors examined how using a different number
of problem instances during learning had an effect on the
performance of the evolved DRs and demonstrated that in their
settings it was best to use only a single problem instance per
generation, but selecting a new instance in each generation. An
interesting approach applied for the generation of DRs is the
use of surrogate models to evaluate the solutions [24], [25].
Applying such models showed that it is possible to achieve
either a better performance than with the regular evaluation,
or a similar performance but in a smaller amount of time. In
another study, an active sampling method was coupled with
GP to select good training instances during evolution [26]. The
paper demonstrated that this approach provides a better bal-
ance between exploitation and exploration. A similar approach
was considered in [27] where the authors sampled instances
which exhibited potential of improving the Pareto front when
designing DRs for the multi-objective problems.

A somewhat less represented line of research considers
the influence of evolutionary selection on the effectiveness
of the evolved heuristics. Since hyper-heuristic optimization
inevitably involves the application of an accompanying evo-
lutionary algorithm, the choice of the method of selection
will certainly affect the convergence properties, but can also
influence the generalization abilities of the priority functions.
Because the evaluation of potential solutions in GP usually
relies on a set of problem instances, this was the motivation
for the development of the lexicase selection [28], which
differentiates potential solutions by their ability to successfully
solve individual problem-specific test cases. In the symbolic
regression domain, the method was extended to handle non-
discrete results and is known as ε-lexicase [29]. This selection
technique naturally lends itself to the problem of learning
priority functions; instead of using a single cumulative mea-
sure over the whole training set, as is the most common
approach, the effectiveness of priority rules may be estimated
more efficiently by observing their performance on individual
training instances.

The idea of the ε-lexicase selection is to use a subset
of problem instances to select individuals. In that way, this
selection provides a larger diversity in the population since
different solutions can perform well when only several prob-

lem instances are considered. As a consequence, different
individuals will have a chance to participate in the mating
process and increase the diversity of the population. The
benefit of the ε-lexicase selection is that it can be used by
classical GP methods instead of other selection types (such as
fitness proportionate, random or tournament selection).

The aim of this study is to investigate the influence of
different selection mechanisms in the evolution of priority
functions and to extend the algorithms with the use of ε-
lexicase. For that purpose the ε-lexicase selection will be used
in combination with three standard GP variants for the design
of dispatching rules in the unrelated machines environment.

The rest of the paper is organised as follows. Section
II provides the background on the considered problem and
the applied methods. Section III describes the experimental
setup and outlines the obtained results. A deeper analysis and
discussion about the obtained results is given in Section IV.
Finally, Section V outlines the conclusion and gives directions
for future research.

II. BACKGROUND AND METHODOLOGY

A. Problem Definition

The unrelated machines environment consists out of n jobs
which need to be scheduled on one of the available machines
m [4]. A concrete job is denoted with the index j, while a
concrete machine is denoted with the index i. Each machine
can execute only a single job at a time and no preemption is
allowed once a job starts executing. Each job is defined by the
following properties:

• pij - processing time of job j on machine i,
• rj - release time of job j,
• dj - due date of job j,
• wj - weight (importance) of job j.

The criterion which is optimised is the total weighted tar-
diness, which is defined as TWT =

∑
j wjTj , where Tj

represents the tardiness of job j. Tardiness is defined as the
amount of time that a job spent executing after its due date, i.e.
Tj = max(Cj − dj , 0), where Cj represents the completion
time of job j.

The problem is considered under dynamic conditions. This
means that information about the jobs becomes available only
when they are released into the system. The moments in which
jobs will appear in the system are also not known beforehand.

B. Automatic Design of Dispatching Rules

DRs usually consist of two parts, the priority function (PF)
and the schedule generation scheme (SGS). The SGS defines
when the DRs perform the selection of jobs and how they
allocate them to the machines [30]. The SGS that is used by
automatically designed DRs is denoted in algorithm 1. The
SGS works in a way that it performs the scheduling decision
each time a job and a machine are available. When this
happens, the SGS calculates the priority value for scheduling
each available job on each of the machines. The job-machine
pair with the highest priority value is then selected and the
job is scheduled on the corresponding machine.



Algorithm 1: SGS used by generated DRs
1: while unscheduled jobs are available do
2: Wait until at least one job and machine are available
3: for all available jobs j and each machine i in m do
4: Get the priority πij of scheduling j on machine i
5: end for
6: for all available jobs do
7: Determine the machine with the best πij value
8: end for
9: while jobs whose best machine is available exist do

10: Determine the best priority of all such jobs
11: Schedule the job with best priority
12: end while
13: end while

TABLE I
TERMINAL SET

Terminal Description
pt processing time of job j on machine i (pij )

pmin minimal processing time (MPT) of job j
pavg average processing time of job j on all the machines
PAT time until machine with the MPT for job j becomes available
MR time until machine i becomes available
age time which job j spent in the system
dd time until which job j has to finish with its execution (dj )
w weight of job j (wj )
SL slack of job j, −max(dj − pij − t, 0)

As the SGS is usually quite simple, it is defined manually.
However, the SGS does not specify by which strategy it will
prioritise jobs and machines. For this it uses a PF to calculate
the priorities of jobs and machines. Since it is difficult to
manually define a PF, this process is delegated to GP which by
using a set of problem instances constructs a PF that performs
well over those instances. To allow GP to design DRs, the
nodes that construct the expression trees need to be specified.
The applied terminal nodes are listed in Table I. These nodes
provide specific information about the considered problem like
the processing times or due dates of jobs. In addition, function
nodes that are used to construct the expression also have to be
defined. Function nodes used in this study are the summation,
subtraction, multiplication, protected division (returns 1 in case
of division by zero), and the unary positive operator (returns
zero if the provided value was negative, otherwise it returns the
original value). The terminal and function nodes were selected
based on previous studies [31].

C. Lexicase Selection

Lexicase selection is a selection technique designed to select
individuals that perform well on part of the problem rather than
individuals that perform well overall [28]. The idea is that the
selected individuals will be able to pass on the traits that make
them suitable for solving specific parts of the problem while
becoming better in general.

Lexicase selection first randomly permutates the set of
test cases from the training set and then each individual is
evaluated on the first test case. The individuals that proceed
to the next iteration are only those whose error is equal to the
minimal error achieved by any candidate individual on this
test case. The algorithm then proceeds to the next test case
and repeats the same process until only one individual is left.
If all test cases have been evaluated and there are still multiple
candidates left, one of those individuals is randomly selected
and returned. As an extension, ε-lexicase adjusts the condition
for surviving into the next iteration by using a parameter ε and
allowing individuals whose error is within ε of the minimal
error to also survive [29]. In the experiments in this paper,
ε-lexicase with an adaptive ε parameter was used.

The first part of calculating the parameter ε for a specific
test case t, as shown in (1), is computing the median of errors
ek,t where k represents a specific individual.

medt = mediank(ek,t) (1)

Next, medt is subtracted from the error ek,t of each individual,
and the absolute value of the difference is computed as shown
in (2).

dif k,t = |ek,t −medt| (2)

The parameter εt for test case t is then equal to the median
of the differences for all individuals as denoted in (3).

εt = mediank(difk ,t) (3)

In the end, individuals whose error is not within ε from the
minimal error are filtered out. The entire procedure of the ε-
lexicase selection procedure is presented in Algorithm 2.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

In this section, we compare the performances of regular,
well-known evolutionary algorithms to the performances of
those same algorithms using ε-lexicase selection. Three ver-
sions of selection methods were tested: GP with Roulette
Wheel selection, GP with Steady State Tournament (SST)
selection and GP with elimination (generation gap) selection.

Roulette Wheel (RW) selection uses a fitness-proportional
selection operator to select individuals which will proceed
into the next generation. The selection pressure was set to
10 (i.e. the best individual has the probability of selection 10
times greater than the worst one). Crossover is then performed
on randomly selected individuals in the new population. The
number of crossovers performed is determined by the chosen
crossover rate. The individuals in the new population are
then mutated with the defined individual mutation probability.
Lexicase selection was added to Roulette Wheel (denoted as
RW-LEXI) by replacing fitness proportional selection. There-
fore, individuals for the next population are selected using
lexicase and are then randomly selected for crossover. Each
algorithm was tested with the following values of the crossover
probability: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.



Algorithm 2: ε-lexicase selection
1: candidates← population
2: cases← random_permutation(test_cases)
3: for i = 0; i < size(cases); i++ do
4: case← cases[i]
5: if size(candidates) == 1 then
6: return candidates
7: end if
8: case← cases[i]
9: for candidate ∈ candidates do

10: errors← error(candidate, case)
11: end for
12: min_error ← min(errors)
13: for error ∈ errors do
14: error ← abs(error −median(errors))
15: end for
16: MAD ← median(errors)
17: candidates_next← {}
18: for candidate ∈ candidates do
19: if error(candidate, case) ≤MAD +min_error

then
20: candidates_next← candidate
21: end if
22: end for
23: candidates← candidates_next
24: end for

Steady State Tournament selection randomly selects n indi-
viduals and then replaces the worst individual from the tourna-
ment with the child generated by performing crossover on two
randomly selected surviving individuals from the tournament.
This variant was called SST-RAND. The alternative, where
the best two individuals from the tournament are selected for
crossover, was also tested and was called SST-BEST.

Lexicase selection was added to SST selection in two
different ways: the first modification affects the selection of
individuals to participate in the tournament; the second one
affects the choice of parents among the tournament survivors.
In cases where lexicase was used for selection for the tour-
nament, the corresponding variants are denoted SST-LEXI-
*. For parent selection from the tournament survivors, both
random selection (SST-LEXI-RAND) and selection of best
individuals (SST-LEXI-BEST) was tested. On the other hand,
if lexicase was used only to select individuals for crossover
parents from the tournament, while the individuals for the
tournament were still randomly selected, this is denoted with
SST-RAND-LEXI. Each variant was tested with the following
values of the tournament size: 4, 5, 6, 7, 8, 9, 10, 12, 15 and
20.

The elimination GA uses an inverse fitness-proportional
elimination operator which selects individuals from the pop-
ulation for elimination (when an individual is selected for
elimination, it cannot be selected again). Crossover is then
performed on randomly selected individuals from the remain-

ing individuals in the population. The number of eliminated
individuals is determined by the generation gap parameter.
Selection pressure was set to 10. In the lexicase version of the
algorithm (EA-LEXI), lexicase was used instead of random
selection for choosing parents for crossover. Each algorithm
was tested with the following values of the generation gap
parameter: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.

Mutation probability of an individual was set to 0.3 for all
algorithms. Population size was set to 1 000 in all experiments.
The tree genotype was used in all algorithms and the maximal
tree depth was set to 5. The termination criterion was set to
40 000 function evaluations.

To train GP and test the performance of the generated
rules, a training and test set were defined. Both sets consist
of 60 problem instances of various sizes and complexities.
GP uses the training set to construct new DRs, whereas their
performance is reported on the test set. The fitness of the
individuals is calculated as the sum of TWT values for each
of the problem instances on which they are evaluated. The
values of each problem instance are normalised to ensure
that all instances have a similar influence on the total fitness.
Additional information about the design of the instances can
be obtained from [31]. Each experiment is run 30 times to
obtain significant results. From each algorithm run only the
best individual on the training set is selected and evaluated
on the test set. In the results the minimum, median, and
maximum values of the 30 obtained solutions are reported.
The Mann-Whitney statistical test is used to perform a pair-
wise comparison between experiments to determine whether
a statistically significant difference exists. The results are
considered significant if a p value less than 0.05 is obtained.

B. Roulette Wheel Genetic Algorithm

In this section, results for the Roulette Wheel GA and
Roulette Wheel GA with lexicase selection are compared.
Based on the results shown in Table II it can be seen that
the lexicase version of the algorithm achieves a significant
improvement over the classical one. For each tested parameter
value, RW-LEXI outperforms RW based on the obtained
medians. The Mann-Whitney statistical test demonstrated that
in all cases RW-LEXI achieved significantly better results than
RW for the same parameter values. Even when comparing the
results obtained with the best parameters for each algorithm
(denoted in boldface), lexicase is superior by all measures.
Aside from the better median values that are achieved by
RW-LEXI, the table also demonstrates that the results are
less dispersed when using this selection variant instead of
RW, which can be seen from the smaller interval between the
minimum and maximum values. It is interesting to observe
that both methods obtained their best results with a different
crossover rate. The RW performed better when using larger
values for the crossover parameter, which means that a larger
part of the population will be replaced at each iteration. This
can be attributed to the fact that the RW selection uses the
entire problem set to determine which solutions to select, as
this allows the algorithm to produce more offspring from better



solutions. On the other hand, RW-LEXI performed best for
the smallest tested crossover rate. This is due to the fact that
solutions are evaluated only on subsets of problem instances
and thus many solutions can perform well or be the best
depending on the instances that were selected. Therefore, it
makes more sense to generate a smaller number of offspring
to ensure diversity so that the population does not get crowded
with offspring of similar individuals.

C. Steady State Tournament Genetic Algorithm

The results for the Steady State Tournament GA are shown
in Table III. It is obvious that SST-RAND yielded the
best results, while SST-BEST achieved slightly worse results.
Out of the three lexicase versions of the algorithm, SST-
RAND-LEXI achieved the best results. This could be due
to the fact that lexicase selection on average selects overall
better individuals than random selection which increases the
selection pressure and leads to too fast convergence. For some
parameters, the aforementioned algorithm even achieved better
results than SST-BEST. By comparing SST-LEXI-BEST and
SST-LEXI-RAND it cannot be concluded which is better since
for 5 parameter values SST-LEXI-BEST is better and for
the other 5 SST-LEXI-RAND is better, while for tournament
size 3 the results are the same. This happens because for
tournament size 3 the worst individual is eliminated and the
remaining two are chosen for crossover, regardless of whether
random or best selection is used. The same goes for SST-
RAND and SST-BEST when using tournament size 3. By
comparing the best results from the lexicase algorithms, it is
clear that SST-RAND-LEXI has a significantly smaller range
from the minimum to the maximum value than the other two
algorithms. This difference is likely caused by using different
selections for the tournament, which greatly impacts the dis-
persion of the quality of individuals in the new population.
The same is true for the difference in dispersion between the
regular SST algorithms (SST-RAND, SST-BEST) and lexicase
versions (SST-LEXI-BEST, SST-LEXI-RAND). It should be
observed that SST-LEXI-BEST, SST-LEXI-RAND and SST-
RAND-LEXI all achieve their best results for tournament sizes
greater than 10, while SST-RAND and SST-BEST performed
better with smaller tournament sizes. Since lexicase selects
diverse solutions which are suitable for solving a specific part
of the problem, it is desirable to select more individuals for
the tournament to ensure that more parts of the solution are
covered in the selected tournament.

D. Elimination Algorithm

The results for the Elimination GA are shown in IV. It
is immediately visible that the best parameters are different
for EA and EA-LEXI. Although EA-LEXI achieves better
results for most parameters, according to the Mann-Whitney
statistical test the difference is only significant for generation
gap of 0.1, 0.5 and 0.6. However, there is no statistically
significant difference between the best results from both al-
gorithms. Nevertheless, it can be concluded that introducing
lexicase to EA in some cases does improve the algorithm’s

performance. It is interesting to observe that in this case the
dispersion of the results is similar in both tested variants.
This makes sense since, in EA-LEXI, lexicase selection is
only used to select parents for crossover while individuals
for the next generation are still selected based on their overall
fitness which diminishes the diversity of solutions that lexicase
selection usually introduces. This could also explain why the
improvements of using lexicase selection in EA are not as big
as in e.g. Roulette Wheel GA.

IV. DISCUSSION

Table V shows the best results achieved by each tested
algorithm. The same results are additionally displayed as a
box plot in Figure 1. Overall, when comparing by the median,
the three algorithms that stand out with the best results are
RW-LEXI, SST-RAND and SST-RAND-LEXI. Although RW-
LEXI achieved the best overall median value, the results it
obtained are not significantly different from the other two
algorithms. Since SST-RAND achieved the best minimum and
maximum values and its median is very close to the best value
achieved by RW-LEXI, it could be concluded that overall SST-
RAND was the best performing algorithm. Additionally, the
box plot shows that the best three algorithms have the least
dispersed results, which is beneficial as it denotes that they
are more likely to obtain better solutions.

Figure 2 shows the convergence of the best selection meth-
ods on the train and test sets for the median value obtained
based on 30 executions. Convergence on the test set was
obtained by evaluating the best individual from training after a
certain number of evaluations on the test set. The convergence
graph on the test set demonstrates that all algorithm variants
that use lexicase selection converge much faster to better
solutions. The only exception here is for the elimination
selection, where the standard variant has a faster convergence
rate at the start but then easily gets stuck in local optima. On
the other hand the EA-LEXI does not have such a problem and
easily converges to a better solution. However, more important
than the convergence on the training set is the convergence
behaviour on the test set. Here the superiority of lexicase based
selections can easily be observed. In the first quarter of the al-
gorithm run time, the lexicase based selections converge quite
quickly to good solutions, whereas their standard counterparts
need much more time to obtain solutions of the same fitness
level. This can be best observed for SST where the variant that
uses lexicase for selection converges to a median of 14 in only
3 000 evaluations. The standard SST variant of reached the
same value after 12 000 evaluations. This demonstrates that by
using the lexicase selection good solutions can be achieved in
only a fraction of time in comparison to the standard selection.

One important thing which needs to be outlined for the
lexicase based selection algorithms is that in our experiments
the evaluation of the individuals was always done on the
entire training set. Regardless of that, during the selection
process only the fitness values of the chosen instances were
used to select the parents. An alternative approach would
be that only those instances that are used for selection are



TABLE II
ROULETTE WHEEL GA RESULTS

Crossover rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RW
min 13,404 13,424 13,338 13,371 13,404 13,364 13,278
med 14,708 14,708 14,725 14,491 14,600 14,581 14,947
max 16,629 18,621 17,702 17,290 16,481 19,383 18,588

RW-LEXI
min 12,976 12,316 12,928 12,821 12,405 12,477 12,370
med 13,646 13,881 13,909 13,946 13,792 14,016 13,831
max 15,664 14,822 16,185 15,691 15,400 15,815 15,249

TABLE III
STEADY STATE TOURNAMENT GA RESULTS

Tournament size 3 4 5 6 7 8 9 10 12 15 20

SST-RAND
min 13,038 13,012 12,901 12,899 13,210 13,058 13,181 13,117 12,895 13,063 12,960
med 13,740 13,835 13,808 13,659 14,170 13,755 13,797 13,748 13,659 13,733 13,830
max 14,683 15,473 15,042 14,935 15,165 14,977 14,983 15,203 15,442 15,698 15,195

SST-BEST
min 13,038 13,100 13,071 13,089 13,082 13,059 13,012 13,254 13,097 13,173 12,938
med 13,740 14,132 13,897 14,261 13,869 14,142 13,830 14,085 13,950 14,151 14,312
max 14,683 14,876 14,973 15,042 16,360 16,503 15,671 15,311 16,053 15,074 15,370

SST-LEXI-BEST
min 14,203 13,227 13,580 13,896 13,673 13,371 13,696 13,427 13,511 13,535 13,777
med 17,898 17,132 15,963 16,591 16,153 14,926 15,396 15,593 16,396 14,875 15,173
max 27,654 25,337 21,625 20,012 23,418 18,537 20,150 19,990 20,732 19,360 20,626

SST-LEXI-RAND
min 14,203 14,141 13,661 13,225 13,295 13,526 13,389 13,580 13,580 13,420 13,443
med 17,898 16,744 16,787 14,962 15,429 15,690 15,754 15,817 15,811 14,923 14,598
max 27,654 21,092 24,740 20,501 20,644 21,339 19,569 23,553 19,730 19,219 18,741

SST-RAND-LEXI
min 13,020 13,079 13,262 12,751 12,962 13,011 13,251 12,928 13,177 12,811 12,901
med 14,001 14,064 13,863 13,862 13,763 13,835 13,832 13,965 13,669 13,831 13,799
max 17,489 15,172 14,978 15,048 15,583 15,028 15,190 15,346 15,167 14,723 15,449

TABLE IV
ELIMINATION ALGORITHM RESULTS

Generation gap 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

EA
min 14,153 13,871 13,638 13,923 13,546 13,869 13,404 13,610 13,787
med 16,594 15,972 16,089 15,393 16,120 16,2659 15,576 15,555 15,471
max 19,078 18,631 18,908 19,653 19,720 18,8615 19,819 18,643 20,612

EA-LEXI
min 13,798 14,086 13,664 13,693 13,393 13,550 13,510 12,694 13,923
med 15,652 15,402 15,304 15,515 15,023 14,727 15,114 15,039 15,663
max 18,864 20,236 21,987 19,934 18,280 19,389 18,588 18,633 20,815

TABLE V
BEST RESULTS FOR ALL ALGORITHMS

min med max

RW 13,371 14,491 17,290
RW-LEXI 12,976 13,646 15,664
EA 13,923 15,393 19,653
EA-LEXI 13,550 14,727 19,389
SST-RAND 12,899 13,659 14,935
SST-BEST 13,012 13,830 15,671
SST-LEXI-BEST 13,535 14,875 19,360
SST-LEXI-RANDOM 13,443 14,598 18,741
SST-RAND-LEXI 13,177 13,669 15,167

evaluated and contribute to individual fitness. However, this
may lead to a poor performance of the entire algorithm as

it would not use elitism anymore. This is due to the fact
that if individuals are evaluated only on subsets of instances,
then it is possible that the DR that generally performs best is
eliminated because other rules perform better on that subset of
instances. In such conditions significantly worse performances
were achieved. Therefore it was decided to evaluate solutions
on the entire problem set so that the best overall solutions are
not eliminated. However, this means that lexicase selection
will have the same execution time as other selection types,
although it uses fewer instances to perform decisions.

V. CONCLUSION

In recent years several studies have focused on improving
the performance of the hyper-heuristic methods for scheduling
problems by putting more emphasis on the problem sets that
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Fig. 2. Algorithm convergence comparison

are used during the learning process. These studies already
demonstrated that the performance of automatically generated
DRs could be improved by trying to increase the diversity of
the population and by training the solutions on those instances

which are most informative. Based on that idea, this paper
proposes the application of the lexicase selection in GP to
improve the diversity of the population and consequentially
improve the quality of the generated rules.

The obtained results demonstrate that applying the lexicase



selection in the RW and elimination based algorithms leads
to better results in all cases. For the SST algorithm variant,
the lexicase selection was unable to significantly improve the
results. However, using lexicase usually results in a faster con-
vergence, which means that better solutions can be achieved
in a smaller amount of time. Therefore, it can be concluded
that the additional diversity provided by the lexicase selection
has a positive effect on the evolution process, both in terms
of convergence and solution quality.

Since the application of lexicase demonstrated promising
results, there are several possibilities for the extension of this
work. One direction would be aimed at improving the run
time of lexicase, since it was already outlined that individuals
are evolved on the entire test set. Additionally, the current
lexicase selection selects the problem instances completely
randomly; it might make sense to investigate if different
strategies of selecting problem instances could improve the
overall performance. Finally, another line of research that
could be used is to combine surrogate models with lexicase
selection to obtain benefits of both methods.
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