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Abstract

This paper investigates the use of genetic programming in automatized synthesis of heuristics for the parallel
unrelated machines environment with an arbitrary performance criteria. The proposed scheduling heuristic
consists of a manually defined meta-algorithm which uses a priority function evolved separately with genetic
programming. In this paper, several different genetic programming methods for evolving priority functions,
like dimensionally aware genetic programming, genetic programming with iterative dispatching rules and
gene expression programming, have been tried out and described. The performance of the suggested ap-
proach is compared to existing scheduling heuristics and it is shown that it mostly outperforms them. The
described approach could prove useful when used for optimizing scheduling criteria for which no adequate
scheduling heuristic exists.
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1. Introduction

Scheduling can be defined as a decision-making process concerned with the allocation of scarce resources
to tasks over a given time period in order to optimize one or more objectives [1]. Unfortunately, most of the
important scheduling objectives represent NP-hard problems. As a consequence, no efficient algorithms are
available for obtaining the optimal solution for a given objective. Therefore, solutions are usually obtained
by using heuristic algorithms. In this context, we divide the algorithms in two groups: the first group
consists of metaheuristics which search the space of solutions (schedules) to find the best one; the second
group consists of problem-specific heuristics that construct the solution using some features of the problem
[2].

Since most scheduling problems are combinatorial by nature, search-based metaheuristic methods (such
as genetic algorithms, ant colony optimization, particle swarm optimization, etc.) can be used to search
the space of solutions. The solutions obtained by such methods are often of a good quality, mostly better
than the solutions obtained by constructive heuristics. Unfortunately, these methods require a substantial
computational time in order to obtain solutions of acceptable quality (since they search the entire solution
space). Another disadvantage of these methods is that they are generally not applicable in dynamic condi-
tions, in which a constant adaptation to the changing conditions may be needed (e.g. unplanned arrival of
new jobs, machine outages etc).

Constructive scheduling heuristics, on the other hand, do not search the space of all possible solutions, but
instead directly build the solution (schedule). Because of that, these heuristics can quickly react to changes
in the environment, making them applicable in dynamic conditions. The advantage of these heuristics over
the search-based methods is that their computational complexity is almost negligible. However, constructive
scheduling heuristics also cope with a certain number of problems. For instance, it is often hard to select
the optimal heuristic for the given criteria and problem instance. This was shown in [3] where evolutionary
algorithms were used in order to create problem instances for the job shop scheduling problem, on which
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certain constructive scheduling heuristics made poor choices, which in the end resulted in schedules of low
quality.

It should also be noted that such heuristics are not designed to optimize arbitrary criteria which could
be defined by the user (it would be necessary to design a new heuristic to handle such a case). When all
this is considered, it can be concluded that selecting an appropriate scheduling policy is not easy and that
a heuristic for optimizing a given criteria might not even exist.

Genetic programming (GP), although rarely used for solving scheduling problems, is very suitable for
searching the space of algorithms which, in turn, can provide solutions to scheduling problems. Recently,
GP has been used to evolve scheduling policies for a wide variety of environments (single machine scheduling
[4, 5, 6], job shop scheduling [7, 8, 9, 10, 11, 12, 13], parallel proportional machine scheduling [14], airplane
scheduling in air traffic control [15, 16], scheduling in semiconductor manufacturing [17]). In addition,
a recent survey about evolving dispatching rules with GP has been conducted by Branke et al. in [18].
This method has proven to be very successful, because not only does it allow to create scheduling policies
for arbitrary criteria, but it also provides solutions which are on par with solutions obtained by heuristic
methods.

In this paper we describe the approach of using GP for creating scheduling policies for the unrelated
machines environment. We also describe several variants for this approach, used in order to obtain better
results. Some of these modifications have been used in other machine environments, but to our knowledge,
they have not yet been applied in the unrelated machines scheduling. We compare all of these variants
against each other and additionally compare them to several existing approaches for creating schedules in
order to assess the quality of the achieved solutions. In that regard this paper can be viewed as a continuation
in comparing different optimization approaches, which has previously been conducted by Nguyen et al. [19]
and Branke et al. [20].

The remainder of the paper is organized as follows: in Section 2 the definition of scheduling in the
unrelated machines environment is given. Section 3 gives a short overview of genetic programming and its
usage in the creation of scheduling policies. In Section 4 various GP optimizations are described. Section 5
describes the benchmark set and the results for all the algorithms. Section 6 delivers a short discussion on
the results. Finally, Section 7 gives a short conclusion.

2. The Unrelated Machines Environment

In the unrelated machines environment, a number of n jobs compete in order to be processed on one of
the m machines. All jobs have a processing time pij , which determines the time which is needed for the job
with the index j to be processed on the machine with the index i, as well as a release time rj (ready time)
which determines when the job becomes available for scheduling. Jobs may also have additional properties,
like a due date dj and a weight wj (which determines the importance of the job). In this paper we considered
the more complex problem variant which includes relative importance of a job, given by its weight. Solving
for this variant can also solve the simpler problem with unweighted jobs.

2.1. Scheduling Criteria
The most common scheduling criteria which are used for this environment include tardiness, number of

tardy jobs, flowtime and makespan. First, let us define those criteria for a single job. Let Cj denote the
finishing time of the job j. We can then define tardiness (the amount of time that a job was late) of job j
as:

Tj = max{Cj − dj , 0}. (1)

Similarly, flowtime, the amount of time a job spends in the system, can be defined as

Fj = Cj − rj . (2)

We will also define an additional measure which determines if a job is tardy or not
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Uj =
{

1 : Tj > 0
0 : Tj = 0

. (3)

Using criteria for individual jobs, criteria for the entire schedule are defined. The makespan is defined
as the maximum finishing time of all the jobs in the set

Cmax = max{Cj}. (4)

The other criteria are often defined as weighted sums: weighted tardiness

Tw =
∑

j

wTj , (5)

weighted flowtime

Fw =
∑

j

wFj , (6)

and weighted number of tardy jobs

Uw =
∑

j

wUj . (7)

2.2. Scheduling Conditions
Based on the availability of the job parameters, scheduling can be performed in different conditions. If

all the parameters are known before the jobs are ready, then the schedule can be produced before the system
starts its execution. This type of scheduling is called off-line or static scheduling. Search-based methods are
most often used to create schedules for this type of scheduling conditions.

On the other hand, if no information about the jobs is available until the job has arrived into the system
and no information is available about future jobs either, then such a scheduling process is called on-line
scheduling. Heuristic scheduling methods, and the GP-based scheduler described in the next section, are
almost always used in this kind of scheduling conditions. In addition, both of these approaches can be
used for off-line scheduling as well, but in that case they are generally less efficient than the search-based
methods.

3. Scheduling in the Unrelated Machines Environment Using Genetic Programming

3.1. Genetic Programming
Genetic programming (GP) [21] is an evolutionary algorithm which is used to discover functions or

programs which provide a solution to a given problem. In the algorithm, these solutions are represented
in the form of a tree. The tree consists of two types of nodes, namely functional nodes (which represent
certain arithmetic, boolean or other kind of functions) and terminal nodes which represent input variables
and constants.

The idea behind this approach is to simulate the process of evolution. At the beginning of the algorithm,
a random number of potential solutions is generated. Each solution receives an estimation of how "good"
the solution is, which is measured on some predefined test cases. This estimation is called the fitness of
the solution. The algorithm simulates natural selection such that the "better" individuals (solutions) have
a higher probability of survival, while on the other hand, "worse" individuals have a smaller probability to
survive. The individuals which survived the selection participate in crossover, which is a genetic operator
that combines two individuals to form a new, hopefully better, individual. After the new individual is
created, another operator called mutation is applied to the newly created individual. This operator changes,
with a certain probability, some elements of the individual in order to introduce new elements into the
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solutions. This cycle of selection, crossover and mutation is repeated until a certain stopping criteria is
achieved (e.g. reaching a predefined number of iterations, finding an acceptable solution).

Genetic programming can be used to solve many classes of problems, including classification [22, 23] and
regression [24]. It was also used to generate human-competitive solutions in a wide area of fields [25]. The
presented GP scheduling system was implemented in the ECF framework [26].

3.2. The Scheduling Procedure
Solutions to scheduling problems are usually represented as a sequence of jobs which are to be executed on

each of the machines. This sequence represents the solution to only a single scheduling problem instance. For
a different scheduling problem instance a new solution must be found, and most of the search-based methods
work this way. On the other hand, by using genetic programming it is possible to create algorithms which
will in turn be able to generate solutions for arbitrary problem instances in a given scheduling environment.
This is referred to as a hyper-heuristic approach, since GP is searching the space of possible algorithms,
rather than the space of possible schedules.

The scheduling method applied in this work consists of two parts: the meta-algorithm and a priority
function. The priority function determines the priority of job j if scheduled on machine i; this part is evolved
with GP to allow for optimization of an arbitrary scheduling criterion. The meta-algorithm uses a priority
function to decide which job to process on which machine when the next decision needs to be made. We
use a manually defined meta-algorithm, which assumes that an appropriate priority function has previously
been selected (among the existing ones) or evolved for a given criterion.

3.3. Evolving Priority Functions with GP
The scheduling paradigm where the choice of the next job being run on a certain machine depends on a

particular priority value is called priority scheduling. An example of a well-known priority function may be
given with

πj = wj/pij ,

which is defined for each job j. In the above example, the higher priority will be given to jobs with larger
weight and shorter processing time (weighted shortest processing time rule, WSPT). The scheduler (meta-
algorithm) will use this information when deciding which job to assign to an available machine. In our
approach, the goal of genetic programming is to find an appropriate priority function which yields the best
result given a certain scheduling objective.

To be able to evolve an appropriate priority function, the GP must be able to use relevant job and machine
parameters and variables that describe the current state of the system. That is why the most important
preparatory step is the selection of terminal nodes (variables) that may appear in a tree representation of
the priority function. Table 1 represents the set of terminal nodes used by the GP. The time variable, which
is used in the definition of some terminals, represents the current time of the system.

As it can be seen from the table, not all terminal nodes are used when constructing priority functions
for certain criteria, because not all nodes provide useful information for all criteria. The selection of these
terminals is based on the available job and machine features, as well as features that appear in existing
scheduling heuristics. Examples of actual evolved priority functions are given in Sections 4 and 6.

3.4. The Meta-Algorithm and Scheduling Complexity
Assigning jobs to machines is in most cases a trivial matter, but in some environments there is a need

for defining a procedure which determines how jobs are scheduled based on their priority values. This is
especially true in dynamic environments, where jobs arrive over time and maybe a job cannot be executed
before another job finishes. Therefore, a meta-algorithm, which determines which jobs should be assigned to
which machines (based on the priority values), must be defined for every scheduling environment. It should
be noted that the priority function and the meta-algorithm are loosely coupled, meaning that the same meta-
algorithm can be used with different priority functions and that the same priority function can be used with
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Table 1: Terminal nodes

Node
name Description

pt processing time of job j on the
machine i (pij)

pmin the minimal job processing time on all
machines: min{pij}∀i

pavg the average processing time on all
machines

PAT

patience - the amount of time until the
machine with the minimal processing

time for the current job will be
available

MR
machine ready - the amount of time
until the current machine becomes

available

age the time that the job spent in the
system: time− rj

Terminals used only for due date related criteria
(tardiness and number of tardy jobs)

dd due date (dj)
w weight (wj)
SL positive slack: max{dj − pij − time, 0}

different meta-algorithms. Such a modular design makes it possible to use the same meta-algorithm for
different scheduling criteria, only by using the appropriate priority function.

Algorithm 1 represents the meta-algorithm which we use for performing scheduling in the unrelated
machines environment for an arbitrary criterion. Unlike the priority functions, the meta-algorithm is not
evolved, but defined manually. This algorithm finds an appropriate mapping between a job and a machine
based on the value of the priority function (which is evolved with GP). If the most suited machine for the
job is available, then the job is scheduled for execution on that concrete machine. Otherwise, the scheduling
is postponed until a machine becomes available, or a new job becomes ready.

The complexity of this algorithm is comparable to the complexity of existing constructive scheduling
heuristics, which makes it possible for this approach to be used in on-line scheduling [27]. Since the com-
plexity of an evolved priority function is always O(1), the described meta-algorithm finds the best priority
value in O(m ∗ n) complexity, where n denotes the total number of available jobs, and m the total number
of machines.

A complete time complexity of this approach may be divided in two parts: the first part is the evolution of
the priority function, and the second part is its application in real-time conditions. Although the evolution
of the priority function using genetic programming is a very demanding procedure, with a complexity
comparable to other search-based methods, it can be performed at any time before the priority function
is actually used. This is true for any existing scheduling heuristic, which are normally designed before the
actual application. In that way, multiple priority functions for certain optimization criteria can be prepared
beforehand and then simply injected into the meta-algorithm.

The second part represents the complexity of the meta-algorithm which uses the evolved function, and
this is negligible compared to any search-based algorithm - the schedules for 120 problem instances used in
this paper can be generated in less than a second, as well as with other constructive heuristics.
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Algorithm 1 Meta-algorithm used for GP scheduling

1: while unscheduled jobs are available do
2: wait until a job becomes ready or a job finishes;
3: for all available jobs and all machines do
4: obtain the priority πij of job j on machine i;
5: end for
6: for all available jobs do
7: determine the best machine (the one for which
8: the best value of priority πij is achieved);
9: end for
10: while jobs whose best machine is available exist
11: do
12: determine the best priority of all such jobs;
13: schedule the job with the best priority;
14: end while
15: end while

4. Optimizations

In order to achieve the best results with the aforementioned scheduling procedure, several optimization
procedures were tried out.

4.1. GP Algorithm Parameters
Table 2 represents the parameters of the GP. The values of all GP parameters were optimized in order

to minimize the generalization error of the algorithm [28]. The set of the crossover and mutation operators
was also optimized, as it was shown that by removing some of the genetic operators better fitness of the
evolved solutions can be achieved. All of the resulting crossover and mutation operators listed in the table
are applied with the same probability, meaning that on the average all operators will be used the same
number of times.

The optimal set of genetic operators was determined by using both simple constructive and destructive
heuristics. Whereas the constructive heuristic starts with an empty set of elements, sequentially adding
elements which happen to increase the quality of evolved solutions, the destructive one starts with a set
containing all elements and removes them one by one if they happen to increase the quality of evolved
solutions. Both of these heuristics were used to determine the "optimal" set of genetic operators. The better
one of those two "optimal" sets of genetic operators was chosen and used in the experiments. In the following
subsections the described procedure will be used to find optimal sets of other elements as well.

The initial parameter values were chosen as a rule of thumb and were used as a starting point for
optimisations which resulted in the parameters presented in the table. The values of the initial parameters
are mostly the same as the ones from Table 2, except for the maximal tree depth which was initially 7 and
the crossover operator set which included the one-point crossover operator. It should be noted that the GP
parameters were tuned by optimizing the weighted tardiness criterion, after which the resulting parameters
were used for evolving priority functions for other criteria.

4.2. Selection of Functional Nodes
Table 3 represents the set of available functional nodes we experimented with. The IFGT and IFLT

nodes (simple if statements) were added in order to allow for different parts of the evolved expressions to
specialize for certain cases. The remaining nodes represent simple mathematical operators, of which the
protected division is used in order to prevent division by zero. The square root operator was implemented as
a safe operator (similar to the division operator) to prevent illegal values from appearing. It would probably
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Table 2: Parameters for the GP

Parameter Value
population size 1000

stop criteria maximum number of iterations
(80 000)

selection steady state GP using
tournament selection

tournament size 3
initialization ramped half-and-half
mutation
probability 0.3

maximal tree depth 5

crossover operators subtree, uniform,
context-preserving, size-fair

mutation operators
subtree, Gauss, hoist, node

complement, node replacement,
permutation, shrink

prove better if a more sophisticated approach was used in order to handle such cases (e.g. by using interval
arithmetic [29]), but this is left for future research.

The initial subset of functions used in constructive feature selection consisted only of four arithmetic
operators, +,−, ∗ and protected division. By using constructive and destructive heuristics, an optimal set
of the functional operators was found which comprises of four basic mathematical operators (+,−, ∗, /) and
the unary operator POS.

4.3. Dimensionally Aware Genetic Programming
The solutions generated by genetic programming are generally not semantically correct, which holds for

all GP applications [30]. However, it is possible to restrict the GP search process only to semantically correct
solutions. This approach is known as dimensionally aware genetic programming (DAGP) [31].

Dimensionally aware genetic programming is a variant of genetic programming in which solutions of the
algorithm represent semantically correct expressions. This means that there are constraints imposed on the
functional nodes in order to regulate which elements can be their children. For example, a simple semantic
rule would be that the addition operator can be performed only on the nodes whose values are in the same
unit (e.g. seconds). In such a way it is possible to evolve priority functions which are more similar to the
ones which would be devised by human experts.

This certainly increases the readability of the generated solutions; on the other hand, it introduces added
complexity into the genetic programming. The individuals can no longer be generated completely by random,
but an algorithm is needed in order to generate solutions which are semantically correct. Furthermore,
crossover and mutation operators need to be adjusted as well, in order to preserve the semantic correctness
of individuals.

In order to ensure the semantic correctness of the solutions, it is required that all nodes carry the
information about the physical unit (e.g. seconds, meters), as well as the exponent to which the unit is
raised (e.g. s2, s−1). Since all terminal nodes in the this application have the same unit - the time (e.g.
in seconds), it is sufficient to carry only the information about the unit exponent, since the unit will be
the same for all nodes. The only exception is the weight node, which in itself has no unit, but this can be
treated as if the unit is raised to the zero exponent. Table 4 lists the semantic rules for the functional nodes
applied in our implementation of dimensionally aware GP. As a consequence, this will prevent the addition
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Table 3: Functional nodes

Node
name Description

+ binary addition operator
- binary subtraction operator
* binary multiplication operator

/
secure binary division:

/(a, b) =
{

1, if |b| < 0.000001
a
b , else

POS unary operator: POS(a) = max{a, 0}

IFGT IFGT (a, b, c, d) =
{
c, if a > b

d, else

IFLT IFLT (a, b, c, d) =
{
c, if a < b

d, else

MAX MAX(a, b) =
{
a, if a > b

b, else

MIN MIN(a, b) =
{
a, if a < b

b, else

SQRT SQRT (a) =
{

1, if a < 0
√
a, else

AVG AV G(a, b) = (a+ b)/2
ABS ABS(a) = |a|

of weight and processing time of a job (for example), or any other combination of values with non-matching
time exponents.

Figure 1 represents two sample solutions. The left solution is semantically incorrect because it tries to
subtract two nodes which have different unit exponents: w − pt. On the other hand, the right expression
represents a semantically valid expression because it adheres to all the aforementioned semantic rules.

/

w +

- SL

dd pt

/

w +

- SL

w pt

Semantically

correct solution

Semantically

incorrect solution

Figure 1: Example of a semantically incorrect and a correct solution
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Table 4: The defined semantic rules

Node Constraint New exponent
value

+
the left and right

child must have the
same exponent

the same as the
exponent of the
child nodes

-
the left and right

child must have the
same exponent

the same as the
exponent of the
child nodes

* none
the sum of the
exponents of the
left and right child

/ none

the difference
between the

exponents of the
left and right child

pos none
the same as the
exponent of the

child

Our experiments (shown in section 5) indicate that there is no significant difference between the re-
sults obtained by these two approaches. However, this suggests that the DAGP can be used to generate
semantically sound solutions without a loss in solution quality.

4.4. Gene Expression Programming
Gene expression programming (GEP) is an evolutionary algorithm similar to Genetic programming [32].

The only real difference between those two approaches is how the solutions are represented. GEP individuals
are always of the same size even though all nodes may not be used during the construction of the expression
tree. The idea behind this design is to simplify the genetic operators which now do not need to operate on
a tree structure, but rather on an array. GEP was used for evolving scheduling rules in the single machine
environment and has shown promising results [33].

A GEP individual consists of several genes where each gene comprises the same number of nodes. Ad-
ditionally, each gene is divided in two parts: the head and the tail of the gene. The head can contain both
terminal and functional nodes, while the tail can contain only terminal nodes. While the head size is often
presented as a parameter of the algorithm, the tail size is calculated as t = h ∗ (nmax − 1) + 1, where h
represents the head size and nmax the maximum number of children per function node.

A sample GEP individual is presented in Figure 2. As mentioned before, each individual consists of
several genes which are separated by the "|" delimiter. The underlined part of the gene represents a K-
expression, a part of the gene used to create an expression tree. The rest of the gene is not used and it is
here only to preserve the constant gene size.

If GEP individuals consist of more than one gene, then a linking function must be defined which deter-
mines how the individual gene expressions are combined. These linking functions are a part of the individuals
as well and are evolved through the algorithm, giving more freedom for the evolved priority functions to
adapt to the scheduling conditions. Figure 2 shows a GEP individual, where the linking nodes are located
at the very beginning. In our implementation the linking nodes are always defined as functions with two
operands.
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 * + | + - pt w MR age w | * PAT w w dd SL pt | w + / pt SL  dd age

gene 1 gene 2 gene 3

Figure 2: Example of a GEP individual

Expression tree generated from this sample individual is presented in Figure 3. Each gene’s nodes are
represented in a different color (in this case, in blue, green and purple). The red nodes denote functional
nodes which are used to combine genes with each other. The procedure of transforming the individual into
the expression tree is described in [34].

*

+ w

+ *

- MR

pt w

PAT w

Figure 3: Example of an expression tree built from a GEP individual

Regarding the implementation, we used one crossover operator (one point crossover), one mutation
operator (replacement mutation) and three transposition operators (IS, RIS and gene transposition). Two
GEP parameters were optimized, the head size and the number of genes. It was found that GEP obtains
the best results when the individual consists of three genes and when the gene head contains six nodes.

4.5. Scheduling with Iterative Dispatching Rules
Producing GP heuristics with iterative dispatching rules (IDR) was first proposed in [35], where the

approach was applied to the job shop scheduling problem. The core idea of this approach is to build a better
schedule throughout multiple iterations (hence the name) using a special kind of priority function. The used
function is interesting in the fact that it does not depend only on the general properties of machines and
jobs, but also on information extracted from the previous iterations, i.e. from the previously built schedules.
The intuition behind this kind of approach is that this way the priority function can collect much more
information about the schedule as a whole, in contrast to the traditional priority functions which use only
the information from the partially generated schedules. In other words, this approach considers the future
impacts of the decisions made by the priority function as well.

The algorithm works as follows: the first time the schedule is built, the properties of the previously built
schedules are set to some predefined values. However, when the schedule is built for the second time, the
priority function uses the properties of the previously created schedule. If the resulting schedule is "better"
than the old one, the process is repeated, otherwise, the process is stopped and the previously built schedule
is returned as a result. This approach can be used with scheduling rules devised by any of the previous
methods.

In order to accommodate for the information about the previous schedule, new tree nodes need to be
included. This additional node set comprises of three terminal nodes and one functional node. Their
descriptions are given in Table 5.

NLATE is a node which represents the number of late jobs in the previous schedule. When the schedule
is built for the first time (i.e. there is no information about the previously built schedules), the value of
this terminal node is equal to the total number of jobs (presuming that all jobs are late). Furthermore,
INDLATE terminal node represents the lateness of a specific job in the previous schedule. Lateness of a
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job with the index j is defined as: Lj = Cj − dj . The last terminal node LATENESS is defined as total
lateness of the previously generated schedule. The default values of these two nodes are set to large values
(ones which can not be achieved by any feasible schedule). The only functional node is the ISLATE node
which determines if the current job was late in the previous schedule in which case it executes its first child.
Otherwise, it executes the second child.

Table 5: Nodes introduced for the GP with IDR

Node name Description
NLATE the number of late jobs
LATENESS the lateness of all the jobs
INDLATE the individual lateness of a job
ISLATE if the job was late executes the left

child, else it executes the right child

It should be noted that this set of nodes was designed with the weighted tardiness criteria in mind.
Nevertheless, these nodes can be used in the optimization of other criteria as well. However, better results
could possibly be achieved by selecting unique nodes for each criterion separately.

The optimal set of the aforementioned nodes was found using the constructive and destructive heuristic.
The best average solution was achieved by using only the NLATE node. On the other hand, the single best
overall solution (for the weighted tardiness criteria) was found by the GP which uses only the LATENESS
node. Other combinations of nodes did not produce significantly better results.

It is important to note that the IDR approach imposes a major constraint: it cannot be used in on-line
conditions when no information about future jobs is available, because a complete schedule cannot be built.
This may lead to the conclusion that IDRs may only be used in static (off-line) scheduling. However, they
can still be used in dynamic conditions, when the system parameters may change during the run, such as
the arrival of new jobs or machine breakdowns. In these conditions the search-based methods are generally
not applicable, because they cannot react quickly to changes, whereas the time complexity of IDRs is still
negligible and comparable to existing heuristics.

5. Benchmarks and Results

5.1. Benchmark Setup
To gain a realistic insight into the performance of the developed system, an extensive set of benchmarks

was performed. A set of 120 problem instances was generated based on the methods described in related
references for various scheduling environments [5, 6, 36, 37].

The set of 120 problem instances was divided into two disjoint sets, the training set and the validation set.
Each of these sets contained 60 problem instances. Depending on the problem instance, the total number
of jobs can be 12, 25, 50, or 100, while the total number of machines is 3, 6 or 10. The number of test
instances is the same for each combination of the number of jobs and machines (i.e. there are 10 instances
for each of the 12 combinations of these parameter values). The values of processing times of the jobs are
generated in the interval pij ∈ [0, 100] using one of the following three probabilistic distributions: uniform,
normal (Gaussian) and quasi-bimodal. The choice from which of these three distributions the processing
times will be drawn is chosen randomly for each job (with each distribution having the same probability of
being chosen). The job weights follow a uniform distribution in [0, 1]. The release times of the jobs were
generated, using a uniform distribution, from the interval

rj ∈ [0, p̂2 ],
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where p̂ is defined as

p̂ =
∑n

j=1
∑m

i=1 pij

m2 ,

and pij denotes the duration of job j on machine i while m denotes the total number of machines. The due
dates of the jobs were also defined using a uniform distribution from the interval

dj ∈ [rj + (p̂− rj) ∗ (1− T − R

2 ), rj + (p̂− rj) ∗ (1− T + R

2 )].

In this equation, parameter T represents the due date tightness, while the parameter R represents the due
date range. Both of those parameters assumed values of 0.2, 0.4, 0.6, 0.8 and 1 in various combinations
while generating the problem set. Additional details about data generation and the problem instances are
available at the project web site at [38].

The training set of problem instances was used by the GP in order to evolve the priority functions
by optimizing four scheduling criteria: weighted tardiness, weighted number of tardy jobs, flow-time and
makespan. Needless to say, each of these criteria was optimized independently. Following this step, the
effectiveness of the generated priority functions was evaluated using the validation set and results on this
set are presented in the following sections.

Since the problem instances have different characteristics (number of jobs, machines, durations), we
adjusted the objective functions in order for all problem instances to have an equal effect on the algorithm.
Therefore, the normalized objective functions for the problem instance with the index i are defined as follows:

• for the weighted tardiness criterion fi =
∑n

j=1
wjTj

nw̄p̄

• for the weighted number of tardy jobs criterion fi =
∑n

j=1
wjUj

nw̄

• for the flowtime criterion fi =
∑n

j=1
Fj

np̄

• for the makespan criterion fi = max{Cj}
np̄ ,

where n denotes the number of jobs in the problem instance, w̄ the average weight of the jobs and p̄ the
average job processing duration. The total objective function is then calculated as the sum of the objective
functions of the individual problem instances.

In order for the benchmark results to be statistically significant, each experiment was executed 50 times,
while preserving the best solution from each run. The resulting best solutions from these runs were then
used to calculate quantitative information such as the mean fitness value of the solutions, the median of the
fitness, the minimum and the maximum fitness value, and the standard deviation.

5.2. Benchmark Algorithms
To assess the quality of schedules obtained by using the evolved priority functions, the obtained results

were compared to the results of four constructive heuristic scheduling methods. The methods used for
comparison are: min-min [39], max-min [40], sufferage[41], min-max [42]. These methods were used to
generate schedules for the problem instances in the validation set.

Search-based methods were also used in order to generate schedules for the problem instances in the
validation set. These methods were employed primarily to estimate a reasonable lower bound to the problem
instances, since no known instances with all the properties and lower bounds are available. The methods
covered in this project include several variants of genetic algorithm, ant colony optimization and hybrid
evolutionary algorithms with several local search operators. In these meta-heuristics we used two encodings:
the permutation encoding, which defines the relative order of the jobs, and the floating point encoding, which
decodes the floating point values into job priorities (a priority vector). The ACO algorithm is used with
permutation encoding, while the GA is used both with permutation and priority vectors. We experimented
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with several selection schemes for GA (steady state with tournament selection, generation with roulette-
wheel) and several genetic operators, as well as a combination with deterministic local search operator with
pattern search. Based on our experiments, the floating point encoding provided better results.

The execution times of these algorithms vary greatly depending on the values of the parameters (pop-
ulation size, number of iterations). Producing schedules for 60 problem instances lasted from a few hours
up to a whole day. For comparison, generating schedules for the same problem instances using constructive
scheduling heuristics took less than a second. Furthermore, all the search-based algorithms were executed
at least 30 times in order to obtain the best possible results.

It is important to note that only the overall single best result for each problem instance found by any
of these methods was used for comparison. This means that the total result denoted as "search-based" is
actually a combination of best results from several meta-heuristic algorithms and does not represent a result
achieved by any single algorithm. It should be also noted that these approaches can only perform off-line
scheduling; consequently they are expected to obtain better results than the other approaches which also
perform on-line scheduling. We omit further implementation details since these methods cannot be used in
dynamic scheduling conditions and are not the focus of this work.

5.3. Result Comparison - On-line Scheduling
In this subsection we present the results of GP variants that can be used in on-line scheduling (without

the iterative GP). This includes four variations: standard GP without parameter optimisations, standard GP
with parameter optimisations, dimensionally aware GP and GEP. The GP without parameter optimisation
was included in order to asses the influence which parameter optimisation can have on the achieved results.

Table 6 shows the complete results for all criteria and all the described approaches. In the following
subsections the approaches are compared with each other based on the four aforementioned scheduling
criteria. For each criterion the results for the GP approaches are presented in a Tukey box plot [43]. The red
stars in the box plot diagrams denote the maximum outlier (if it exists) for a certain experiment. Aside from
the box plots we have also performed statistical tests between all the variants using the Wilcoxon rank-sum
statistical test. The differences are considered statistically significant if the obtained value for p is smaller
than 0.05.

5.3.1. Weighted Tardiness Criterion
In this section the results for the weighted tardiness (Twt) criterion will be compared. From table 6 it

can be seen that the constructive scheduling heuristics achieve quite similar results for this criteria (except
from the max-min heuristic), with the sufferage heuristic achieving the best result.

The different GP methods have shown more or less similar results as can be seen from figure 4 which
shows results in the box plot representation. The GP method without any parameter optimisations obtained
the worst overall results from all the GP methods and it can be seen that the GP with the optimised
parameters can achieve better results with a much smaller standard deviation. The statistical tests show
that GP without parameter optimisations is worse than the other approaches. When compared to the
standard GP with optimised parameters, dimensionally aware GP and GEP achieved results which are to a
small extent worse, but the statistical tests show that there is no significant difference between those three
methods.

From table 6 it can be also seen that all the GP methods outperform the existing scheduling heuristics.
Even the worst solutions found by the GP methods are still better than the solutions found by the schedul-
ing heuristics (except for GP without parameter optimisations). The search-based methods, as expected,
provided the best combined result.

5.3.2. Weighted Number of Tardy Jobs Criterion
In this section the results for the weighted number of tardy jobs (Nwt) criterion will be compared. From

the set of the constructive heuristics, the min-min heuristic achieved the best result, with the sufferage
offering also quite good results. The other two heuristics fared considerably worse.

Figure 5 represents the box plot representation of the results achieved for this criterion. It can be seen that
GP without optimisations achieves results more or less comparable to the GP with optimised parameters.
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Figure 4: Box plot for the weighted tardiness criterion

This is backed up with statistical tests which show no significant difference between those approaches.
Dimensionally aware GP and GEP provide a better average of the best solutions, when compared to the
standard GP with and without optimisations, but both of these were unable to find a better solution than
the best solution found by the standard GP. Statistical tests showed that there is a significant difference
between GP without optimisations and dimensionally aware GP (p-value=0.033) and also between GP
without optimisation and GEP (p-value=0.044). On the other hand, there is no significant difference between
GP with parameter optimisations and dimensionally aware GP or GEP.

It should also be noted that all the tried out GP variants have a smaller standard deviation of the best
solutions when compared the standard GP (with and without parameter optimisations). This means the
best found solutions are less scattered, which in turn means that we have a greater probability of finding a
good solution than when using the standard GP.

Figure 5: Box plot for the weighted number of tardy jobs criterion

When the results of the GP variants are compared to the heuristic scheduling methods, it can be seen
that GP delivers better results in general. Once again the search-based methods provided the result which
was by far better when compared to the rest of the algorithms.

Another thing that can be deduced from table 6 is that generally better results for the Nwt criterion
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are achieved when the priority function is evolved for the weighted tardiness. This means that it is more
worthwhile to optimize the Twt criterion, because at the same time the Nwt criterion is also optimized.

5.3.3. Flowtime Criterion
In this section the results for the flowtime (Ft) will be compared. As can be seen from table 6, the min-

min heuristic achieved the best result among the heuristic scheduling methods, followed by the sufferage
heuristic.

The box plot representation of the results achieved for the flowtime criterion are shown in figure 6.
For this objective the GP approaches have shown some interesting results. Although GP with parameter
optimisations was able to achieve a better average of the best solutions when compared to GP without
optimisations, the overall best result was worse then the one found by GP without optimisations. Although
dimensionally aware GP managed to find the best overall result, the statistical tests show that there are no
significant differences between dimensionally aware GP and the two standard GP approaches. On the other
hand, tests show that the results achieved by GEP are significantly different than those achieved of any of
the three former approaches.

Figure 6: Box plot for the flowtime criterion

Even for this criteria it is shown that the GP approaches outperform the heuristic scheduling methods.
Only the min-min heuristic achieved results which are close to the solutions achieved by the GP approaches.

5.3.4. Makespan Criterion
In this section, the results for the last, the makespan criterion, will be presented. It should be noted

that this objective’s validity is more justified in static scheduling, since in on-line conditions the jobs that
arrive the last determine the overall makespan. However, we include this objective for completeness and
comparison purposes.

Among the constructive methods, the sufferage heuristic achieved the best result. The min-max heuristic
obtained the second best result and the max-min heuristic came last for this criteria as well.

Figure 7 represents the box plot representation of the achieved results of the GP approaches. From the
results for this criterion it can be seen that GP with optimisations, dimensionally aware GP and GEP achieve
quite similar results. GP without optimisations managed to obtain the overall best result when compared
to the previous approaches, but the average value and the standard deviation was worse. Nevertheless, the
statistical tests show that significant difference exists only between GP without optimisations and GEP, but
not between GP without optimisations and other approaches.

For this criteria the differences between the GP approaches and the heuristic scheduling methods are very
small. The scheduling heuristics have shown to provide results which are competitive to the ones achieved by
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the GP approaches (which is expected given the on-line scheduling conditions). The search-based methods
were able to find the best overall solution for this criterion, thus providing a reasonable lower bound.

Figure 7: Box plot for the makespan criterion

5.4. Result Comparison - Off-line Scheduling
In this section we present the results with iterative dispatching rules (IDRs); these rules use terminal

nodes with information that is only available at the end of the schedule. Using the information from the
previously built complete schedules, the scheduler can update those terminal values and attempt to improve
schedule quality. In this paper we experimented with several additional terminals, but experiments indicated
that using only the node with number of late jobs (NLATE) obtained the best average result. The iterative
scheduling was applied to the GP with optimized parameter values for all the criteria and the results are
given in Fig. 8 and Table 6.

It is clear that the iterative rules provide the advantage over all the previous methods which build the
schedule in a single pass (the statistical tests show significant difference with p < 0.001 when compared to
previous methods). However, this mechanism can only be used when all the information about the future
jobs is available, which corresponds to static scheduling. In these conditions, the iterative approach should
be comparable to search-based methods, but the performance of the search-based methods is still much
better.

It is possible that, with the inclusion of other terminals that provide more relevant information about
the previously built schedules and current criterion, better results could be obtained, but this is left for
future research, since the main focus of this paper are the on-line scheduling conditions.

6. Discussion

From the results presented in the last section a great number of conclusions can be drawn. First of all,
we will shortly assess the performance of the constructive heuristic scheduling methods. Among the tried
out methods, the min-min and sufferage proved to be the most promising. Both of these methods found
the best solution (among the heuristic scheduling approaches) for two criteria, min-min for the Nwt and Ft
criteria and sufferage for the Twt and Cmax criteria. The max-min heuristic has proven to be the worst
among these, achieving the worst results for all criteria. The min-max heuristic, on the other hand, has
shown mixed results, providing a good result only for the Cmax criteria. Naturally there are many other
scheduling heuristics and even modifications of the aforementioned ones which could possibly provide better
results than the four selected ones [44, 45, 46, 47, 48].

Among the GP approaches, GP with IDR has proven to be the best approach, which was expected with
the additional information from multiple iterations at its disposal. However, this information can only be
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Figure 8: Box plot images for all the criteria - iterative dispatching rules
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exploited if data about future jobs is available. The other GP methods provided more or less similar results,
with GEP and dimensionally aware GP even providing slightly better solutions for some criteria when
compared to the standard GP. Additionally, the dimensionally aware GP has the advantage of providing
"semantically" correct solutions, while on the other hand GEP has generally evolved priority functions which
are simpler when compared to the priority functions of the other approaches. A sample solution obtained
by the use of dimensionally aware GP for minimizing the Twt criterion is

π = pos(pos((w ∗ SL))/((w ∗ pavg)/(SL+ pmin)))−
(pos((w ∗ pt)) + (w ∗ age)− ((pmin/w)−

(MR− age) + (dd− pt) + (pmin+ pavg))).

This solution achieves a value of 13.8299 for the above criterion. Upon closer examination it can be seen
that the solution is semantically correct and conforms to all the rules stated in section 4.3.

The tests also show that optimising the GP parameters can have an influence on the results. For the
weighted tardiness criterion it was shown that there is a substantial difference between the ’standard’ GP
and optimised GP. Although there is no great difference between the best found solutions of those two
approaches, GP with optimised parameters achieved a better average of the best results from all runs and
also had a much smaller standard deviation. Based on these observations we can conclude that optimising
the parameters did not really result in an approach which was able to find better results, but rather in
an approach which is more robust and is more likely to find good results than the approach without any
parameter optimisations. For the other criteria the difference between those two approaches is not as
prominent, which is probably due to the fact that the the parameters were optimised only for the weighted
tardiness criterion and then used for all the other criteria.

When comparing the GP approaches with the heuristic scheduling methods it can be seen that they
clearly outperform them in all criteria except for the Cmax criterion. A great advantage of existing heuristics
is that they perform reasonably well over multiple criteria, while the GP approaches tend to perform well
only for the criteria for which the priority function was devised (the only exception being the Nwt quality
when the Twt criterion is optimized). Based on this observation, it can be concluded that if more than one
criterion should be optimized at once, it is more practical to use the existing heuristic scheduling methods.
On the other hand, if it is important to optimize a single criteria as much as possible, or if the objective is
based on user preferences, the GP approaches provide a better option.

Even though the GP-based approaches can be used in off-line scheduling as well, they do not provide
solutions which are as good as the ones provided by search-based procedures, which was seen in the previous
section. If there is no limit imposed on the time needed to build a schedule, search-based metaheuristics
should be the methods of choice. Otherwise, if time is of the essence, one of the presented approaches should
be considered rather than the search-based methods.

When all things are considered, it can be concluded that there is no single approach which provides near
optimal solutions for all criteria and environments. Search-based methods are suited for off-line scheduling,
but are not applicable to scheduling in the dynamic environment. Existing heuristics have shown to provide
a good overall performance and even solutions which are competitive with those of the GP approaches for the
Cmax criterion, making them likely to be a better choice for optimizing that criterion. GP approaches have
however proven to be able to achieve very good results for any criteria for which the priority function was
evolved. When compared to the search-based methods, the GP approaches offer speed which is comparable
to the speed of existing scheduling heuristics (if the priority functions are prepared beforehand).

More importantly, and similarly to search-based methods, GP can be optimized for almost any con-
ceivable user criteria, while the existing scheduling heuristics do not provide such a possibility (it would be
required to design a new heuristic for optimizing a specific criterion). Considering all these aspects, choosing
the right approach for optimizing a given criterion depends on many factors and end user requirements.

18



7. Conclusion

This paper shows how genetic programming can be used to build scheduling algorithms for the parallel
unrelated machines scheduling environment with arbitrary scheduling criteria. The proposed heuristic is
composed of two parts: a meta-algorithm and a priority function. The meta-algorithm we propose is defined
manually, while the priority function is evolved using GP. This allows the users to specify an arbitrary
criterion, and evolve the appropriate priority function for it.

The experiments have shown that the proposed algorithm achieved results which were in most cases
better than the results achieved by the existing scheduling heuristics. The GP was still unable to find
solutions better than those found by the search-based methods. However, the goal of this approach is not to
provide optimal or near optimal solutions, but to find solutions with acceptable quality in a small amount
of time.

Additionally, several different GP approaches like dimensionally aware GP, GEP and GP with iterative
dispatching rules were tried out. GP with iterative dispatching rules achieved the best results when compared
to any of the other GP approaches, but is applicable only in off-line scheduling. Dimensionally aware GP
and GEP achieved results which were mostly comparable to the standard GP, but offer some benefits which
could make them more appropriate for certain situations.

In future work we plan to further investigate the optimizations for the GP in order to achieve even
better results and also to try out combinations of the aforementioned modifications. While the evolution
of priority functions is central to this and existing research, the evolution of the meta-algorithm itself,
rather than designing it manually, is also a challenging task which has not received much attention so far.
Additionally, it is also planned to adjust the GP, by adding new terminal nodes, in order for it to be more
viable for the off-line scheduling conditions.
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ax

stdev
T
w
t
opt.

13,132
13,778

14,808
0,4140

6,4360
6,7674

7,3812
0,0204

173,50
188,70

385,41
30,679

38,749
39,513

43,153
0,6443

N
w
t
opt.

13,365
15,786

34,720
3,2765

6,4899
6,9257

7,7344
0,2612

170,99
192,35

348,92
25,469

38,727
40,338

44,994
1,1978

F
t
opt.

16,323
17,256

18,653
0,5556

6,9541
7,1816

7,4758
0,1088

153,39
155,89

160,57
1,7246

38,139
38,629

39,179
0,2311

C
m
ax

opt.
16,443

19,491
23,827

1,6382
7,2130

7,6812
8,4339

0,2528
156,50

172,91
192,26

7,9746
38,033

38,268
38,929

0,1516
G
E
P

m
in

avg
m
ax

stdev
m
in

avg
m
ax

stdev
m
in

avg
m
ax

stdev
m
in

avg
m
ax

stdev
T
w
t
opt.

13,058
13,856

15,139
0,5552

6,3117
6,7619

7,3343
0,2211

162,38
192,39

342,06
30,490

38,563
39,499

41,533
0,5221

N
w
t
opt.

13,675
17,617

32,895
4,0005

6,4399
6,9413

7,5526
0,2486

157,80
177,05

242,70
18,782

38,497
39,750

43,914
1,2769

F
t
opt.

16,441
17,199

18,863
0,4958

6,9335
7,2047

7,4877
0,1418

153,53
154,96

158,09
1,0420

38,322
38,622

39,131
0,1634

C
m
ax

opt.
16,740

20,270
27,330

2,5496
7,2318

7,6890
8,3596

0,2741
157,53

176,94
215,27

13,253
37,945

38,217
38,729

0,1416
G
P

w
ith

ID
R

m
in

avg
m
ax

stdev
m
in

avg
m
ax

stdev
m
in

avg
m
ax

stdev
m
in

avg
m
ax

stdev
T
w
t
opt.

12,230
13,054

13,871
0,4025

6,1760
6,6270

7,5124
0,2369

168,45
202,31

336,33
39,861

38,717
39,724

42,887
0,9236

N
w
t
opt.

13,272
20,887

71,042
10,910

6,1519
6,7026

7,3131
0,2533

159,29
195,32

313,60
36,833

38,366
40,211

44,041
1,5321

F
t
opt.

16,360
17,274

19,232
0,5911

6,9268
7,1632

7,4445
0,1261

151,56
154,07

156,86
1,0243

38,218
38,595

39,171
0,2369

C
m
ax

opt.
16,820

21,325
30,169

2,8461
7,0655

7,7872
8,4273

0,3183
155,35

182,60
219,52

12,330
37,736

38,034
38,448

0,1821
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