IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 November 2022, accepted 21 December 2022, date of publication 23 December 2022, date of current version 2 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3232064

== RESEARCH ARTICLE

NeuroSCA: Evolving Activation Functions for
Side-Channel Analysis

KARLO KNEZEVIC", (Member, IEEE), JURAJ FULIR',
DOMAGOJ JAKOBOVIC“?, (Senior Member, IEEE), STIEPAN PICEK23, (Senior Member, IEEE),
AND MARKO DPURASEVIC“1, (Member, IEEE)

!Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
2Intelligent Systems, Delft University of Technology, 2628 CD Delft, The Netherlands
3Digital Security Group, Radboud University, 6525 XZ Nijmegen, The Netherlands

Corresponding author: Stjepan Picek (s.picek @tudelft.nl)

ABSTRACT The choice of activation functions can significantly impact the performance of neural networks.
Due to an ever-increasing number of new activation functions being proposed in the literature, selecting the
appropriate activation function becomes even more difficult. Consequently, many researchers approach this
problem from a different angle, in which instead of selecting an existing activation function, an appropriate
activation function is evolved for the problem at hand. In this paper, we demonstrate that evolutionary algo-
rithms can evolve new activation functions for side-channel analysis (SCA), outperforming ReLU and other
activation functions commonly applied to that problem. More specifically, we use Genetic Programming to
define and explore candidate activation functions (neuroevolution) in the form of mathematical expressions
that are gradually improved. Experiments with the ASCAD database show that this approach is highly
effective compared to results obtained with standard activation functions and that it can match the state-
of-the-art results from the literature. More precisely, the obtained results for the ASCAD fixed key dataset
demonstrate that the evolved activation functions can improve the current state-of-the-art by achieving a
guessing entropy of 287 for the Hamming weight model and 115 for the Identity leakage model, compared
to 447 and 120 obtained in the literature.

INDEX TERMS Activation functions, side-channel analysis, genetic programming, neuroevolution.

I. INTRODUCTION

Modern digital systems often use cryptographic solutions
that serve as the basis for security, trust, and privacy
protocols. Such solutions (algorithms) can be mathemati-
cally secure, but poor implementation decisions can make
them vulnerable to attackers. One common vulnerability is
the side-channel leakage [1]. Side-channel leakage exploits
various information leakage sources. Common examples of
leakage are power [2] and electromagnetic (EM) emana-
tion [3]. Researchers have proposed several side-channel
analysis (SCA) approaches to exploit those leakages with
a common SCA division into non-profiling and profiling
attacks. Non-profiling attacks such as Simple Power Analysis

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramakrishnan Srinivasan

284 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

(SPA) [4] or Differential Power Analysis (DPA) [2] require
fewer assumptions but may require thousands of measure-
ments (side-channel traces) to break a target, especially if
it is protected with countermeasures. Profiling attacks are
considered the strongest possible SCAs [5]. In such attacks,
the attacker has full control over a clone device. Then, the
attacker builds the complete profile of the device and uses
this profile to target similar devices to recover the secret
information.

Deep learning approaches represent a powerful (and more
recent) option for profiling SCA. The results in recent years
show the potential of neural networks, where architectures
like multilayer perceptron (MLP) and convolutional neural
networks (CNNs) can break targets protected with coun-
termeasures [6], [7]. Nevertheless, finding high-performing
neural network architectures is often not straightforward due

VOLUME 11, 2023

https://orcid.org/0000-0001-9777-1298
https://orcid.org/0000-0002-9201-2994
https://orcid.org/0000-0001-8732-4769
https://orcid.org/0000-0002-8224-4812

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

to the many hyperparameters to consider. In the hyperparam-
eter tuning phase, we can distinguish between two different
approaches. The first approach considers various techniques
to select the best performing hyperparameters [8], [9], [10],
[11]. Common techniques include gradient descent, Bayesian
hyperparameter optimization, reinforcement learning, and
evolutionary algorithms [12], [13], [14]. As discussed in
Section III this is a well-explored direction in profiling SCA
with excellent results, especially when using reinforcement
learning and Bayesian optimization. The second direction
deals with the design of custom neural network elements.
In the SCA context, this direction is not extensively explored
and mainly consists of the (manual) design of custom loss
functions. Interestingly, those works showed excellent per-
formance of such custom loss functions opening a question
of whether other custom neural network elements could also
improve the side-channel attack performance.

This paper considers the direction of the automated design
of activation functions to be used in profiling side-channel
analysis. A well-defined activation function can be any
nonlinear function transforming the output of a layer in a
neural network. Only a small number of different activa-
tion functions are commonly used in modern neural network
architectures. Standard examples are the Rectified Linear
Unit ReLU (x) since it is simple and effective, or tanh(x)
and o(x) = 1/(1 + ™) when it is needed to restrict the
activation value within a certain range, such as in recurrent
neural networks for language modelling [15]. There have
also been works developing new activation functions with
specific properties. For example, Leaky ReLU [16] allows
information to flow when x < 0, or Softplus being positive,
monotonic, and smooth [17]. There are many hand-designed
activation functions [18], but none has become as widely used
as ReLU. Still, there is significant (untapped) potential in
developing custom activation functions for neural network
design.

While there is undoubtedly significant potential in the
design of custom activation functions, this is also a difficult
problem. One option could be that a human expert would
manually design a custom activation function. Unfortunately,
this requires significant knowledge about the problem and can
still “miss’” many interesting solutions as they would not look
intuitive to a human expert. Even if resolving those issues,
the manual design would likely be very time-consuming and,
as such, not appropriate for many real-world applications.
On the other hand, it is possible to use automated techniques
to design good activation functions. Then, the main issue
becomes how to define reasonable search space ranges (i.e.,
the shape that the activation function can assume) and the
search process procedure (i.e., how will the activation func-
tion be designed).

Our work develops an evolutionary approach to evolve
activation functions for side-channel analysis. We draw on
recent results on deep learning architectures and ask whether
it is possible to make deep learning-based SCA even more
efficient when the activation functions in a neural network are

VOLUME 11, 2023

optimized for a given problem (neural network architecture,
side-channel leakage model, and dataset). More specifically,
we use Genetic Programming (GP), where we represent the
activation functions as syntactic trees and evolve custom
expressions. Due to their complexity, the resulting functions
are unlikely to be discovered manually, but they (surprisingly)
perform well, outperforming conventional activation func-
tions like ReLU on common side-channel measurements like
those in the ASCAD database. As far as we know, this is the
first time that neuroevolution has been used for SCA or that
evolutionary algorithms have been used to develop activation
functions for SCA.
The main contributions of this paper are:

1) We evolve novel activation functions used in multilayer
perceptron and convolutional neural networks. Neural
networks with these activation functions show better
performance than existing related research. This shows
that the newly developed activation functions have
their place in the future designs of neural network
architectures for SCA.

2) We substitute common activation functions with
evolved activation functions in previously developed
neural network topologies and show better network
performance after this substitution. This shows that
optimization of the activation function has relevance
even when considering already developed neural
networks.

3) We analyze the structure of the evolved activation func-
tions and their derivations, as well as the frequency
of nodes occurring in the evolved activation functions.
Our analysis shows that certain nodes have more
influence when constructing new activation func-
tions, and as such, should be favored during the
evolution process.

We consider experiments on two datasets, two leakage mod-
els, two neural network types, and a number of scenarios.
The remainder of this paper is organized as follows.
Section II covers the necessary definitions and notions.
Section III discusses related works. Section IV provides the
details about the proposed methodology. Section V describes
the considered datasets and parameters. Section VI presents
the experimental results. Section VII provides a deeper anal-
ysis of the results, most notably on the evolved activation
functions. Finally, Section VIII sums up the paper’s key
contributions and gives possible avenues for future work.

Il. BACKGROUND

This section introduces the required background knowledge
regarding side-channel analysis, artificial neural networks,
and genetic programming.

A. NOTATION

We will use calligraphic letters (X’) to represent sets and
the corresponding upper-case letters (X) to represent random
variables and random vectors X over X. The corresponding

285

IEEE Access

K. KneZevic et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

lower-case letters x and x represent realizations of X and X,
respectively. The key candidate is denoted as k, where k € IC,
while the correct key is denoted as k*.

As commonly done in SCA, a dataset is a set of traces
(side-channel measurements) D with each trace x; associated
with an input value (plaintext or ciphertext) i; and a key k;.
To access a specific trace or input value, we use the index i.
The dataset consists of three parts: profiling set (size N), val-
idation set (size V'), and attack set (size Q). Finally, the neural
networks’ vector of learnable parameters is denoted as 6.

B. MACHINE LEARNING-BASED SCA

We consider a typical profiling side-channel analysis setting
with two phases: training (profiling) and testing (attack).
A powerful attacker controls a device (commonly denoted
as a clone device) with knowledge about the secret key. The
attacker can obtain a set of N profiling traces, build a model
f, and then use that model to obtain the secret key from
the attack set of size Q. The function f is parameterized by
0 € R”, with n being the number of trainable parameters:

o The profiling phase aims to learn # minimizing the
empirical risk represented by a loss function on a pro-
filing set of size N.

o The attack phase aims to make predictions about the
classes:

y(xi, k), .

where the class y is derived from the secret key and input
through a cryptographic function and a leakage model.

. y(xp, k*),

We consider an attack on a block cipher (the AES cipher)
and perform the multi-class classification task. More pre-
cisely, we learn a function f that maps an input to the output
(f : X — Y)) based on input-output pairs, where the number
of classes c is determined by the leakage model. Based on the
class predictions, we estimate the effort required to reveal the
secret key k*. More precisely, a common result of predicting
with a model f on the attack set is a two-dimensional matrix
P with dimensions equal to Q x c. The cumulative sum S(k)
for any key byte candidate k is a log-likelihood distinguisher:

Q
S(k) =Y log(piy)- (1)
i=1

The value p;, denotes the probability that for a key k and
specific input, the result is class y.

Finally, to estimate the effort required to break the secret
key, it is necessary to use side-channel metrics where the
usual choice is to use the guessing entropy (GE) [19]
metric. An attack results in a key guessing vector g =
[g1, 82, ..., 8K)] in decreasing order of probability given
Q traces in the attack phase (g; being the most likely key
candidate and gx| the least likely key candidate). Guessing
entropy is the average position of k* in g. In our work,
we only consider attacks on specific key bytes, which is
properly denoted as the partial guessing entropy metric. For
simplicity, we nevertheless refer to it as guessing entropy, and

286

we mention that it is a common assumption that all key bytes
require similar effort to be guessed.

C. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN5) is a notion for all computer
systems loosely based on biological neural networks. Such
systems can “learn” from examples, making them a very
popular paradigm in machine learning. Each ANN consists of
anumber of nodes, called artificial neurons, interconnected to
transmit a signal. A simple type of neural network is called a
perceptron. A perceptron is a linear binary classifier applied
to the feature vector as a function deciding whether an input
belongs to a categorical class or not. Each vector component
has an associated weight w;, and each perceptron has a thresh-
old value g. The output of a perceptron is equal to ““1”" if the
direct sum between the feature vector and the weight vector is
greater than the threshold and ““—1” otherwise. A perceptron
classifier works only on linearly separable data, that is, when
there is a hyperplane separating all positive points from all
negative points [20].

1) MULTILAYER PERCEPTRON

We obtain a multilayer perceptron model by integrating more
layers into a perceptron. The multilayer perceptron (MLP)
is a feedforward neural network mapping input sentences to
corresponding output sentences. Unlike the linear perceptron,
MLP can distinguish data that is not linearly separable. MLP
consists of multiple layers of nodes in a directed graph.
Each layer is connected to the next, and each node in a
layer is connected with a specific weight w to each node in
the following layer. The multilayer perceptron model con-
sists of at least three layers: an input layer, an output layer,
and a hidden layer. These layers must consist of nonlinear
activating nodes [21]. Backpropagation is used to train the
network, where the gradient descent optimization algorithm
uses backpropagation to adjust the weights of neurons by
computing the gradient of the loss function [20].

2) CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) are neural networks
initially developed for 2-dimensional convolutions, inspired
by the biological processes of animals’ visual cortex [22].
From an operational point of view, CNNs resemble ordinary
neural networks (e.g., multilayer perceptron) [23]. CNNs use
three main types of layers: convolutional layers, pooling lay-
ers, and fully-connected layers. Convolutional layers are lin-
ear layers that distribute weights across space. Pooling layers
are nonlinear layers that minimize spatial size to inhibit the
number of neurons. Fully-connected layers are layers where
each neuron is connected to all neurons in the neighboring
layer.

3) ACTIVATION FUNCTIONS

An activation function of a node is a function defining the
output of a node as a function of an input or a set of inputs
from a layer of linear nodes, as given in Eq. (2). To enable

VOLUME 11, 2023

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

replication of nontrivial functions with ANNS that use a small
number of nodes, one requires nonlinear activation functions:

|inputs|

y= activation(Z (weight; - input;) + bias). 2)

i=1

Changes in the bias value allow the activation function to shift
over the input domain, while changes in the weights alter the
steepness of the activation function.

There are three types of activation functions: binary step
function, linear activation function, and nonlinear activation
functions. The problem with the first one is that it does not
allow multi-value outputs, preventing multi-classification.
A linear activation function suffers from two major problems:
it cannot use gradient descent to train the model because the
function’s derivative is a constant, and all layers of the neural
network collapse into one. A linear combination of linear
functions is still a linear function, and such an activation
function turns the neural network into a single layer [23].

Consequently, modern neural network models use non-
linear activation functions. They allow the model to create
complex mappings between the inputs and outputs of the net-
work, an essential part when learning and modeling complex
data or data with high dimensionality. Nonlinear functions
solve the problems of linear activation functions. First, they
enable backpropagation learning as they have a derivative
function related to the inputs. Finally, they allow the stacking
of multiple layers of neurons to create a deep neural network.

There is no clear rule for selecting an activation func-
tion. In practice, activation functions are selected based on
empirical results and execution speed. Some functions have
theoretically justified properties, but that does not make them
the best in practice. For example, ReLU is often used, and
tanh is usually chosen for the hidden layers of recursive
models, see, e.g., [24].

D. GENETIC PROGRAMMING

Genetic programming (GP) is an automated optimization
method for developing computer programs used to solve
complex problems in computer science [25]. The concept is
based on general ideas derived from genetic algorithm theory
and other evolutionary methods. Simply put, the ultimate goal
of GP (as a product) is a general-purpose computer program
that finds solutions to problems described using only input
data and the desired results.

Although GP can be applied in many different ways and
from many different perspectives, it represents a computer
program as a syntactic tree in most cases. Indeed, any com-
puter program can be represented as a tree or a forest of trees
(in the broader sense), with the internal nodes of the tree
having the role of operators (or functions of some number of
variables) and the leaves having the role of operands. The set
of operators (the function set) and operands (the terminal set)
are predefined for a particular task. Evolution usually starts
with a population consisting of randomly generated candidate
solutions. These are called individuals whose operators and

VOLUME 11, 2023

operands can be changed by three bio-inspired operations:
selection, crossover, and mutation.

Selection is a process in which certain individuals are
chosen from the current generation according to their fitness
to serve as parents for the next generation. Individuals are
selected probabilistically so that the better-performing indi-
viduals have a higher chance of being selected. In contrast,
the crossover is a binary operator that exchanges information
between two individuals to form a new offspring. Similarly,
the mutation is a stochastic operator that helps increase the
population’s diversity by randomly selecting and changing
one or more nodes in an offspring.

Then, in an iterative process, where one iteration is called
a generation, the fitness of each new individual is evalu-
ated. Based on their fitness, we select parent solutions for
crossover. We then apply the crossover operator to pairs of
individuals to generate new pairs of offspring, which are then
additionally mutated with a given probability. The process is
repeated until a predefined number of generations or other
termination criteria are met.

IIl. RELATED WORK

A large body of research in SCA has addressed hyperparame-
ter tuning but using general options (i.e., without developing
custom neural network elements).

In 2016, Maghrebi et al. introduced convolutional neural
networks for profiling SCA [26]. The authors also reported
that they used genetic algorithms to tune the hyperparameters.
While it is difficult to say whether this was the first time
deep learning was used in SCA (many papers omitted details
about neural network architectures), this work represented a
significant turning point in SCA research and the first work
using convolutional neural networks.

Cagli et al. were the first to propose using data aug-
mentation for deep learning-based SCA [27]. They showed
how such a technique could be used to improve the
attack performance so that even an implementation pro-
tected with jitter can be broken. Kim et al. discussed a
single neural network architecture design principle (VGG-
like) that can be applied to multiple datasets [6]. Addi-
tionally, they showed how adding noise to inputs can
improve the attack performance due to the noise regu-
larization effect. Benadjila et al. introduced the ASCAD
dataset, which now represents a standard benchmark
for deep learning SCA [53]. Additionally, they pro-
vided the first well-performing architecture for that dataset
by evaluating several CNN hyperparameters. Perin et al.
provided insights into why output class probabilities repre-
sent a strong metric for SCA [28]. Furthermore, they used
random search in predefined domains to build neural net-
works to form ensembles. Some of the ensemble results still
represent state-of-the-art attacks. Rijsdijk et al. investigated
how reinforcement learning can be used to tune hyperparam-
eters for CNNs [29]. They reported excellent results (attack
performance with small neural network architectures) but at
the cost of significant computational resources to find such

287

IEEE Access

K. KneZevic et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

neural networks. Wu et al. used Bayesian optimization for
hyperparameters tuning for MLP and CNN architectures [30].
The obtained results were small architectures that efficiently
break targets, requiring a fraction of the cost compared to the
reinforcement learning approach.

Zaid et al. proposed a more structured approach for
selecting hyperparameters determining the size of layers in
CNNs [7]. The authors considered the number of filters,
kernel sizes, strides, and the number of neurons in a fully
connected layer and found small neural networks for sev-
eral datasets that significantly reduced the attack effort.
Wouters et al. [31] improved on the work of Zaid et al. [7]
and showed comparable attack performance while requir-
ing neural network architectures with even less trainable
parameters. Acharya et al. used neuroevolution to evolve
architectures (thus, similar to [26]) but also neural net-
work parameters [32]. Still, the authors considered only
“standard” elements in the hyperparameter evolution and
did not evolve custom ones. More recently, the SCA com-
munity turned its attention to deep learning-based SCA
with no feature engineering [33], [34] and showed the
benefits of using the extra information stemming from more
features.

Finally, several works focus on improving the performance
of deep learning-based SCA by developing custom neural
network elements. Pfeifer and Haddad designed a new type of
layer called ““Spread” and claimed that it reduces the number
of layers required and accelerates the learning phase [35].
Zaid et al. introduced a new loss function derived from the
rank learning approach, which helps to avoid approximation
and estimation errors [36]. Zheng et al. proposed a new
metric function called Cross Entropy Ratio (CER), which
they adapted to a new loss function specifically designed for
deep learning in SCA [37]. Kerkhof et al. proposed a loss
function that is designed for SCA, performs well, and has
low computational overhead [38]. Finally, the same authors
also conducted a systematic analysis of custom loss functions
and commonly used ones and concluded that custom loss
functions indeed perform better in SCA [39].

On the other hand, many research works deal with the
problem of obtaining the optimal architecture and hyperpa-
rameters of artificial neural networks using various methods
such as Bayesian optimization [40] or network pruning [41].
One specific part of this field is the evolution of activa-
tion functions using evolutionary algorithms and machine
learning. A first attempt to learn activation functions in a
neural network is found in [42], where the authors pro-
posed to randomly add or remove logistic or Gaussian acti-
vation functions using GP. In [43], the authors developed
a method to automatically select an activation function for
each neural network layer. Hagg et al. extended the NEAT
algorithm [44] to simultaneously develop activation functions
per neuron in addition to the entire network topology [45].
Both works used predefined lists to select activation func-
tions. Ramachandran et al. used reinforcement learning to
automatically design activation functions [46]. In doing so,

288

the authors discovered a number of powerful new activation
functions and analyzed one in detail: x - o (x), which they call
Swish. Bingham et al. complemented previous research by
investigating an evolutionary algorithm approach for devel-
oping activation functions [47]. The authors showed it is pos-
sible to develop specialized activation functions that perform
well for the CIFAR-10 and CIFAR-100 datasets. In [48], the
authors used a hybrid genetic algorithm to evolve a func-
tion that is defined differently for the positive and negative
domains. Parts of the function are represented by trees and
crossed by special operators that modify the positive and
negative sides separately. The set of nodes consists of basic
arithmetic operations, and the leaves are popular activation
functions without constants. The authors also introduced the
new activation functions ELiSH and Hard ELiSH, which they
developed manually to combine the good properties of the
smaller functions. Using three datasets, they showed that their
functions performed best.

In [49], the authors represent activation functions as
expression trees and use standard evolutionary algorithms to
evolve new activation functions. Their results demonstrate
that by replacing the standard ReL.U activation function with
these newly evolved functions improves the performance of
neural networks on the CIFAR datasets. A similar approach
is also investigated in [50], where the authors apply genetic
programming to search for new activation functions. Through
their experimental analysis, the authors demonstrate that
their new activation functions outperform several standard
functions on multivariate classification problems. Since in
both previous studies GP is used to evolve new activation
functions, it is possible to obtain functions of various forms.
However, in some cases this can also lead to the generation
of quite complex activation functions which are difficult to
interpret. Differential evolution is applied in [51] for evolving
new activation functions for the long-short-term memory
networks. The proposed method builds a hierarchical acti-
vation function of a predefined structure by searching for
the most appropriate function elements that should appear
in it to represent a complete activation function. Although
the proposed method can construct activation functions that
outperform traditional activation functions, like ReL U, due
to the way in which solutions are represented, the method
can only construct activation functions of a given structure.
A coevolutionary algorithm to evolve new activation func-
tions for standard fully-connected and convolutional neural
networks is proposed in [52]. The authors use Cartesian GP
to evolve new activation functions, which can evolve new
activation functions of various structures. However, similar
to when GP was used, Cartesian GP is also prone to generate
quite complex activation functions. An extensive experimen-
tal benchmark on the MINST and similar datasets outlines the
proposed approach to be suitable for finding new activation
functions. From the previous studies dealing with evolution
of activation functions, we see that different approaches were
tested, some which allow more freedom in the design of
activation functions (GP and Cartesian GP) and others which

VOLUME 11, 2023

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

restrict their structure (differential evolution), but in both
cases the newly generated activation functions outperform
standard ones.

IV. METHODOLOGY

The process of selecting an appropriate activation function for
a given problem is time-consuming. Furthermore, there is no
guarantee that the set of candidate activation functions even
contains the function that would be the most appropriate for
the given problem. As a consequence, a suboptimal activation
function might be selected to be used for solving a given
problem. A possible remedy for this would be to design an
appropriate activation function for the problem at hand. Nat-
urally, doing this manually would be impossible, not only due
to the sheer number of problems for which this would have to
be done but also because the design of activation functions is
not a straightforward and easy task. Therefore, it makes sense
to automatize this process to perform an automatic design of
activation functions for the considered problem.

To automatically design appropriate activation functions
for side-channel analysis, we apply GP to evolve novel acti-
vation functions. The procedure is performed in two phases
as outlined in Figure 1:

1) optimization of neural network parameters,
2) evolution of a new activation function.

In the first phase, we use architecture search to find the
representative architecture for each dataset (and neural net-
work type). Two different algorithms were used to explore
the space of network architectures and their hyperparam-
eters: grid search and random search. In both techniques,
a large number of points in the search space' are evaluated
to find the optimal point. Grid search evaluates all possible
combinations of parameter values for a given search space,
sampling the continuous variables with fixed steps. On the
other hand, the random search strategy samples the given
space by randomly selecting points in the search space. The
points are evaluated on the test set to obtain a distribution
of representative solutions, which are later used for further
optimization with evolution. Therefore, in the first phase,
a set of parameter values is generated in each iteration and
using the sampled parameter values, training of the ANN is
performed. This is repeated until the search is finished (either
by examining all or a predefined number of combinations).
The parameter set for which the best results were obtained is
returned as the final result.

After all the relevant parameters of the ANN have been
selected in the first phase, an appropriate activation function
for that set of parameters is evolved using GP, which consti-
tutes the second phase of the proposed methodology. Each
activation function in the search space represents a feasible
solution and is represented as a tree consisting of unary and
binary operators whose leaves correspond to the function
inputs X, i.e., the outputs of a dense linear layer. We consider
the following operators:

IThe space of all feasible solutions is called the search space.

VOLUME 11, 2023

e Unary: X, —X, [X|, sin(X), cos(X), e, erf(x), X2,
1//%, o(X), oy(X), ReLU(0, X), ELU(X), Softsign(X),
Softplus(x), tanh(x).
« Unary, multidimensional: normalized(x), Softmax(x),
Softmin(X).
o Binary: x| + 13, X1 — X3, X1 - X2, X1/ /%2.
The operator // denotes the protected division in which the
value of the denominator is replaced by € = 107* if the
absolute value of the denominator is less than €. ReLU
denotes the rectified linear unit, ELU the exponential linear
unit, erf the Gaussian error function, o the sigmoid function,
oy the hard sigmoid function, and normalized the L, vector
normalization. The initial tree depth is between 2 and 5, and
the maximum tree depth is limited to 12. Moreover, there is no
restriction on tree balancedness as discussed in [46] and [47].

GP iteratively performs standard genetic operators on a
given population of solutions. The GP algorithm uses the
steady-state tournament selection, where the size of the tour-
nament (k) is equal to 3. Starting from a population of P
randomly generated individuals representing activation func-
tions, a tournament with three randomly selected individuals
is conducted in each iteration. The worst individual from the
tournament is eliminated, and a new individual is formed by
performing a crossover on the remaining two individuals. For
crossover, the simple tree crossover operator is used, in which
a random node, denoted as a crossover point, is selected
in each parent. The subtrees rooted in those nodes are then
swapped to produce two new child individuals. The crossover
is performed with a 90% bias for functional nodes being
selected as crossover points to stimulate the transfer of a
larger amount of genetic material. The mutation is applied
to the new individual, subject to the individual mutation
rate. In mutation, a node in an activation function tree is
selected uniformly at random. At this point, the selected
subtree is replaced by generating a new subtree, respecting
the maximum depth limit. With P new individuals generated
in this way, a single generation of the evolutionary process
is completed. The best activation function is always retained
in the population (elitism) since it can never be selected for
elimination. We run the process for a number of generations,
and the activation functions with the best performance are
returned as a result. The outline of the applied GP is given
in Algorithm 1.

Algorithm 1 Steady-State Tournament GP
randomly select k individuals;
remove the worst of k individuals;
child = crossover (best two of the tournament);
perform mutation on child, with given individual mutation
probability;
insert child into population;

Each time an individual needs to be evaluated during the
run of GP, the activation function that the individual repre-
sents is embedded into the neural network with the parameters

289

IEEE Access

K. KneZevic et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

Search
finished

I~ Y |
3 Sample ANN parameters |« l
1%) !
T v N :
! Train ANN !
E / 1
‘ il |
I) ‘
'l Update best parameters |
: - ¢ J :
! !
! l

Genetic programming

Termination

First phase

77777777777777777777777777777777

/{Embed ANN with activation function}

E

|
Train ANN }
\{Calculate performance on the training set}

v

Individual evaluation

v 3

criterion
satisfied

Best evolved activation function

FIGURE 1. Flowchart of the proposed methodology.

obtained from phase 1. The network is then trained on the
training set for a given amount of time, after which its per-
formance on the training set is used to denote the fitness

290

Second phase

(quality) of the individual. Since the ANN needs to be trained
in each evaluation of an individual, this represents the most
computationally expensive part of the GP procedure. After

VOLUME 11, 2023

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

the specified termination criterion is achieved, the GP algo-
rithm returns the best individual in the population as the
final result, representing the best activation function obtained
during the evolutionary process. Therefore, the complexity
of the proposed method depends on two parameters, the
termination criterion used when training the ANNs, which
specifies the amount of time allocated to each network for
training, but also the termination criterion used by GP, which
influences how many ANNs will be evaluated during the
evolution process. As such, the run-time of the proposed
method can be controlled by adjusting the values of these two
parameters.

Naturally, it could be said that some architectures are
not selected in the architecture search but would be with
custom activation functions, advocating the need for simul-
taneous architecture search and neuroevolution process. Still,
we decided not to follow such a path as the computational
complexity of considering both neuroevolution and architec-
ture search simultaneously would be extreme.

V. EXPERIMENTAL SETUP

This section provides detailed information on the setup of the
experiments, outlining the data sets used, evaluation criteria,
and selected parameter values for the considered methods.

A. DATASETS

We use two versions of the ASCAD database [53], represent-
ing commonly used datasets for deep learning-based SCA
evaluation. This database contains the measurements from
an 8-bit AVR microcontroller running a masked AES-128
implementation.”

The first version of the ASCAD database has a single
(fixed) key. This dataset has 50 000 traces for profiling and
10 000 for the attack. The traces in this dataset have 700 fea-
tures (preselected window when attacking the third key byte).
We consider the first 45 000 traces for training and 5000 for
validation from the original training set.

The second version of the ASCAD database has random
keys for the training set, while the key is fixed for the test
set. The dataset consists of 200000 traces for training and
100 000 for the attack. Each trace in this database has 1400
features (preselected window for the third key byte). We use
5000 traces from the original training set for validation.
We normalize the input features for both data sets to a Gaus-
sian distribution (zero mean and unit variance) by computing
the distribution parameters of the training set.

For both datasets, we attack the third key byte only, as this
is the first masked key byte. It is a standard practice to attack
only one key byte as it is expected that the attack difficulty
should be similar for the other key bytes, see, e.g., [7], [31].
The preselected windows are chosen to contain points of
interest around the leaking spot in the first round. Again,
this represents a common practice used in related works we
consider when comparing the results. We note that more

2Publicly available at https://github.com/ANSSI-FR/ASCAD/

VOLUME 11, 2023

recent works avoid this practice and consider the raw traces,
but the comparison with such works would not be fair and is
thus out of the scope of this work.

B. LEAKAGE MODELS

We evaluate the performance of deep learning-based SCA for
two leakage models: the Hamming Weight (HW) and Identity
(ID). In the HW leakage model, the attacker works under the
assumption that the leakage is proportional to the Hamming
weight of the sensitive variable. This leakage model results
in nine classes for a cipher that uses an 8-bit S-box, as is the
case for the AES cipher. Since this leads to a strong imbalance
in the label distribution, we also compute the imbalance
weights that balance the computed model loss. We follow the
guidelines for calculating the imbalance weights from [54].
For the ID leakage model, the attacker assumes the leakage
proportional to an intermediate value of the cipher. When
considering an 8-bit S-box, this leakage model results in
256 classes (values between 0 and 255).

C. ARCHITECTURE SEARCH STRATEGIES

We consider two types of neural networks: CNN and MLP.
To compare our results, we will consider several state-of-
the-art architectures [7], [30]. We note that not all results
are directly comparable due to certain differences in training/
validation/test set sizes, but we are confident some general
observations can be made. The rest of the section details the
grid and random search methods used to find appropriate
ANN parameters.

1) GRID ARCHITECTURE SEARCH FOR CNNs

We consider grid search for CNNs because the number of
hyperparameters is very large, making the random search
more difficult. Due to the time complexity, we have restricted
this search space by removing hyperparameter values that
are not expected to yield good results (e.g., very shallow or
narrow architectures). The hyperparameter space considered
is described in Table 1 and yielded 2 160 grid samples to
obtain the best convolutional model (CNN - GSp,y) for each
of the datasets.

2) RANDOM ARCHITECTURE SEARCH FOR MLP

For MLP, we use random search since related work has
achieved good results even with such a simple tuning
setup [28], [30]. It is similar to grid search but without a
structured sampling of continuous spaces, leading to bias
since only a subset of the possible values is selected. We con-
sider this bias undesirable because we do not use a learn-
ing rate schedule for our MLP models, and the model
could be more sensitive to the exact value of a fixed learn-
ing rate. We define the search space as the collection of
hyperparameters that affect the shape of the MLP architec-
ture and its train parameters, listed in Table 1. The search
space differs slightly from the grid search strategy in that
it provides higher resolution for the layer widths, learning
rate, and over multiple seed values to compensate for the

291

IEEE Access

K. KneZevic et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

TABLE 1. Definitions of the architecture search spaces. The values in
square brackets represent a continuous range, while the curly brackets
denote a set of discrete values.

Grid search Random search
Parameter
subspace subspace
Seed 36 [0,100]
Number of layers {2, 3, 4} [2, 8]
Layer width i(l)g’} 15,20, 25, [100, 1000]
Learning rate 5e-3 [le-4, le-2]
.. {SGD, RMSProp, {SGD, RMSProp,
Optimizer Adam} Adam}
{ReLU, ELU, SEEI{JU tE%lU’ si
Activation function SELU, tanh BLU - fani, S,
APL GELU} LReLU BLU APL
GELU}
Train epochs {20, 25, 50, 75} 50

possibility of poor initialization. We sample 600 random
points from this space to obtain an approximate distribu-
tion of the actual solution space for MLP architectures for
each dataset. From this, we can determine the best model
(MLP - RSpes;) and the median model (MLP - RS,cdian)-
We also use median models to better assess the average
performance, as outliers are highly likely with random search.

D. EVOLVING ACTIVATION FUNCTIONS

1) GP PARAMETER VALUES

The search space of functions is large and requires some
assumptions to make the search feasible. First, we restrict the
leaves to the function’s input, with no constants or learnable
parameters. Next, we limit the maximum depth of the can-
didate trees to restrict the search to a subspace of functions
that can be evaluated efficiently since they must be evalu-
ated for each layer. Finally, we limit the expressiveness of
the representation by defining a set of possible unary and
binary operations that can be used as function nodes (see
Section IV). We use a population of 20 individuals and run the
algorithm with a budget of 2000 evaluations. The mutation
probability was selected from the preliminary experiments
with the ASCAD fixed key dataset and was kept at 70% in all
experiments. These settings were selected after a tuning phase
as they provide a good trade-off between the computational
efficiency and the attack performance.

2) FITNESS FUNCTION

A neural network is trained with each fitness function on a
given training dataset, starting with a population of P acti-
vation functions. Recall that guessing entropy denotes the
average key rank, i.e., the correct key position in the guessing
vector after processing Q attack traces. Thus, our goal is
to minimize the guessing entropy for any number of attack
traces. Therefore, it is natural to consider the number of attack
traces necessary to reach GE of 0, which we refer to as QGE.
Each candidate function is assigned a fitness value F:

F = QGE + (1 — accuracy). 3)

The goal is to minimize the fitness value F, where the
optimal value is 1 (this would require only a single trace to

292

break the target, which is the optimal scenario). The guessing
entropy is averaged over 100 attacks on randomly selected
data subsets. The maximum size of the subsets was chosen
depending on the experiment to balance differentiation in
result quality and computation time. This, in turn, leads to
similar results between individuals in the first iterations and
slows down the convergence of GP. To remedy this, we add
the accuracy error (1 — accuracy) to the fitness, which is
also subject to minimization and provides additional infor-
mation to differentiate between results. In initial experiments,
we observed faster convergence using this fitness function.

We note that it may be somewhat counterintuitive to use
accuracy for SCA. This problem may be particularly pro-
nounced for the HW leakage model, as it leads to highly
imbalanced data [54]. Since the second part of the fitness
function is limited in the range [0, 1], additional information
about the accuracy can be helpful for neural networks that
perform well (i.e., those that reach GE of 0 in a small number
of traces) by providing more slope in the search space. How-
ever, the contribution of the accuracy term is small, so the
number of traces remains the primary objective.

E. LEARNING SYSTEM

All experiments were performed on a computer with a sin-
gle GeForce GTX 1080 Ti graphics card, an i7-6700 CPU,
and 32 GB of RAM running Ubuntu 16.04. We performed
our experiments in Python 3.7 using the DEAP [55] frame-
work (v1.3.1) for evolutionary algorithms and the PyTorch
framework [56] (v1.7.0) for deep learning with the CUDA
backend (v11.2). Since our model architectures do not require
a large amount of GPU memory, we take full advantage of
the hardware by parallelizing the evaluation steps of indi-
viduals via multiprocessing. This proved crucial since our
experiments are time-consuming, in the order of seven days
per architecture search and 14 days per evolution without
parallelization.

VI. EXPERIMENTAL RESULTS

This section first outlines the results of a preliminary experi-
ment in which different activation functions were tested, after
which we present the results obtained when evolving new
activation functions.

A. PRELIMINARY COMPARISON OF ACTIVATION
FUNCTIONS

To demonstrate the variability in the results obtained with var-
ious activation functions, a preliminary series of experiments
was performed in which the MLP and CNN models were
trained with different parameters and using different activa-
tion functions. Different popular activation functions from the
literature were selected to determine how they perform on the
considered problem.

Table 2 represents preliminary results obtained for this
series of experiments, in which the HW leakage model was
considered. The results denoted in this table were obtained
by performing the random and grid search procedures on the

VOLUME 11, 2023

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

TABLE 2. Best Q; ¢ Values obtained by standard activation functions for
the ASCAD datasets. The values in bold denote the best-achieved results.

Act. func. Fixed key Random keys
CNN MLP | CNN MLP
ELU 299 972 1026 1592
ReLU 523 801 | >5000 2128
SeLU 323 561 606 2078
Tanh 1042 1374 | >5000 2575
PReLU 387 1002 470 1565
GELU 314 840 737 2473
BLU 257 584 470 1482
APL 270 761 541 1249

parameter set outlined in Table 1. Thus, the result outlined for
each activation function represents the best value obtained for
any of the considered parameter combinations. We can clearly
observe that there is not a single activation function that
performs best across all of the scenarios that were considered.
On the contrary, some activation functions that perform well
in some scenarios perform quite poorly in others, as is the case
with the SeLU activation function. This initial experiment
outlines that no single activation function is appropriate for
all situations and that selecting an inappropriate activation
function can result in poor performance of the trained ANN.

B. EVOLUTION OF NOVEL ACTIVATION FUNCTIONS

This section presents experimental results showing that the
developed activation functions can outperform the commonly
used activation functions. We first search for the optimal net-
work architecture and hyperparameters using the architecture
search methods discussed previously (random search - RS
and grid search - GS) for each experimental setup. The final
hyperparameter values are listed in Table 3.

Then, we apply the evolutionary algorithm to further opti-
mize the model by changing its activation function. Finally,
we compare the results of the above techniques on both
datasets and leakage models. While evaluating GS and RS
on the ASCAD fixed key dataset with the ID leakage model,
we limited the evaluation of QGE to 1000, as we found that
over 25% of the results were in this subspace, resulting in
an efficient region of interest. Additionally, we focused on
500 traces when evaluating GP to improve efficiency further
while still producing better results. For the random keys
dataset, we had to increase the truncation bar to 1000 as it
became more difficult to obtain 25% of the results in this
subspace. Finally, for all tasks in the HW leakage model,
we increased the bar to 5000 as they proved to be more
difficult.

Based on the results obtained during the architecture tun-
ing phase denoted in the previous section, we examined the
performance of commonly used (ELU, SeLU, ReLLU, Tanh,
APL, GELU, BLU) activation functions. We observed that no
single activation function was consistently dominant for all
considered problem configurations, although in most cases,
the best results were obtained when using the BLU activation
function. We consider this to be an interesting result since,
to the best of our knowledge, the BLU activation function

VOLUME 11, 2023

was never before discussed in the context of SCA. Similarly,
none of the activation functions was consistently the worst.
This shows that the performance of the activation functions
is highly dependent on the problem under consideration.
Even SeLU, which generally performs the best, sometimes
achieved quite bad results. Moreover, we observed that a
change in the activation function could easily result in the
attack performance requiring more than double the traces
than before. This motivates us to search for more suitable
activation functions for the considered problems.

To compare the obtained results with state-of-the-art,
we consider a number of results (we report the number of
attack traces to break the target, i.e., to reach a guessing
entropy of 0):

o For ASCAD fixed key and the ID leakage model,
we consider the results from [7]. There, with 45000
training traces, the authors required 191 traces to break
the target. Additionally, while the authors did not con-
sider the HW leakage model, later research works
adapted the architecture for the ID leakage model by
adjusting the number of classes and reached 1 246 traces
to break the target [30].

o For the ASCAD random keys, the authors in [28] used
ensembles. They reported 470 required traces for the
HW leakage model and 105 for the ID leakage model.
The authors used 200 000 traces for the training set.

« In [30], the authors used Bayesian optimization to find
well-performing architectures. For ASCAD fixed key,
they needed 447 and 120 traces for the HW and ID
leakage models, respectively. For ASCAD random keys,
they required 496 and 2 945 traces for the HW and ID
leakage models, respectively. The authors used a training
set of 50 000 traces.

« In [29], Rijsdijk et al. used reinforcement learning to
optimize the architectures. For ASCAD fixed key, they
reported 906 and 202 traces needed to break the target
for the HW and ID leakage models, respectively. For
ASCAD random keys, the number of required attack
traces was 911 and 490 for the HW and ID leakage
models, respectively. The training set size equals 45 000
traces.

« In [38], Kerkhof et al. design custom loss functions for
SCA. The training set size equals 50 000 traces, and the
authors report median performance. Note that in this
work, custom loss functions are used with the archi-
tectures obtained through random search. For ASCAD
fixed key, the number of attack traces equals 490 and
520 for the HW and ID leakage models, respectively.
For ASCAD random keys, the number of traces equals
800 and >3 000 for the HW and ID leakage models,
respectively.

We emphasize that we do not differentiate between various
architecture types (MLP or CNN) when reporting results
from related work. Rather, we provide the best obtained val-
ues. We note that all the aforesaid values are obtained from the

293

IEEE Access

K. KneZevic et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

TABLE 3. Selected hyperparameter values for the experiments.

Fixed key Random keys
HW HW ID

CNN MLP CNN MLP CNN MLP CNN MLP
Hidden layers 4 8 2 5 4 2 2 5
Layer width 100 478 10 661 100 716 100 622
Activation ELU ReLU SELU ELU SELU SELU Tanh ReLU
Optimiser RMSProp Adam Adam Adam SGD SGD SGD Adam
Learning rate 0.005 0.0017 0.005 0.0086 | 0.005 0.0042 0.005 0.00086
Batch size 64 200 50 200 50 200 64 200
Epochs 20 50 50 50 75 50 50 50

OPOI (optimized points of interest) setup as discussed in [34].
More precisely, the attack is conducted on the optimized
interval of points of interest. This is a common setup that most
of the related works follow and our experiments also follow
that setup. There is also a NOPOI (non-optimized points of
interest) setup that considers raw features and allow excellent
attack performance, but we do not consider it here.

In Tables 4 and 5, we show the best results for the Hamming
weight and the ID leakage models, respectively. The
notation > x means that we could not achieve GE of 0 with x
attack traces. For neuroevolution, we provide the best three
results to better indicate the variation due to the different
evolved activation functions but also to indicate there are
many evolved activation functions that perform well.

For the HW leakage model (Table 4) and the ASCAD fixed
key dataset, the best results are obtained with an already
existing activation function. Although GP could not attain
the best result, in this case, it achieved the third-best result
among all the tested activation functions. The random search
results for MLP are much worse than the first two, but we still
manage to break the target. At the same time, the results from
related works reach a better performance than random search
but worse than the results obtained here. For the random
keys dataset, the best results for CNN are obtained with the
grid search. The same performance is achieved in related
works with ensembles and slightly worse with Bayesian opti-
mization. Finally, the results for the custom loss function are
almost twice worse. Interestingly, CNN constructed using GP
fails to converge even with 5 000 attack traces. The architec-
tures end up with the guessing entropy values: 108, 110, and
111, respectively, for the top 3 individuals. We suspect this is
because the random keys dataset is more difficult and easier
to overfit. Nevertheless, adding more generations to the GP
procedure could improve its behavior and attack results.

Note that MLP with neuroevolution is evaluated separately
later as we also consider the performance of median models.

In Table 5, we show the results for the ID leakage model.
Interestingly, for the fixed key, we see that CNNs evolved
with GP perform better than related work. The results with
Bayesian optimization are rather similar to the second-best
results with GP. Other related work results give worse results
than our approach. For random keys, we obtain good results
only with MLP with random search. Again, this confirms
that the random keys setup is more difficult, and we need a

294

TABLE 4. Final 6, GE values for the ASCAD fixed and random keys

datasets with the Hamming weight leakage model. We compare the
best-obtained value of grid search on the CNN model (CNN - GSpq¢¢, With
its evolved activation function CNN - GP and the best obtained MLP
model on random search MLP - RSp¢ ;. The best values are denoted in
bold style.

Fixed Key [
2nd best 3rd best | best result

| 470
| >5000
| 1133

Random Keys
2nd best

best result 3rd best
CNN - GSpest 257
CNN - GP 287 331 339

MLP - RSpest 561

>5000 >5000

TABLE 5. Final Q; - values for the ASCAD fixed and random keys

datasets with the ID leakage model. We compare the best-obtained value
of grid search on the CNN model (CNN - GSp.g;), the version with its

evolved activation function (CNN - GP), and the best obtained MLP model
on random search MLP - RSp.¢;. The best values are denoted in bold style.

Fixed Key | Random Keys
best result ~ 2nd best 3rd best | best result 2nd best 3rd best
CNN - GSpest 191 | > 1000
CNN - GP 115 123 130 | >1000 >1000 >1000

MLP - RSpes: 156 | 145

more sophisticated search process to reach good results. The
CNN - GSpesr ends with a guessing entropy of 128, while the
top 3 evolved results end with values: 125, 128, and 128,
respectively. Slightly better results can be found in related
works when using ensembles.

Next, in Table 6, we give the median results for the HW
leakage model when comparing MLP architectures obtained
with random search and after developing activation functions
with GP. Note that GP significantly improves the perfor-
mance for the fixed key scenario, while the GP approach
does not converge for the random keys dataset. Since the
GP results show we do not manage to break the target, this
again indicates that we require more than 100 generations to
develop good activation functions.

Finally, in Table 7, we compare the median results for MLP
with random search and after using GP considering the ID
leakage model. Observe how GP reaches significantly better
results for both fixed key and random keys settings. This sug-
gests that while the random search can find a powerful neural
network architecture by simply guessing, the average results
obtained over a number of solutions are not necessarily good.
On the other hand, evolving customized activation functions
can significantly improve the neural network’s performance.

VOLUME 11, 2023

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

500

450

400

Fitness

350

300+

250

T T T T

0 20 40 60
Iteration

(a) Fitness value of MLP - GP for the fixed key dataset.

80 100

1000.990 4

1000.988

1000.986 4

Fitness

1000.984 -

1000.982

1000.980 -

T T T T T

0 20 40 60 80 100
Iteration

(c) Fitness value of MLP - GP for random keys dataset.

Fitness

Fitness

FIGURE 2. Evolution of fitness value for ASCAD with the ID leakage model.

TABLE 6. Results of the EA effectiveness experiment for ASCAD fixed and
random keys with the Hamming weight leakage model. The median
architecture is compared before MLP - RS,,cgiqn and after

evolution MLP - GP.

Fixed Key [Random Keys
MLP - RS, edian MLP - GP ‘ MLP - RS, edian MLP - GP
Qipp 2377 1168 | 3350 > 5000

TABLE 7. Results of the EA effectiveness experiment for the ASCAD fixed
and random keys datasets with the ID leakage model. The median
architecture is compared before MLP - RS,,cgiqn and after

evolution MLP - GP.

Fixed Key [Random Keys
MLP - RS,edian. MLP - GP | MLP - RS, cdian ~ MLP - GP
Qip 531 279 | 437 188

Interestingly, we can see that using evolved activation func-
tion allows that even median models perform not much worse
than state-of-the-art results.

VII. DISCUSSION
To better understand the evolutionary process and the evolved

activation functions, we perform a more detailed analy-
sis of the obtained results for some selected experiments.
We especially focus on the evolved activation functions to
examine how they compare to existing activation functions.

VOLUME 11, 2023

500 1

400

300 A

200 A

100 4

T T T T

0 20 40 60
Iteration

(b) Fitness value of CNN - GP for the fixed key dataset.
1001.000 -

80 100

1000.998

1000.996 4

1000.994

1000.992 4

1000.990 -

T T T T T

0 20 40 60 80 100
Iteration

(d) Fitness value of CNN - GP for random keys dataset.

A. CONVERGENCE ANALYSIS

In Figure 2, we show the GP evolution convergence diagrams
for the MLP and CNN architectures for the ID leakage model
on both ASCAD dataset versions. For the fixed key dataset,
one can see a fairly fast convergence towards better solu-
tions at the beginning of the evolution process, which then
gradually slows down. After about 60 iterations, no further
improvements can be observed. This result shows that GP
had enough time to converge but probably converged to a
local optimum. Therefore, it would be useful to introduce
more diversity into the population in later iterations, either
in the form of greater mutation probability or by replac-
ing parts of the population with new, randomly generated
individuals. Particularly strong convergence is observed for
CNN, where the final fitness is more than twice as high as
in the case of MLP. On the other hand, for the random keys
dataset, we see that during the entire evolutionary process,
the fitness stayed mostly the same, which shows that GP
was unable to obtain any satisfactory activation functions.
Similar convergence patterns were also observed for the HW
leakage model. Therefore, we do not consider them further.
These patterns suggest that the evolutionary process could
have been terminated sooner to improve the execution time
of the procedure.

295

I E E E ACCGSS K. KneZevic et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

2.0 4
51
1.5
ol
1.0
= o =24
2 2
5 05 e
o O 44
0.0
6]
—05 -8
-1.0 -101
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -4 -2 0 2 4
Activation Activation
(a) Best activation function for MLP - GP on the fixed key dataset. (b) Best activation function for CNN - GP on the fixed key dataset.
5 10.0
4 7.5
3 5.0
2 2.5
3 2
51 5 00
o o
0 =25
-=5.0
-1
=75
-2
-10.0
-3 T T T T T T T T T
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0 -4 -2 0 2 4
Activation Activation

(c) Best activation function for MLP - GP on the random keys (d) Best activation function for CNN - GP on the random keys
dataset. dataset.

FIGURE 3. Plots represent the 1D slice of the best activation function (solid) and its derivative (dotted) obtained through evolution on the
ASCAD dataset for the ID leakage model. The slice is defined by setting the first dimension to the x-axis and the second dimension is set to 0.

80]
80 |
o] ol
0 100

200 300 400 500 0 100 200 300 400 500

o

I=]
o
o

IN
o

IS
o
Guessing entropy

Guessing entropy

N

o
N
o

Number of traces Number of traces
(a) The guessing entropy of MLP - GP for fixed key dataset (Table (b) The guessing entropy of CNN - GP for fixed key dataset (Table
. 5).

o
N
o

[
I=}
—
o
o

IN
o

©

S

Guessing entropy
o
o

Guessing entropy
w
o

N
=}

40

-
o

601 WWM
20
0
0 200

400 600 800 1000 0 200 400 600 800 1000
Number of traces Number of traces

(c) The guessing entropy of MLP - GP for random keys dataset (d) The guessing entropy of CNN - GP for random keys dataset
(Table 7). (Table 5).

FIGURE 4. Guessing entropy of the best-evolved activation functions on the ASCAD dataset and the ID leakage model.

B. EVOLVED ACTIVATION FUNCTIONS observed behavior is similar to the HW leakage model. The
We selected some of the best-evolved functions for further four best activation functions are listed below, where the first
analysis. We consider only the ID leakage model since the index in the subscript represents the ASCAD dataset (fixed

296 VOLUME 11, 2023

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

key or random keys) and the second index represents the
architecture type (CNN or MLP). Note that the functions look
quite complex, and it is unlikely that a human designer would
develop them. All of the activation functions, except agy c,
are composed of multiple functions put together. This sug-
gests that the simple activation functions are not as powerful
individually as they are when applied in conjunction. The
experimental results show that they perform very well on the
problem under consideration regardless of their complexity.

ark.c(X) = sin(erf (X — softmin(¥)%))

—%2 - softsign(o (softmin(sofisign(op (o

X (normalized (softmax (56'2)))))))) “4)
apk . m(X) = normalized(softsign(normalized (X

-tanh(softplus(softsign(erf (X))))))) (5
agrn,c(¥) = (tanh(|sin(cos(¥))])) ™" (6)
arn.m(X) = sofiplus(X + ELU (X)) + X

—0 (ELU (cos(op (cos(softplus(o (X))))))) (7)

To get a better insight into the best function, we plot the
best activation function and its derivative in Figure 3. Recall
that the derivative is important as we need a differentiable
function when we use the backpropagation algorithm com-
mon in neural network training. For the fixed key dataset
and MLP, the best-obtained activation function looks quite
similar to a step function, whereas, for CNN, we obtain a
non-monotonic function that is strikingly different from the
activation functions commonly used (as well as from state-of-
the-art). For the random keys dataset, the functions obtained
for MLP resemble those commonly used, while the form of
the function for CNN is rather unusual (it is periodic, which
is not a common case with activation functions).

In Figure 4 we show the number of attack traces required
to achieve a guessing entropy of 0. This value is marked with
a red dot. For the fixed key dataset, we reach the target much
faster using CNN than MLP, but both techniques perform
well. This ensures that we can find custom activation func-
tions for SCA that work well regardless of neural network
choice. On the other hand, for the random keys dataset, MLP
performs very well, while CNN does not converge. Again,
this shows that it is easier to optimize MLP architectures,
whether via hyperparameter tuning [30] or activation function
evolution, as studied here. Moreover, the results suggest that
MLP architectures are sufficient to break the targets, espe-
cially when there is no trace misalignment (we only consider
synchronized traces in this work). For CNNs, working with
larger mutation rates and longer evolution could solve the
problems mentioned here.

To get a better insight into which function nodes are most
useful for GP, we summarise the occurrence of these nodes for
the three best individuals for all results. Figure 5 shows the
histograms of the occurrence of function nodes for the MLP
and CNN models. The figure shows that different function
nodes are preferred for each model, such as sub, sigm, and
tanh. Similarly, certain activation functions, such as div, rec,

VOLUME 11, 2023

Nodes
(a) Node occurrences for MLP.

CNN

30

251

201

Count
=
w

10 1

Nodes

(b) Node occurrences for CNN.

FIGURE 5. Function node occurrences in the evolved activation functions.

and softmax, are rarely used by the models. However, the
situation for the other function nodes is not as clear since the
number of their occurrences depends largely on the model
that is used. The unfortunate consequence of this is that it is
difficult to reduce the number of function nodes used in the
evolution process because, with some exceptions, it is diffi-
cult to determine which functions generally perform poorly.

VIil. CONCLUSION AND FUTURE WORK

This paper investigates how neuroevolution can improve
deep learning-based side-channel analysis. More specifically,
we consider the setting where genetic programming evolves
activation functions specifically adapted for side-channel
analysis. We conduct experiments for two SCA datasets and
two leakage models to show that it is possible to evolve activa-
tion functions that improve attack behavior. We find that the
evolution of activation functions is more efficient for a sim-
pler dataset, suggesting that more work is needed to under-
stand the advantages and disadvantages of this approach.
We also find that more informative and cost-effective fitness
functions are needed, which would lead to better individuals
more quickly.

297

IEEE Access

K. KneZevic et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

As this is one of the first works to consider neuroevolu-
tion for SCA, there are many possible research directions
for future work. One direction would be to consider evolv-
ing other elements of the learning process, such as the
loss function. It would also be interesting to investigate
how transferable the obtained activation functions are when
considering already evolved neural network architectures.
Therefore, in future studies, we aim to examine the evolved
activation functions with several different neural network
architectures to investigate this issue. Finally, a common
problem associated with neural networks and activation func-
tions is gradient vanishing. Although this problem was not
considered in the current study, it represents an important
follow up direction which should be examined to determine
whether the evolved functions are susceptible to it, and if yes,
how the problem could be mitigated.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

298

S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Cham, Switzerland: Springer, Dec. 2006.
[Online]. Available: http://www.springer.com/

P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.
19th Annu. Int. Cryptol. Conf. Adv. Cryptol. London, U.K.: Springer-
Verlag, 1999, pp. 388-397.

J.-J. Quisquater and D. Samyde, “‘Electromagnetic analysis (EMA): Mea-
sures and counter-measures for smart cards,” in Smart Card Programming
and Security, 1. Attali and T. Jensen, Eds. Berlin, Germany: Springer, 2001,
pp. 200-210.

P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proc. CRYPTO in Lecture Notes
in Computer Science, vol. 1109. Cham, Switzerland: Springer, 1996,
pp. 104-113.

S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems (Lecture Notes in Computer Science),
vol. 2523. Cham, Switzerland: Springer, Aug. 2002, pp. 13-28.

J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, ““Make some noise.
Unleashing the power of convolutional neural networks for profiled side-
channel analysis,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, pp. 148-179, May 2019.

G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, ‘““Methodology for effi-
cient CNN architectures in profiling attacks,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, pp. 1-36, Nov. 2019.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997-2017, Jan. 2019.
C. Finn, P. Abbeel, and S. Levine, ‘“Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, Aug. 2017, pp. 1126-1135.

S. Gonzalez and R. Miikkulainen, “Improved training speed, accuracy, and
data utilization through loss function optimization,” in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2020, pp. 1-8.

M. Wistuba, A. Rawat, and T. Pedapati,
architecture search (version 2),” 2019,
10.48550/ARXIV.1905.01392.

X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evalua-
tion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1294-1303.

M. Feurer, J. T. Springenberg, and F. Hutter, ““Initializing Bayesian hyper-
parameter optimization via meta-learning,” in Proc. 29th AAAI Conf. Artif.
Intell., 2015, pp. 1128-1135.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, arXiv:1611.01578, doi: 10.48550/ARXIV.1611.01578.
Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” 2016, arXiv:1612.08083.

A. L. Maas, “Rectifier nonlinearities improve neural network acoustic
models,” 2013.

“A survey on neural
arXiv:1905.01392, doi:

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]
[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Int. Conf. Mach. Learn.,
Madison, WI, USA: Omnipress, 2010, pp. 807-814.

C. Nwankpa, W. [jomah, A. Gachagan, and S. Marshall, “Activation func-
tions: Comparison of trends in practice and research for deep learning,”
2018, arXiv:1811.03378, doi: 10.48550/ARXIV.1811.03378.

F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for the
analysis of side-channel key recovery attacks,” in Advances in Cryptol-
ogy EUROCRYPT 2009, A. Joux, Ed. Berlin, Germany: Springer, 2009,
pp. 443-461.

T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

R. Collobert and S. Bengio, “Links between perceptrons, MLPs and
SVMSs,” in Proc. 21st Int. Conf. Mach. Learn. (ICML), 2004, p. 23.

Y. Lecun and Y. Bengio, Convolutional Networks for Images, Speech, and
Time-Series. Cambridge, MA, USA: MIT Press, 1995.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

W. Duch and N. Jankowski, ““Survey of neural transfer functions,” Neural
Comput. Surv., vol. 2, no. 1, pp. 163-213, 1999.

J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic imple-
mentations using deep learning techniques,” in Proc. Int. Conf. Secur., Pri-
vacy, Appl. Cryptogr. Eng. Cham, Switzerland: Springer, 2016, pp. 3-26.

E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks
with data augmentation against jitter-based countermeasures,” in Crypto-
graphic Hardware and Embedded Systems CHES 2017, W. Fischer and
N. Homma, Eds. Cham, Switzerland: Springer, 2017, pp. 45-68.

G. Perin, L. Chmielewski, and S. Picek, *“Strength in numbers: Improving
generalization with ensembles in machine learning-based profiled side-
channel analysis,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2020, pp. 337-364, Aug. 2020.

J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning
for hyperparameter tuning in deep learning-based side-channel anal-
ysis,” IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021,
no. 3, pp. 677-707, Jul. 2021. [Online]. Available: https://tches.iacr.org/
index.php/TCHES/article/view/8989

L. Wu, G. Perin, and S. Picek, “I choose you: Automated hyperpa-
rameter tuning for deep learning-based side-channel analysis,” [EEE
Trans. Emerg. Topics Comput., early access, Nov. 7, 2022, doi:
10.1109/TETC.2022.3218372.

L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “‘Revisiting a method-
ology for efficient CNN architectures in profiling attacks,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2020, pp. 147-168, Jun. 2020.
R. Y. Acharya, F. Ganji, and D. Forte, “InfoNEAT: Information theory-
based NeuroEvolution of augmenting topologies for side-channel analy-
sis,” 2021, arXiv:2105.00117.

X. Lu, C. Zhang, P. Cao, D. Gu, and H. Lu, “Pay attention
to raw traces: A deep learning architecture for end-to-end pro-
filing attacks,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2021, pp.235-274, Jul. 2021. [Online]. Available: https://tches.
iacr.org/index.php/TCHES/article/view/8974

G. Perin, L. Wu, and S. Picek, “Exploring feature selection scenarios for
deep learning-based side-channel analysis,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, pp. 828-861, Aug. 2022. [Online].
Available: https:/tches.iacr.org/index.php/TCHES/article/view/9842

C. Pfeifer and P. Haddad, “Spread: A new layer for profiled deep-
learning side-channel attacks,” Cryptol. ePrint Arch., Paper 2018/880,
2018. [Online]. Available: https://eprint.iacr.org/2018/880

G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli,
“Ranking loss: Maximizing the success rate in deep learning side-
channel analysis,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2021, pp.25-55, Dec. 2020. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8726

J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu, ““‘A novel evaluation metric
for deep learning-based side channel analysis and its extended application
to imbalanced data,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2020, pp. 73-96, Jun. 2020.

M. Kerkhof, L. Wu, G. Perin, and S. Picek, “Focus is key to success: A
focal loss function for deep learning-based side-channel analysis,” in Con-
structive Side-Channel Analysis and Secure Design. Cham, Switzerland:
Springer, 2022, pp. 2948, doi: 10.1007/978-3-030-99766-3_2.

VOLUME 11, 2023

http://dx.doi.org/10.48550/ARXIV.1905.01392
http://dx.doi.org/10.48550/ARXIV.1611.01578
http://dx.doi.org/10.48550/ARXIV.1811.03378
http://dx.doi.org/10.1109/TETC.2022.3218372
http://dx.doi.org/10.1007/978-3-030-99766-3_2

K. KneZevi¢ et al.: NeuroSCA: Evolving Activation Functions for Side-Channel Analysis

IEEE Access

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

M. Kerkhof, L. Wu, G. Perin, and S. Picek, “No (good) loss no gain: Sys-
tematic evaluation of loss functions in deep learning-based side-channel
analysis,” Cryptol. ePrint Arch., Paper 2021/1091, 2021. [Online]. Avail-
able: https://eprint.iacr.org/2021/1091

S. Koziel, P. Mahouti, N. Calik, M. A. Belen, and S. Szczepanski,
“Improved modeling of microwave structures using performance-
driven fully-connected regression surrogate,” IEEE Access, vol. 9,
pp. 71470-71481, 2021.

K. Lee and J. Yim, “Hyperparameter optimization with neural network
pruning,” 2022, arXiv:2205.08695.

Y. Liu and X. Yao, “Evolutionary design of artificial neural networks
with different nodes,” in Proc. IEEE Int. Conf. Evol. Comput., May 1996,
pp. 670-675.

A. Marchisio, M. A. Hanif, S. Rehman, M. Martina, and M. Shafique,
“A methodology for automatic selection of activation functions to
design hybrid deep neural networks,” 2018, arXiv:1811.03980, doi:
10.48550/ARXIV.1811.03980.

K. O. Stanley and R. Miikkulainen, ‘“Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99-127, 2002.
A.Hagg, M. Mensing, and A. Asteroth, “Evolving parsimonious networks
by mixing activation functions,” in Proc. Genetic Evol. Comput. Conf.,
Jul. 2017, pp. 425-432.

P. Ramachandran, B. Zoph, and Q. V. Le, ““Searching for activation func-
tions,” 2017, arXiv:1710.05941, doi: 10.48550/ARXIV.1710.05941.

G. Bingham, W. Macke, and R. Miikkulainen, “Evolutionary optimization
of deep learning activation functions,” in Proc. Genetic Evol. Comput.
Conf., Jun. 2020, pp. 289-296.

M. Basirat and P. M. Roth, “The quest for the golden activation function,”
2018, arXiv:1808.00783.

G. Bingham, W. Macke, and R. Miikkulainen, “Evolutionary optimization
of deep learning activation functions,” in Proc. Genetic Evol. Comput.
Conf., Jun. 2020, pp. 289-296, doi: 10.1145/3377930.3389841.

A. Nader and D. Azar, “Evolution of activation functions: An empirical
investigation,” 2021, arXiv:2105.14614.

K. Vijayaprabakaran and K. Sathiyamurthy, ‘‘Neuroevolution based hierar-
chical activation function for long short-term model network,” J. Ambient
Intell. Humanized Comput., vol. 12, no. 12, pp. 10757-10768, Jan. 2021,
doi: 10.1007/s12652-020-02889-w.

R. Lapid and M. Sipper, “Evolution of activation functions for deep
learning-based image classification,” in Proc. Genetic Evol. Comput. Conf.
Companion, Jul. 2022, pp. 2113-2121, doi: 10.1145/3520304.3533949.
R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning
for side-channel analysis and introduction to ASCAD database,” J. Cryp-
tograph. Eng., vol. 10, no. 2, pp. 163-188, 2020.

S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse
of class imbalance and conflicting metrics with machine learning for side-
channel evaluations,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, pp. 209-237, Nov. 2018.

F.-A. Fortin, FE-M. D. Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” J. Mach. Lang.
Res., vol. 13, pp. 2171-2175, Jul. 2012.

A. Paszke, “Pytorch: An imperative style, high-performance deep learning
library,” in Proc. Adv. Neural Inf. Process. Syst., H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2019, pp. 8024-8035.

KARLO KNEZEVIC (Member, IEEE) received the
B.Sc. and M.Sc. degrees in computing from the
Faculty of Electrical Engineering and Computing,
University of Zagreb, in 2011 and 2013, respec-
tively. He is currently pursuing the Ph.D.
degree with the Faculty of Electrical Engineering
and Computing, University of Zagreb. He is
currently a Team Lead of analytics and data sci-

: ence with SofaScore Company, and an Associate
B Lecturer with Algebra University College. His

research interests include evolutionary computation, machine learning, and
symmetric cryptography.

VOLUME 11, 2023

JURAJ FULIR received the B.Sc. and M.Sc.
degrees in computing from the Faculty of Elec-
trical Engineering and Computing, University of
Zagreb, in 2017 and 2019, respectively. He is
currently pursuing the Ph.D. degree in fusing
geoinformation in raster and vector form for the
procedural generation of interactive virtual envi-
ronments. He is currently a Younger Researcher
with the Faculty of Electrical Engineering and
Computing, University of Zagreb.

DOMAGOJ JAKOBOVIC (Senior Member, IEEE)
received the B.Sc. degree in December 1996,
the M.Sc. degree in electrical engineering,
in December 2001, and the Ph.D. degree in
generating scheduling heuristics with genetic
programming, in December 2005. He is currently a
Full Professor with the Faculty of Electrical Engi-
neering and Computing, University of Zagreb.
Since April 1997, he is a member of the Research
and Teaching Staff with the Department of Elec-

tronics, Microelectronics, Computer and Intelligent Systems of the Faculty
of Electrical Engineering and Computing, University of Zagreb.

STJEPAN PICEK (Senior Member, IEEE) received
the Ph.D. degree in 2015. From 2015 to 2017,
he was a Postdoctoral Researcher at KU Leuven,
Belgium, and MIT, USA. From 2017 to 2021,
he was an Assistant Professor at the Delft Uni-
versity of Technology, The Netherlands. He is
currently an Associate Professor with Radboud
University, The Netherlands. His research interests
include security, machine learning, and evolution-
ary algorithms.

MARKO DURASEVIC (Member, IEEE) received
the B.Sc. and M.Sc. degrees in computing from
the Faculty of Electrical Engineering and Com-
puting, University of Zagreb, in 2012 and 2014,
respectively, and the Ph.D. degree in generating
dispatching rules for solving scheduling problems
in an unrelated machine environment, in February
2018. He is currently an Assistant Professor with
the Faculty of Electrical Engineering and Comput-
ing, University of Zagreb.

299

http://dx.doi.org/10.48550/ARXIV.1811.03980
http://dx.doi.org/10.48550/ARXIV.1710.05941
http://dx.doi.org/10.1145/3377930.3389841
http://dx.doi.org/10.1007/s12652-020-02889-w
http://dx.doi.org/10.1145/3520304.3533949

