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a b s t r a c t

The container relocation problem is a challenging combinatorial optimisation problem tasked with
finding a sequence of container relocations required to retrieve all containers by a given order. Due to
the complexity of this problem, heuristic methods are often applied to obtain acceptable solutions in
a small amount of time. These include relocation rules (RRs) that determine the relocation moves that
need to be performed to efficiently retrieve the next container based on certain yard properties. Such
rules are often designed manually by domain experts, which is a time-consuming and challenging
task. This paper investigates the application of genetic programming (GP) to design effective RRs
automatically. Experimental results show that RRs evolved by GP outperform several existing manually
designed RRs. Additional analyses of the proposed approach demonstrate that the evolved rules
generalise well across a wide range of unseen problems and that their performance can be further
enhanced. Therefore, the proposed method presents a viable alternative to existing manually designed
RRs and opens a new research direction in the area of container relocation problems.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The container relocation problem (CRP) is an important com-
inatorial optimisation problem that appears in warehouse and
ard management. Nowadays, this problem is gaining more im-
ortance since most international trade is carried out by the
nternational shipping industry [1].

Usually, containers are placed in a stacking area while waiting
or loading. Because of the limited capacity of the stacking area,
ontainers are placed side by side or on top of each other. By
toring containers in such a way, blocks are formed. Each block
onsists of a number of stacks (width), a number of tiers (height),
nd a number of bays (length).
Loading of containers is done in a predetermined order. If the

ontainer that needs to be retrieved next is not on the top of its
tack, all containers above it need to be relocated. The relocation
f containers is, in most cases, inevitable because of the incom-
lete or unavailable information. In [2] authors give an estimation
hat 30%–40% of the outbound containers at European terminals
o not have correct information about the ship or the destination
ort. The situation is even worse for inbound containers, and only
0%–15% of container shipment is known in advance [2].
CRP deals with the relocation and retrieval of containers at

he same time. In literature, a variety of approaches used for
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solving different variants of CRP can be found. CRP variants differ
in restrictions on moves, retrieval priorities of blocks (whether
they are distinct or not), whether all blocks need to be retrieved,
how many blocks can be moved at a time, and whether the
stacks are ordered in a single or multiple bays. A formal problem
classification can be found in [3].

The single bay CRP was for the first time introduced by Sculli
and Hui in 1988 [4]. Avriel et al. [5] showed that it is an NP-
complete problem. In [6] a heuristic based on the expected num-
ber of additional relocations (ENAR), which was used in a branch-
and-bound algorithm to search for the optimal solution, was
introduced. A beam search algorithm and three relocation rules
(RRs): lowest position (TLP), reshuffle index (RI), and reshuffle
index with look-ahead (RIL) were proposed in [7]. In [8] a GRASP-
based algorithm that found new bounds for many problem in-
stances was proposed. Lee and Lee [9] developed a three-phase
heuristic for multibay CRP, which was the first approach in the
literature applied for multiple bays. In this problem, besides the
number of relocations, it is essential to reduce the crane operation
time, which can be significant when moving from one bay to
another.

A corridor method combined with dynamic programming was
used in [10], while in [11], two mathematical models and the
Min–Max rule were introduced. In [12] a tree search procedure
for multibay CRP was introduced. This approach defines well
placed and bad placed containers, which can help calculate a
lower bound and choose moves. Iterative Deepening A* algorithm
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as used in [13] for solving CRP. In this paper, three lower bounds
nd four heuristics were used in the nodes of a tree. A new
euristic which, besides the container that needs to move, takes
nto account the properties of the container that needs to move
ext is introduced in [14]. In [15] authors propose the heuristic
ased on groups to solve CRP with multiple bays. In this paper,
ranes that can move one or more containers at a time were
bserved.
Authors in [16] used the A* algorithm for solving CRP exactly

nd approximately. They also study the average-case asymptotic
ehaviour of the CRP when the number of stacks increases. CRP
ith time window was studied in [17], in which an abstrac-
ion heuristic is developed to improve the tree-search approach
sed for solving it. In most recent research, four rules combined
ith a genetic algorithm were used to determine the best se-
uence of container retrievals [18], and GRASP for multibay CRP
s introduced in [19]. Also, the dynamic stacking problem with
ncertainties was studied in [20]. In this paper, the problem
as solved using two approaches: hand-crafted rules and model-
ased. The second one solves the problem by solving a static
odel of a specific planning horizon and seems to be better of

hese two approaches.
From the previous overview, it is evident that in most re-

earch, heuristic methods have been applied for solving the CRP,
hich ranged from simple heuristics to more complex meta-
euristics. Metaheuristics have the benefit that they achieve bet-
er results than simple heuristic rules at the expense of a longer
xecution time, especially as the problem size increases. On the
ther hand, simple RRs obtain good solutions in an almost neg-
igible time since they do not traverse the search space in the
uest for good solutions but rather construct a good solution
teratively using a certain strategy. These strategies are manu-
lly defined and include domain knowledge defined by experts.
owever, effective RRs are challenging to design and require good
xpert knowledge about the problem. This provides motivation
or investigating the possibility of automatic design of new RRs
or the CRP.

Genetic programming (GP) is an evolutionary computation
ethod that has achieved human-competitive results for many
roblems [21] and is commonly used for automatic heuristic gen-
ration [22]. It was successfully applied in the design of heuristics
or different combinatorial optimisation problems including the
ravelling salesman problem [23], vehicle routing problem [24],
apacitated arc routing problem [25], and similar. Automated
esign of heuristics has probably achieved the largest application
n scheduling [26,27], where GP was used to design heuristics
or different machine environments like the one-machine prob-
em [28], job shop scheduling [29–31], unrelated machine en-
ironment [32,33], and resource constrained project scheduling
roblem [34,35]. In recent years, various research directions in
he automated design of heuristics were investigated like en-
emble learning [36–40], multi-objective optimisation [41,42],
urrogate models [43,44], multitask GP [45], solution construction
trategies [46], feature selection [47], and many others.
In this study, GP is applied for constructing simple RRs, which

teratively determine how the containers should be relocated. For
hat purpose, a set of terminal nodes for the problem as well
s different solution construction procedures are proposed. An
xtensive experimental analysis demonstrates that automatically
enerated RRs achieve a better performance than existing rules
n an extensive benchmark dataset. Furthermore, a detailed anal-
sis of different aspects of the proposed approach is performed to
nderstand it better. The obtained results demonstrate that GP
an effectively be applied to the considered problem, and thus
pens further avenues in the research of CRP.

In summary, the main contributions of this work are: t

2

• development of a GP framework for the automated devel-
opment of priority functions used in relocation rules,

• modification of the restricted relocation scheme and three
modifications of the unrestricted relocation scheme,

• comparison of results for two optimisation criteria obtained
by relocation rules evolved with GP and 7 different manually
designed relocation rules from the literature,

• detailed analysis of the approach in terms of algorithm con-
vergence, the developed priority functions and their sizes,
and the terminal set used in the development of the priority
functions.

The remaining part of this paper is organised as follows. In
ection 2, the problem description is given. Section 3 provides
short description of the genetic programming algorithm. Sec-

ion 4 describes the automated design of RRs. The experimental
etup is given in Section 5, while experimental results are pre-
ented in Section 6. Section 7 provides a further analyses of the
esults. The discussion about the most important design choices
n the automatic design of relocation rules is provided in Sec-
ion 8. Finally, Section 9 concludes the paper and outlines future
esearch directions.

. Container relocation problem

.1. Problem description

In this paper, the single bay CRP will be considered. The bay
onsists of S stacks with H tiers. The height of each stack s is
enoted with h(s), and it has to be smaller than or equal to H .
he assumptions are that all containers are of the same size, the
antry crane can move only one container at a time, all containers
ust be retrieved, and each container has a unique priority.
As previously mentioned, the CRP consists of two types of

perations: relocation and retrieval. Relocation is the operation
f moving the container from the top of one stack to another one.
he container can be relocated to a stack only if the stack height is
maller than H . Retrieval is the operation of picking a container
rom the top of the stack and moving it on the truck used for
oading. The truck to which the container is retrieved is expected
o be located at the beginning of the bay, at position 0. The gantry
rane, which is located in the bay, performs the relocation and
etrieval operations. An example of a container bay can be seen
n Fig. 1.

Each container is given an ID that determines the order in
hich they need to be retrieved. The container with the smallest

D needs to be retrieved first and is called the target container.
f the target container is not on the top of the stack, relocations
eeds to be performed. The stack from which the container is
oved is called the origin stack, while the stack to which it is
oved is called the destination stack.
In the example given with Fig. 1, the container with ID 1 was

n the top of the stack, and it is in the process of retrieval, while
he container with ID 2, which needs to be retrieved next, is
locked. Containers with IDs 8 and 5 need to be relocated to
etrieve the container with ID 2. If one of these containers is
elocated to stack two, it will become full, and further containers
annot be relocated to it.
Feasible solutions of the CRP are all sequences of relocations

nd retrievals that ensure that the crane can retrieve all contain-
rs in a predetermined order. The goal is to find the one that
inimises the given objective. Usually, the number of relocations
r total crane operation time are used as objectives.
When using the crane operation time as an objective, it is

mportant to consider all parts of relocating and retrieving con-
ainers. For each movement, the time needed for the crane trolley

o come to the container, pick it up and move to the destination
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Fig. 1. Example of a container bay.

tack needs to be calculated. The speed of moving the crane
rolley per container width (moving to the adjacent stack) is 1.2
, while the total pick-up and place-down time for a container
s equal to 30 s [19]. The time invested in placing the crane to
he origin stack and moving the container from the origin to the
estination stack will be 1.2 × (number of passed stacks). Conse-
uently, the time for relocating the container can be calculated
s: 1.2 × |crane location − origin stack| + 1.2 × |origin stack −

estination stack| + pick-up and place-down time. The total crane
peration time is the sum of times needed for each movement.
In the literature, two types of CRPs are distinguished: the re-

tricted CRP and the unrestricted CRP. In the restricted CRP, only
ontainers that are above the target container can be relocated,
hile in the unrestricted CRP, it is possible to relocate containers

rom all stacks. In this study, both variants are considered. Using
he classification of [3], the problems considered in this study can
e denoted as res|dis|com|ind and unr|dis|com|ind, which means
hat either restricted or unrestricted moves are considered, with
istinct priorities, complete retrieval, and individual container
oves.

.2. Mathematical model

To define the restricted version of CRP more formally, the
ollowing variables are introduced [8]:

ijnt =

{ 1, if container n is at position (i, j) at the
beginning of period t

0, otherwise,

ijklnt =

{ 1, if container n is relocated from position (i, j)
to position (k, l) in period t

0, otherwise,

ijnt =

{ 1, if container n is retrieved from position (i, j)
in period t

0, otherwise,

nt =

{
1, if n ≥ t
0, otherwise.

The variables bijnt define the feasible configuration, the vari-
bles xijklnt and yijnt define the feasible movements or relocations
nd retrievals, and the variables vnt indicate whether a container
is in the stacking area or has already been retrieved from

torage in period t . It is important to point out that the period t
3

epresents all relocation’s moves, from the retrieval of a container
ith n = t − 1 to the retrieval of a container with n = t , and

consequently may consist of more than one movement.
The formal definition can now be given as follows [8,11]:

min
S∑

i=1

H∑
j=1

S∑
k=1

H∑
l=1

N∑
n=1

T∑
t=1

xijklnt (1)

S∑
i=1

H∑
j=1

bijnt + vnt = 1, n = 1, . . . ,N, t = 1, . . . , T (2)

N∑
n=1

bijnt ≤ 1, i = 1, . . . , S, j = 1, . . . ,H, t = 1, . . . , T (3)

N∑
n=1

bijnt ≥

N∑
n=1

bij+1nt , i = 1, . . . , S, j = 1, . . . ,H−1, t = 1, . . . , T

(4)

bijnt = bijnt−1 +

S∑
k=1

H∑
l=1

xklijnt−1 −

S∑
k=1

H∑
l=1

xijklnt−1 − yijnt−1

i = 1, . . . , S, j = 1, . . . ,H, n = 1, . . . ,N, t = 2, . . . , T

(5)

vnt =

S∑
i=1

H∑
j=1

t−1∑
t ′=1

yijnt ′ , n = 1, . . . ,N, t = 2, . . . , T (6)

M

(
1 −

N∑
n=1

xijklnt

)
≥

N∑
n=1

H∑
j′=j+1

H∑
l′=l+1

xij′kl′nt

i, k = 1, . . . ,S, j, l = 1, . . . ,H − 1, t = 1, . . . , T

(7)

M

⎛⎝1 −

H∑
j=1

bijtt

⎞⎠ ≥

H∑
j=1

S∑
k=1

H∑
l=1

N∑
n=1

S∑
i′ ̸=i

xi′jklnt

i = 1, . . . , S, t = 1, . . . , T

(8)

xijklnt = 0, i = 1, . . . , S, j = 1, . . . ,H, n = 1, . . . ,N, t = 1, . . . , T

(9)

S∑
k=1

H∑
l=1

N∑
n=1

xij+1klnt −

N∑
n=1

bij+1nt + 1 ≥

S∑
k=1

H∑
l=1

N∑
n=1

xijklnt +

N∑
n=1

yijnt

i = 1, . . . , S, j = 1, . . . ,H − 1, t = 1, . . . , T

(10)

The objective of the problem is to minimise the total number
of crane relocations throughout the entire scheduling period. The
constraint (2) ensures that in each time period, each container is
in the stack or has been retrieved, while constraint (3) ensures
that at most one container can be in each slot (i, j) in any given
time period. The condition (4) specifies that there must be no ver-
tical gap between two containers. The condition (5) is called the
flow balancing constraint because it maintains a feasible solution
over time periods. More precisely, a new feasible solution in time
period t can be obtained from the feasible solution in time period
t − 1 by applying a valid set of moves. The relation between the
variable vnt and the variables yijnt is given by the constraint (6).
Constraints (7) and (8) are constraints arising from a restricted
scheme in which only containers above the target container can
be moved (constraint (7)) and only containers from the stack in
which the target container is located can be moved (constraint
(8)). Without these constraints the formal model would define

the unrestricted variant of the CRP. In these constraints M is the
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Fig. 2. Tree representation of an individual in GP.

umber of containers above the target container. Moving to the
ame stack is not possible, which is given by constraint (9), while
onstraint (10) ensures that a container can be moved only if the
ontainer above it is moved.

.3. Notation

S number of stacks in yard
H number of tiers, maximum height of stacks
h(s) the height of stack s
N total number of containers

3. Genetic programming

GP is an evolutionary algorithm that works similarly to a
genetic algorithm (GA) [48]. The outline of GP is given in Al-
gorithm 1. At the beginning of the algorithm’s execution, an
initial population of individuals is randomly generated. To de-
termine how well each individual performs, a numerical value,
called fitness, is calculated for each individual using the fitness
function. The fitness function evaluates each individual on a set
of problems and assigns a value to the individual based on its
performance on the problem set. Based on the fitness, two better
individuals are randomly selected from the population and used
by the crossover operator. The crossover operator combines parts
of the two individuals to create a new, hopefully better child
individual. The mutation operator is then applied on the child
individual with a certain probability to introduce random changes
in it. With mutation it is possible to escape from local optima and
introduce genetic material that might not exist in the population.
The child individual then replaces a random individual from the
population, usually selected among the worse individuals. The
entire procedure is repeated until a certain termination crite-
rion is satisfied, like the maximum number of fitness function
evaluations, algorithm iterations, or execution time.

The previously described evolutionary procedure is the same
for both the GA and GP. However, the main difference comes
from the representation that these two methods use. Whereas
individuals in GA can be represented as permutations or lists
of floating point or integer numbers, the individuals in GP are
represented using expression trees. Fig. 2 shows an example of
such an expression tree that encodes the expression x − 3 +

x2
2 .

he expression tree consists of two types of nodes, function and
erminal nodes. Function nodes can only appear as inner nodes of
he tree and they represent various mathematical (summation,
ultiplication), logical (and, or, not), or other kinds of operators.
4

Algorithm 1: Standard steady state GP algorithm
1 Initialise the population P and evaluate all individuals in

it;
2 while termination criterion is not met do
3 Randomly select 2 individuals from the population;
4 Perform the crossover operator on the selected parents

and create a new individual;
5 Perform the mutation operator on the new individual

with a certain probability;
6 Select an individual to be replaced with the newly

created individual;
7 end

On the other hand, terminals represent either input variables (x)
or constants (2 or 3) that appear only in leaves of the tree. Input
variables usually represent some domain specific information
about the problem that is available to GP for constructing expres-
sions. The selection of both sets is quite important as selecting
too many nodes results in a huge search space, whereas using
small function and terminal sets can lead to myopic expressions.
Unlike other solution representations, the tree representation
adds an additional layer of flexibility in allowing expressions of
different sizes to be constructed, meaning that not all individuals
will have the same size. However, the maximum size of the
expression is usually controlled by a certain parameter, like the
maximum allowed tree depth. As in GA, the individuals of the
initial population are randomly generated. However, to ensure
more diversity on the initial population, several population and
individual initialisation strategies were proposed, among which
the ramped-half-and-half is the most commonly used [48].

As a consequence of using a different representation, GP also
applies genetic operators (crossover and mutation) that are ada-
pted to this representation. Fig. 3 outlines one possible crossover
operator, denoted as subtree crossover. This operator randomly
elects two nodes in the parent trees (denoted in red) and re-
laces the subtree rooted at the selected node in the first parent
ith the subtree rooted at the selected node in the second parent.

n that way the genetic material of both individuals is combined
o create a better individual. Fig. 4 outlines an example of the
utation operator, denoted as the subtree mutation. In this op-
rator a node is selected randomly (denoted in red) and the
ree rooted at that node is replaced with a randomly generated
ubtree. In that way new genetic material is introduced in the
ndividual, which enhances its diversity. In both operators it is
equired to ensure that after the application of the operators the
ndividual still satisfies constraints like the maximum depth of
he individual.

Since GP uses a different representation than GA, it has been
sed mainly for problems that cannot be solved with GA, such
s symbolic regression [49], classification [50], or feature selec-
ion [51]. In particular, GP has become one of the most popular
yperheuristic methods [22], which means that it is used to
evelop new heuristics for various combinatorial optimisation
roblems. This allows GP to evolve a heuristic that can be used
o solve multiple problem instances, as opposed to GA that must
e run from the beginning to solve each problem under consid-
ration. Therefore, GP is also used in this study to develop new
euristics for the CRP.

. Design of relocation rules

RRs can be divided into two components: a relocation scheme
RS) that defines the overall strategy of how containers will be
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Fig. 3. Subtree crossover.
Fig. 4. Subtree mutation.
moved and which stacks are eligible for selection, and a priority
function (PF) used to rank the available stacks. The RS uses the PF
to rank all the stacks and selects the best one to which the current
container will be relocated. Since the RS has to consider some
constraints and is usually straightforward, it is defined manually.
However, the PF that performs the ranking can be quite complex,
and therefore it is generated using GP.

The RS can be defined in different ways. However, all schemes
function similarly. If the target container is on the top of its
stack, it can immediately be removed from the yard. Otherwise,
if other containers are on top of the target container, they need
to be relocated to other stacks so that the target container is
on top. Several relocation schemes are proposed to test how
different decisions can affect the performance of RRs. However, all
of them can be categorised as restricted or unrestricted versions,
depending on which kind of relocation moves are allowed.

Algorithm 2 outlines the restricted RS variant, which will be
denoted as RE. In this scheme, the origin stack is the stack where
the target container is located, whereas the destination is any
other stack that is not full. For each other stack, the priority is
calculated using the PF, and the container on top of the origin
stack is relocated to the stack with the lowest priority value.
After a certain number of relocations, the target container will
be on top and can be retrieved. The entire procedure is repeated
until the yard is empty. Based on this scheme, an alternative one
denoted as REN will also be used. When calculating the priorities
for the stack, this scheme skips the stack with the next target
container to prevent a possible relocation of a container to that
stack.
5

Algorithm 2: Restricted relocation scheme
1 while container yard not empty do
2 C = GetTargetContainer();
3 S = GetStack(C);
4 while container C is not on top of stack S do
5 foreach stack st, st != S and st not full do
6 πst = CalculatePriority(st);
7 end
8 Relocate top container from S to the stack with

min(πst );
9 end

10 Retrieve container C;
11 end

Algorithm 3 shows the basic unrestricted scheme denoted
as UN. The minC function returns the lowest container ID on
a stack. The main difference between the UN and RE schemes
is that after the destination stack is determined, it is checked
whether the stack contains containers with an ID that is smaller
than the ID of the container that will be relocated to that stack.
If such a container exists, the top container will be relocated
again at some point in the future. Therefore, this scheme tries
to relocate these containers from the destination stack to stacks
where all containers have a larger ID, if they exist. When all
these containers have been relocated, or no such stack exists, the
procedure proceeds as the RE scheme.
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Table 1
List of the applied terminal nodes.
Name Description

SH Stack height
EMP Number of empty places in stack
CUR ID of the current container that will be relocated
DUR Time required to transfer the container to the desired stack
RI Number of containers with a smaller ID on the stack than the ID of selected container
MIN The smallest container ID of the selected stack
AVG Average ID of containers in a stack
REM Remaining containers until the container which needs to be retrieved is on top
NEXT Returns 1 if the selected stack contains the next container that will be retrieved and 0 otherwise
DIFF Difference between the ID of the container with the lowest ID on the stack and the one that needs to be relocated
EMPTY Returns 1 if a stack is empty and 0 otherwise
WL Number of containers on the stack for which no container of a larger ID is on top of them
NL Number of containers on the stack for which a container of a larger ID is on top of them
DSM Height of the first container in a stack with a smaller ID than that of the considered container
c
t
o
e
i
c
d
e
t
H
t
t

Algorithm 3: Unrestricted relocation scheme
1 while container yard not empty do
2 C = GetNextContainer();
3 S = GetStack(C);
4 while container C is not on top of stack S do
5 foreach stack st, st != S and st not full do
6 πst = CalculatePriority(st);
7 end
8 D = stack with min(πst );
9 DC = top container ID of stack D;

10 while stack S1 exists such that minC(S1) > DC do
11 Relocate container DC to S1;
12 DC = top container ID of stack D;
13 end
14 Relocate top container from S to D;
15 end
16 Retrieve container C;
17 end

Except for this basic unrestricted scheme, three alternative
chemes were also defined. The UNC variant works similarly as
he RE scheme; however, instead of only calculating the priority
or the destination stack, it calculates the priority for every two
airs of stacks, in which the first one represents the origin stack
nd the second one the destination stack. The pair with the lowest
riority value is selected, and the top container from the origin
tack is relocated to the destination stack. Since it is possible that
uch a strategy could lead to infinite relocations, this procedure is
one a certain number of times in each iteration, after which the
cheme acts as the RE scheme in the sense that it only relocates
ontainers from the stack where the target container is located.
he UNC2 scheme functions similarly, except that it uses two
xpressions, one to select the destination stack and the other
ne to select the origin stack of the relocation. Finally, the UNP
cheme works in the same way as UN; however, it evolves an
dditional expression used to determine the destination of the
nrestricted moves, i.e., to which stacks the containers from the
estination stack will be relocated.
Although rarely, it is possible that two stacks obtain the same

riority value. In this case, the tie can be broken in different ways,
ut for simplicity in the proposed RSs the first stack for which
he best priority value was obtained is selected. Since stacks are
lways evaluated in the same order, this ensures that the RR is
ompletely deterministic, i.e., given the same system conditions it
ill always select the same stack and produce the same solution.
As previously outlined, the priority function is evolved by

P. For that purpose, the primitive set needs to be specified.
6

The function set consists of summation, subtraction, multiplica-
tion, and protected division (returns 1 if the divisor is close to
0). Although other functions were tested (minimum, maximum,
negation, and if), their inclusion did not lead to any improve-
ments in the results, and as such, were not used. The terminal
nodes that were used are denoted in Table 1. The proposed set
of terminals includes different simple properties (stack height,
number of empty positions, ID of the current container) but also
more complicated nodes (number of containers with a lower ID
than the current container, average of container IDs on stack).
By using the previously outlined function and terminal nodes,
GP randomly constructs the population of individuals in which
solutions (PFs) are represented as expressions (similar to the
expression in Fig. 2), upon which different genetic operators are
applied until the given termination criterion. The evolved PFs are
then used as a standard mathematical expression by the RSs to
determine the best action at each decision point.

To analyse the time complexity of the proposed approach
it is necessary to determine the complexity of both parts, the
PF and the RS. Since the PF is a mathematical expression that
consists of simple arithmetic operators, it can be calculated quite
efficiently. Therefore, we can assume that the calculation of the
PF takes constant time, resulting in O(1) complexity. For each of
the N containers that needs to be retrieved, the RS first needs to
relocate any containers that are located above it. In the worst case
the container that needs to be retrieved is located at the bottom
of the stack with all other containers above it. Since the PF needs
to be calculated for each container that needs to be relocated, this
means that the PF would be calculated for all containers except
the one that needs to be retrieved. For the first container that
needs to be retrieved this would mean that N−1 containers need
to be relocated, for the second N − 2, and so on. We see that this
sequence equals to the sum of first N−1 numbers and as such we
know that the total number of relocations will be approximately
equal to N2. Since each container can be relocated to any stack
other than the source stack, it means that the PF needs to be
calculated S − 1 times for each container that is relocated. This
results in the total complexity ofO(N2S). Since usually N ≫ S, the
omplexity of the RS can be reduced to O(N2). Therefore, we see
hat the time complexity, in the worst case, depends quadratically
n the number of containers. This complexity is tied with the
xecution of the RS for one problem and is the complexity of
nterest when applying the RS for new problems. However, the
omplexity of generating a new PF is significantly larger, since
uring the evolution many PFs need to be evaluated and they are
valuated on a larger set of problems. As such, the complexity of
he learning algorithm (GP) is several orders of magnitude higher.
owever, since GP is executed offline, prior to the application of
he RR, its complexity does not influence the execution time of
he RR, and the RRs can be applied in real time. Regarding space
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omplexity, all RRs have a complexity of O(1), since at each point
n time they only need to store the best priority value obtained
ntil now and the stack to which it is associated. Thus, the space
omplexity does not depend on the size of the problem that is
eing solved.

. Experimental setup

The Caserta [10] and Zhu [13] datasets are used to test the
roposed method. In the Caserta dataset, the number of stacks
nd containers per stack can be between 3 and 10. All stacks
ave the same initial height in all problem instances. The max-
mum allowed height of a stack is h + 2, where h represents
he stack height at the start. The Zhu dataset contains problems
ith 6 to 10 stacks and between 15 and 69 containers in the
ay. The difference in comparison to the Caserta dataset is that
he maximum stack height is specified for each instance in this
ataset. Usually, the problem instances in the Zhu dataset have a
maller maximum height and consequently restrict the possible
elocation moves at the start. The Caserta dataset contains 840
nstances, whereas the Zhu dataset contains 125,000 instances.

In the experiments, three independent datasets were used,
raining, validation, and test. The training set was used to gen-
rate the expressions for the RRs, the validation for parameter
uning, and the test set to determine the final quality of the
volved rules. For the test set, the original Caserta and Zhu sets
re used with all instances. The training and validation sets are
enerated randomly using the procedures described in [10,13].
or the Caserta dataset, those sets contained the same number
f instances as the original (840 instances). On the other hand,
or the Zhu instances, these sets contained 1000 problems as
atching the size of the original set would significantly increase

he training time.
All GP parameters were optimised in preliminary experiments.

fter these experiments, the population size was set to 1000
ndividuals, the mutation probability to 0.3 for the restricted and
.1 for the unrestricted schemes, the tree depth to 5, and the
ermination criterion to 50,000 function evaluations. GP used a
ree structure to represent the PFs it evolves, similar as described
n Section 3. The initial population is constructed using the stan-
ard ramped-half-and-half procedure [48]. Regarding the genetic
perators, for crossover the subtree, uniform, context preserving,
ize fair, and one point operators were used, whereas for mu-
ation the subtree, hoist, node complement, node replacement,
ermutation, and shrink mutation were used [48]. Since several
enetic operators are defined, in each iteration the algorithm ran-
omly selects, with an equal probability, an operator with which
t will perform the crossover and mutation of individuals. When
P had to evolve two PFs, the GP individual consisted of 2 expres-
ions on which genetic operators were executed independently
rom each other.

Due to the stochastic nature of GP, each experiment was run
0 times to obtain statistically significant results. Each time the
ethod is run, the best individual (expression) on the training
et obtained during the execution of the algorithm is stored.
herefore, after training, a single expression is obtained for each
un of the algorithm, resulting in 30 expressions. Each expression
s then evaluated on all instances in the test set and the minimum,
edian and maximum values of these 30 executions are reported

n the results in the tables. Two optimisation criteria are consid-
red, namely the number of relocations and the crane execution
ime. The Mann–Whitney test is used to compare whether there
s a statistically significant difference between the results. The
on-parametric test was used because normality of all data could
ot be confirmed with the Shapiro–Wilk test. A significance level
f α = 0.05 was used for all tests.
7

The proposed method is compared with seven manually de-
signed RRs from the literature. These include rules that only
perform restricted moves, namely TLP [9], RI [9], Min–Max [11],
PR3 [13], PR4 [13], as well as rules that use unrestricted moves,
such as PU1 and PU2 [13]. To enable comparison, these RRs were
implemented in our framework according to the above literature.

The problem instances and the source code of the methods can
be obtained from http://www.zemris.fer.hr/~idurasevic/CRP/CRP.
7z.

6. Results

The results obtained by the proposed method for the Caserta
dataset are shown in Table 2. The first part of the table outlines
the results obtained by the manually designed RRs. The second
part of the table shows the results obtained by automatically
designed RRs with different relocation schemes when optimising
the two objectives. The values for both criteria are denoted for
the obtained rules regardless of which criterion was optimised,
to gain a better insight into how rules evolved for one criterion
perform on the other. The best results obtained in the table are
denoted in bold.

The obtained results demonstrate that the automatically de-
signed RRs in most cases outperform all the manually designed
RRs. This is evident because, for all RSs except UNP, the worst
rules outperform all manually designed RRs. This shows that the
proposed method is stable and can easily evolve new rules that
outperform existing manually designed rules. When considering
only the restricted rules, the best-generated rule performs better
by 7.7% for the number of relocations criterion and 4.3% for the
crane operation time criterion than the best manually designed
rule PR4. For the unrestricted variant, the best-generated rule
achieved an improvement of 5.1% for the number of relocations
and 3.8% for the crane operation time compared to the best
manually designed rule (PU2). One thing that can be observed
from the results is that when optimising the number of container
relocations, the values for the crane operation time are similar
to the values obtained when optimising this objective. However,
the reverse is not always true, which might mean that optimising
the number of container relocations also implicitly optimises the
crane operation time.

To more easily compare the results, they are also illustrated
using violin plots in Figs. 5 and 6. These plots show that the UN
scheme obtains the overall best results. When considering only
the restricted schemes, it is clear that there is no statistically sig-
nificant difference between the RE and REN variants. On the other
hand, the differences are much more evident for the unrestricted
variants. In this case, the UN scheme obtains significantly better
results than any other RS.

Table 3 shows the results obtained on the Zhu dataset. The re-
sults again demonstrate that most of the automatically generated
RRs outperform the existing manually designed rules. In this case,
the best-evolved rules for the restricted variant outperform the
best existing rule (PR4) by 7% for the number of relocations and
3.3% for the crane operation time. For the unrestricted variant, the
best manually designed rule achieves a better performance than
the best manually designed rule (PU2) by 4% for the number of
relocations and 3% for the crane operation time. The difference in
the obtained results is statistically significant.

Figs. 7 and 8 show the violin plots for the tested RSs. Again
the UN scheme achieves the best performance. However, in this
case, its superiority over the other methods is much more clear.
For the other schemes, the conclusions are mostly similar to the
Caserta data set. Again, there is no statistically significant differ-
ence between the two restricted schemes for both criteria. For

http://www.zemris.fer.hr/~idurasevic/CRP/CRP.7z
http://www.zemris.fer.hr/~idurasevic/CRP/CRP.7z
http://www.zemris.fer.hr/~idurasevic/CRP/CRP.7z
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Table 2
Results obtained on the Caserta dataset.

Container relocations Crane operation time

TLP 35982 2430770
RI 29524 2162170
MM 28996 2173290
PR3 25859 2064600
PR4 25787 2063070
PU1 25049 2034230
PU2 24962 2031130

Optimising crane relocations

Container relocations Crane operation time

Min Med Max Min Med Max

RE 23816 24122 24508 1978200 1993387 2004644
REN 23849 24154 24449 1978772 1991568 2001708
UN 23679 23967 24122 1975008 1985987 1996640
UNC 23777 24236 24579 1979806 1995411 1996640
UNT 24041 24312 24709 1986174 1997805 2016432
UNP 24341 24876 25405 1997278 2019489 2038289

Optimising crane operation time

Container relocations Crane operation time

Min Med Max Min Med Max

RE 23717 24298 24609 1974102 1992614 2001919
REN 23965 24276 24608 1982433 1991391 2005142
UN 23757 24053 24463 1975159 1985758 1995911
UNC 23850 24291 24684 1977746 1991795 2005178
UNT 23924 24292 24674 1981213 1993391 2009551
UNP 24389 24969 26741 1998595 2020428 2060607
Table 3
Results obtained on the Zhu dataset.

Container relocations Crane operation time

TLP 551023 41038200
RI 469502 37508600
MM 473358 38155300
PR3 436717 37015300
PR4 435886 36994500
PU1 423058 36482700
PU2 422555 36476100

Optimising container relocations

Container relocations Crane operation time

Min Med Max Min Med Max

RE 413469 414885 417092 35920974 35989754 36228750
REN 410993 414126 416897 35880669 35933913 36142543
UN 405571 407103 409266 35625504 35681901 35926484
UNC 413179 415247 417865 35897273 35982310 36267563
UNT 412713 415548 419194 35905778 36003943 36191417
UNP 414597 418379 424787 35948660 36103360 36341047

Optimising crane operation time

Container relocations Crane operation time

Min Med Max Min Med Max

RE 414007 416447 422213 35815092 35907664 36067638
REN 410645 415655 418710 35791829 35890043 36002463
UN 406609 408286 412797 3537753 35629511 35736631
UNC 414030 416100 428039 35821219 35915527 36106539
UNT 414003 416458 639548 35797176 35956742 36399481
UNP 415371 418549 424566 35900349 36030791 35151525
the unrestricted schemes, the UN scheme achieves significantly
better results than any other scheme.

The previous results demonstrate that the automatically de-
igned RRs almost always achieved a better performance than
heir manually designed counterparts, almost regardless of the
pplied RS. The results for the different RSs show that certain
chemes lead to better results. For the restricted schemes, it was
emonstrated that not considering the stack which contains the
ext target container as in the REN scheme did not significantly
8

improve the results. This suggests that the evolved PFs can de-
termine on which stack the next target container is located and
not relocate containers there if not necessary. Thus, including this
strategy in the RS is redundant. For the unrestricted scheme it is
clear that evolving two rules which perform different decisions is
difficult. It is most appropriate to select the destination container,
and use a simple manually designed strategy that determines
how to perform the unrestricted moves.
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Fig. 5. Optimising the number of relocations on the Caserta dataset.

Fig. 6. Optimising the crane operation time on the Caserta dataset.

Fig. 7. Optimising the number of relocations on the Zhu data set.
9

Fig. 8. Optimising the crane operation time on the Zhu data set.

7. Further analysis

7.1. Dependency between the optimised criteria

The previous section demonstrated that by optimising one
criterion, quite good solutions were obtained for the other cri-
terion, especially when the number of relocations is optimised.
This suggests that the two objectives are not conflicting and that
it is enough to optimise only a single objective. To investigate
the dependency between the objectives, NSGA-II [52] was applied
to optimise both criteria simultaneously and obtain Pareto fronts
of solutions. The Pareto front obtained for the unrestricted RS is
shown in Fig. 9 (denoted with red points). Based on 30 executions,
only 5 non-dominated solutions were obtained. The figure shows
that the range of the criteria values for these objectives is rela-
tively small. Although the improvement in one criterion leads to
the worsening of the other, these scales are quite small, especially
for the crane operation time.

The figure also shows the two best solutions obtained in
single-objective optimisation (denoted with blue points). One of
them was obtained when optimising the number of container
relocations (denoted with 1 in the figure) and the other when
optimising the crane operation time (denoted with 2 in the fig-
ure). It is interesting to observe that the solution obtained by
optimising the number of containers dominates all the solutions
obtained by NSGA-II. This shows that by optimising one criterion,
the other is also optimised to a significant extent and that it does
not seem necessary to optimise each criterion individually or to
use multi-objective approaches for optimisation.

To support this conclusion, we additionally apply Spearman’s
Rho correlation test, which examines the correlation between
the two objectives on the results obtained in Table 2. When
optimising the number of relocations, a correlation coefficient of
0.83 was obtained for the RE scheme, while a correlation value of
0.85 was obtained for the UN scheme. On the other hand, when
optimising the total crane operation time criterion, a correlation
value of 0.75 was obtained for the RE scheme and a value of 0.83
for the UN scheme. Since quite high correlation values between
the two criteria were obtained, we can conclude that optimising
one of the criteria indirectly optimises the other. Thus, a single
rule that optimises both criteria can be obtained by optimising
one of the two considered objectives.
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Fig. 9. Pareto front of the solutions obtained when optimising both criteria
with NSGA-II and the best solutions obtained when individually optimising the
number of container relocations (1) and crane operation time (2).

7.2. Algorithm convergence

Figs. 10 and 11 show the convergence of the algorithm on
all three datasets for the restricted and unrestricted relocation
schemes, respectively. In the figures, the container relocations are
calculated as the sum of relocations made on all instances of the
observed set and are given on the y-axis, while the number of
evaluations is on the x-axis. In order to determine the number
of evaluations to be performed, it is important to monitor the
fitness values for the training and validation sets simultaneously.
From the figure it can be seen that the fitness of the training set
is constantly improving during the training process, which is to
be expected. Similar observations can be made for the fitness on
the validation and test sets. However, the rate of improvement
for these two sets is much lower, and in some cases the solutions
may even deteriorate slightly. Such behaviour suggests that the
expressions have succeeded in extracting general knowledge that
makes them perform well on unseen problems, and that further
training causes these expressions to adapt to the training set
instead of improving their generalisation capabilities.

Since fitness is still improving after 50,000 evaluations on all
three sets, we want to determine whether these improvements
are relevant. To find that out, we use the validation set to test
the generalisation ability of the developed expressions on unseen
problem instances. We perform a statistical test between the
results obtained at the end of the algorithm (after 50,000 evalu-
ations) and between the solutions obtained during the execution
of the algorithm after each step of 1,000 evaluations. That is,
we compare whether there is a significant difference between
the results at the end of the algorithm and the results after
1,000 evaluations, 2,000 evaluations, 3,000 evaluations, etc. in
the validation set. These tests show that between 30,000 and
36,000 evaluations there is no significant difference between the
solutions obtained with this number of evaluations or more and
the final solutions. From this we can conclude that although
the solutions have still improved, these improvements are not
really significant. Furthermore, since from the figures we can see
that the convergence is quite similar for the validation and test
sets, we can conclude that if there is no significant improvement
for the validation set, this should also be true for the test set
as well. Based on all the observations so far, we can say that
the algorithm has converged after the given time and that the
number of evaluations could even have been reduced by a certain
 r

10
Fig. 10. Convergence on the problems sets for the restricted variant.

Fig. 11. Convergence on the problems sets for the unrestricted variant.

mount (to about 36,000 evaluations) without any significant
eterioration in the obtained results.

.3. Run time analysis

As with other hyper-heuristic approaches, the runtime of the
roposed method can be divided into two parts: the generation
nd execution of RRs. Since the generation of RRs is performed by
P, this part is more computationally intensive. For the default
arameter values, a single run of GP took on average 50 and
0 min for the restricted and unrestricted relocation schemes,
espectively. However, this part is performed offline at any time
o obtain RRs. On the other hand, the execution time of the
volved RRs is severely smaller. When applied to solve the entire
aserta dataset consisting of 840 instances, the restricted and
nrestricted rules require around 0.03 s on average. To solve
ll instances in the Zhu dataset 0.4 s were required on average.
herefore, the execution time of the RR is almost negligible,
specially for a single decision.

.4. Relocation rule analysis

To gain a better insight into the workings of the generated RRs,
n this section the behaviour of a selected RR for the restricted
elocation scheme will be explained. The tree representation of
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Fig. 12. Relocation rule example.

he rule is shown in Fig. 12, which translates to the following
xpression
RI∗MIN

AVG∗AVG −
DIF

RI∗EMP∗EMP

MIN
.

The first part of the expression RI∗MIN
AVG∗AVG favours stacks with a

mall reshuffle index (containers that have a smaller ID than
he container that will be relocated), but which also contain
ontainers with larger IDs. The second expression −

DIF
RI∗EMP∗EMP

avours stacks with a large difference between the container with
he minimum ID on the stack and the one that is being relocated,
ut which also contain as few free spaces as possible. Thus, the
econd part prefers stacks that are almost full but have a small
eshuffle index, and thus the number of unnecessary relocations
s minimised. In the end, the rule balances between the stacks
hat have a small reshuffle index for the current container and
re as full as possible, and those that have a high average of IDs.

.5. Analysis of the priority function sizes

The size of the evolved priority functions is an essential factor
hen designing RRs. The evolved PFs should be small in size so
hat they are easy to interpret and understand. Unfortunately,
P is prone to bloating, and the evolved expressions will usually
ontain many redundant parts. Although different methods can
e used to remedy this problem, the easiest way is to restrict
he depth of the evolved trees. Therefore, the influence of dif-
erent tree depths on the quality and size of the evolved PFs are
xplored. Tree depths between 3 and 10 were used, and the ob-
ained results on the Caserta dataset are outlined in Table 4. The
OB column represents the number of nodes in the expression of
he best solution, whereas the MES column denotes the median
ize of the evolved expressions. The smallest tree depth of 3 and
he largest depths from 8 until 10 usually lead to worse results.
hese depths offer either a too small or too large search space.
he best results are usually achieved for depths between 4 and
. Regarding the tree sizes, it is clear that a certain tree depth is
equired to obtain good solutions. For example, the median tree
ize for the depth of 3 is equal to the maximum number of nodes
n the tree. Based on the figure, it can be seen that the best RRs
re obtained when they contain more than 25 nodes in their PF.
herefore it is preferable to use larger tree depths to get better
esults. Consequently, a tree depth of at least 4 should be used,
r even larger depths if it is required to obtain better results.
To gain a better understanding on the dependency of the tree

izes and their fitness, all solutions obtained for the tested tree
epths were plotted against their size and fitness in Fig. 13. It
hould be noted that the tree sizes were cut off at 200 nodes
o make the figure more readable. This figure shows that until
11
Fig. 13. Dependency between the fitness of the rules and expression size.

specific tree size, it is not possible to obtain good expressions.
lthough it is difficult to determine a fixed size at which this
appens, the figure shows that after tree sizes of 25 nodes, the
umber of good solutions increases. The increase of tree size
oes not guarantee that better solutions are obtained, but it does
ncrease the probability of it.

.6. Generality of rules

In the previous section, the RRs were applied on the data
et of the same type as the one on which they were evolved.
aturally, the best results should be obtained if a data set used to
enerate the rules is similar to the one on which the rules will be
pplied. However, the obtained rules should be general enough
nd perform well on other types of data sets as well. To test this,
he rules that were evolved on the Caserta dataset were tested
n the Zhu data set and vice versa. Table 5 outlines the results
btained when such a switch is performed. The first 4 rows show
he results obtained when the Caserta dataset is used for testing,
hereas the last 4 rows denote the results obtained when the Zhu
ataset is used as the test set. The postfixes ‘‘-C’’ and ‘‘-Z’’ denote
hat the rules were trained on the Caserta and Zhu data set types,
espectively.

When using the Caserta data set type as the test set, an
nteresting thing can be observed. For the unrestricted variant,
here is no significant difference between the rules generated
sing either dataset. However, for the restricted variant, the rules
enerated using the Zhu dataset perform significantly worse than
hose generated on the Caserta data set. On the other hand, when
he Zhu data set is used to test the rules generated using the Zhu
nd Caserta data sets, RRs perform similarly for both relocation
chemes. This seems to suggest that using the Caserta data set
or training might result in more general rules. A possible reason
ould be that the yards in the Zhu instances are almost full,
imiting the relocation possibilities. This might make finding good
ules more difficult as there are only a few possible relocations in
he first steps, and thus the rules have to focus more on the latter
art when there are more available places.
By investigating the PFs evolved by GP using the two problem

ets, it was noticed that the PFs are of similar sizes, regardless on
hich problem set they were trained. Furthermore, the frequency
f terminal and function nodes in the evolved PFs was also quite
imilar, with only a few percent of difference between the rules
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Table 4
Influence of the tree depth on rule sizes.

Depth Container relocations Size

Min Med Max SOB MES

RE

3 24230 24512 24743 13 15
4 23898 24297 24615 27 25
5 23816 24122 24508 41 49
6 23808 24113 24531 81 66
7 23907 24148 24610 61 90
8 23906 24238 25576 191 177
9 23816 24285 25060 409 180
10 23956 24286 25219 93 241

UN

3 24002 24230 24444 15 15
4 23862 24032 24406 31 27
5 23679 23967 24122 61 46
6 23818 23989 24407 103 62
7 23731 24009 24303 111 99
8 23809 24082 24447 65 87
9 23852 24144 24648 37 156
10 23835 24151 24630 39 247
Table 5
Results when the RRs are applied on the other data set type.

Container relocations Crane operation time

Min Med Max Min Med Max

Caserta

RE-C 23816 24122 24508 1978200 1993387 2004644
RE-Z 24281 24871 25600 2000882 2019038 2052329
UN-C 23679 23967 24122 1975008 1985987 1996640
UN-Z 23754 24057 24673 1979928 1991150 2018590

Zhu

Re-Z 413469 414885 417092 35920974 35989754 36228750
RE-C 412559 416128 422553 35868280 36011830 36449254
UN-Z 405571 407103 409266 35625504 35681901 35926484
UN-C 406239 407828 411046 35658306 35706072 35967755
evolved using the Caserta and Zhu data set. Based on these
observations we can conclude that the expressions evolved across
different data sets do not differ significantly in their structure.
Since the rules perform well even when applied on the problem
type that was not used for training, it is safe to assume that when
trained on both data sets GP is capable of generating rules that
work in a similar way and use similar strategies for relocating
containers.

7.7. Performance on large problems

To stress test the proposed approach, the RRs evolved in the
revious section when optimising the number of relocations for
he Caserta dataset are applied on a large scale Caserta dataset
hat was proposed in [53]. This dataset is composed of 400
nstances that contain from 10 to 100 stacks and 100 containers
er stack, meaning that the largest instances contain 10,000
ontainers. The results obtained on this dataset are denoted in
able 6. The table shows that the automatically designed RRs
ignificantly outperform all the manually designed rules. The
edian value of the automatically designed rules is better by
round 30% when compared with the best manually designed
ule PU2. This shows that the gap between the automatically
nd manually designed rules increases as the instances become
arger. Since the automatically designed rules were evolved on
he small scale Caserta dataset, this result also demonstrates that
he obtained rules generalise well on unseen instances.

.8. Improving results by evolving two PFs

During preliminary analyses, it was observed that frequently
single rule had difficulties performing well across a broader

ange of instances. This naturally raises the question of whether
volving several expressions and using them simultaneously can
12
improve the results. Therefore, the RE and UN schemes were ex-
tended to decide where to relocate the current container based on
two PFs that are evolved simultaneously. Both PFs are evaluated
individually for each candidate stack, and the current container
will be relocated to the stack for which the lowest priority was
obtained by any of the two PFs.

The results for this approach (denoted with the suffix ‘‘-2’’) are
compared to the standard single expression RRs (denoted with
the suffix ‘‘-1’’) and denoted in Table 7 and Fig. 14. The results
demonstrate that using two PFs has an effect on the obtained
results, however, more in the case when using the RE scheme.
This is especially evident for the Caserta dataset, on which RRs
that use 2 PFs significantly outperform the version that uses
only a single PF. Not only that, in this case, the RRs using the
RE scheme obtained a better median than the rules using the
UN scheme. Furthermore, RE-2 achieved the best overall results
across all the performed experiments. This clearly shows that
the RE scheme is not inferior to the UN scheme. The reason it
performed worse than the UN scheme could have been because
a single PF was not enough to incorporate all the relevant infor-
mation to perform such good decisions. Using two rules gives GP
the ability that each one specialises for different situations. These
results provide motivation for further research in which ensemble
learning methods could be applied to generate sets of RRs.

7.9. Terminal set analysis

In the proposed method, 14 terminal nodes, which encompass
the characteristics of the problem, were proposed. Although using
all those in the construction of PFs leads to good results, an open
question is whether all those nodes are required. To gain a better
insight into which nodes are the most important, a short analysis
is performed. First, based on the initial experiments for the RE
and UN, the occurrences of all nodes were calculated and are
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Table 6
Results for large scale Caserta dataset.

Container relocations Crane operation time

TLP 29717794 3.1E+9
RI 15104213 1.6E+9
MM 18902574 2.0E+9
PR3 11119625 1.3E+9
PR4 10966282 1.3E+9
PU1 10951307 1.3E+9
PU2 10797383 1.2E+9

Min Med Max Min Med Max

RE 5212033 7304279 10657770 6.9E+8 8.9E+8 1.2E+9
UN 5720948 7370982 9444975 7.4E+8 9.2E+8 1.1E+9
Table 7
Results for RRs with two expressions.

Container relocations Crane operation time

Min Med Max Min Med Max

Caserta

RE-1 23816 24122 24508 1978200 1993387 2004644
RE-2 23569 23888 24564 1972846 1983899 2015048
UN-1 23679 23967 24122 1975008 1985987 1996640
UN-2 23765 24005 24377 1978301 1991808 2001211

Zhu

RE-1 413469 414885 417092 35920974 35989754 36228750
RE-2 411973 415025 417873 35888624 35986230 36231655
UN-1 405571 407103 409266 35625504 35681901 35926484
UN-2 405062 406512 409652 35623466 35688671 35894462
m
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Fig. 14. Violin plots of RRs using one and two PFs.

enoted in Fig. 15. The figure shows the total number of times
hat a particular node occurred in the trees (marked as total) and
he unique number of times it occurred in an expression (denoted
s unique), meaning that the number of expressions that contain
particular node is counted. For the latter metric, the maximum
alue is equal to the number of runs, meaning 30. Therefore,
vertical blue line was plotted at that value to better denote
hich nodes appear in most individuals. The figure denotes that
wo terminals are clearly more important than others. The two
13
Fig. 15. Terminal node occurrence frequency in the evolved PFs.

ost important terminals are the RI and DIFF terminals. They
ppear not only in almost all generated rules but also appear
everal times in them. This is expected because they give direct
nformation about whether it makes sense to relocate the current
ontainer to a stack. Out of the other nodes, the CUR, DUR, and
H also appear quite often, but not with such a large frequency.
he least informative nodes are DSM, NEXT, NL, and WL.
Based on the initial observation that certain terminal nodes

re less important, a series of experiments were performed to
ecrease the number of terminals in the set. At the start, the set
ontained all terminals, and then the node which, when removed
rom the set, leads to the best results on the validation set, is
xcluded from the terminal set. The procedure is then repeated
ntil all the nodes are removed. Although not all node combi-
ations are tested (which would be hardly possible due to the
heer number of combinations), such a procedure still leads to a
educed set of terminal nodes. For the RE scheme, the terminal set
as reduced to six nodes: SH, RI, EMP, DIFF, AVG, and CUR. On
he other hand, for the UN scheme, the best results are obtained
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Table 8
Results of RRs with a reduced terminal set.

Container relocations Crane operation time

Min Med Max Min Med Max

Caserta

RE 23816 24122 24508 1978200 1993387 2004644
RE-R 23758 23983 24252 1974572 1983939 1994616
UN 23679 23967 24122 1975008 1985987 1996640
UN-R 23786 23901 24126 1978344 1981985 1990452
using only 4 nodes, SH, EMP, DIFF, and RI. The results obtained by
the reduced terminal sets are denoted in Table 8, and are denoted
with the suffix ‘‘-R’’. For both schemes, it was possible to improve
the performance in comparison with the original terminal set.
Although the differences to the original set are not large, the
results obtained with the reduced terminal set were significantly
better.

8. Findings on the use of GP for the CRP

Based on the performed experiments and analyses of the pro-
osed approach, it is possible to outline important steps in the
esign and application of the proposed hyper-heuristic method
o the considered problem. The first and most important part in
he design of the method was to determine the general structure
f the RRs consisting of the RS and PF. As the experiments have
emonstrated, the design of the RS and PF are equally impor-
ant for the performance of the RR. For the RS it was demon-
trated that the unrestricted RS outperformed the restricted vari-
nt, which is expected since it includes an additional flexibility by
llowing the relocation of containers from the destination stack.
his shows that including additional manually designed heuristic
ules in the RS can help improve its performance. Furthermore, it
as also interesting to observe that when GP was used to also
volve an expression for that heuristic part in addition to the
ain PF, the RR performed significantly worse. This demonstrates

hat the best RSs are actually those which provide a synergy of
uman designed heuristics for simple and intuitive decisions and
ore complex machine designed heuristics for more complicated
nd less intuitive decisions.
For the PF, the choice of elements that will be used to con-

truct it has demonstrated to be crucial. When a large set of
erminal nodes was used, the results, although good, were worse
han when using a reduced set of terminals. Even though with
ore terminals GP can evolve PFs that have a better overview of

he problem, the search space becomes too large and GP exhibits
ifficulties in obtaining good PFs. Therefore, it is crucial to per-
orm an analysis on the importance of each terminal node and
educe the terminal set to improve the search capabilities of GP
nd reduce the complexity of the evolved expressions. Further-
ore, the parameter controlling the maximum size of expressions
lso affects its performance directly, as restricting the size too
uch or allowing too large expressions to be generated again
ignificantly decreases the performance of GP. These parameters
ave a more significant influence on the quality of the results
han other GP parameters like the population size or mutation
robability, and thus deserve more attention in the parameter
uning phase.

GP was demonstrated to be a computationally expensive pro-
edure, and it requires some time to evolve efficient RRs. How-
ver, this procedure is performed only once, prior to solving a
eal problem, and as such does not influence the execution of
he RR. The execution time of the RR, on the other hand, has
emonstrated to be almost negligible, as the rules were able
o solve several hundreds of instances in less than a second.
herefore, a single decision of the RR is even faster and can be
xecuted without a problem in real time. This allows that the RR
14
is combined with some more sophisticated procedure to improve
its performance, but still be able to perform the decision in a
negligible amount of time.

Finally, in order for GP to be able to design RRs for a certain
problem, it is required to have a certain set of instances that can
be used for training. As such, when applying the GP to a problem
with different characteristics, in order to create an appropriate
RR it would be required to prepare a set that would be used by
GP to evolve a new and specialised RR. However, the analysis of
the results demonstrated that the evolved rules are quite general
and perform well even when used on problem instances with
different characteristics. This observation is important as it shows
that GP is able to learn rules that perform well in general and
thus it is not required to evolve a large number of rules for each
problem variant, but rather existing rules can be efficiently reused
on new and slightly different problem types.

9. Conclusion

This study proposed the application of GP to automatically
design RRs for the CRP. In the proposed method, GP is used to
evolve an expression that assigns priorities to stacks based on
which it is determined on which stack the container will be
placed. An RS is then used to relocate and retrieve containers
from the yard using the expression generated by GP. The goal
of this approach was to generate RRs which perform better than
existing manually designed rules from the literature.

Experimental results demonstrate that automatically designed
RRs outperform several existing rules from the literature for the
two considered criteria. Even more, it was demonstrated that
the worst automatically designed rules perform better than their
manually designed counterparts for the best relocation schemes.
The additional analysis further showed that the generated RRs
are general enough to perform well on problems of different
properties than those they were evolved on, that the training
time can be further reduced without a significant impact on the
obtained results, and that their performance can be improved by
using a subset of terminal nodes or evolving two PFs for container
ranking. The obtained results and observations demonstrate that
the proposed method represents a viable alternative to manually
designed RRs, which can be utilised by themselves to construct
good solutions in a relatively small amount of time. Additionally,
because of their low execution time, they also have a potential of
being used in synergy with other methods similarly as manually
designed RRs have been used.

In future work, it is planned to extend this work in several
directions. Firstly, the method will be adapted and tested on
other variants of the CRP, like the multibay and duplicate priority
variants. Another direction is to improve the obtained results
further using ensemble learning methods or the rollout heuristics.
Finally, the last research direction would be to adapt the proposed
method and apply it to the dynamic variant of the CRP problem, in
which the sequence of container retrievals is not entirely known
beforehand, and the order of retrievals becomes known during
the execution of the system.
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