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Abstract. Scheduling is a frequently studied combinatorial optimisation that often needs to be solved under dynamic
conditions and to optimise multiple criteria. The most commonly used method for solving dynamic problems are
dispatching rules (DRs), simple constructive heuristics that build the schedule incrementally. Since it is di�cult to
design DRs manually, they are often created automatically using genetic programming. Although such rules work
well, their performance is still limited and various methods, especially ensemble learning, are used to improve them.
So far, ensembles have only been used in the context of single-objective scheduling problems This study aims to
investigate the possibility of constructing ensembles of DRs for solving multi-objective (MO) scheduling problems.
To this end, an existing ensemble construction method called SEC is adapted by extending it with non-dominated
sorting to construct Pareto fronts of ensembles for a given MO problem. In addition, the algorithms NSGA-II
and NSGA-III were adapted to construct ensembles and compared with the SEC method to demonstrate their
e�ectiveness. All methods were evaluated on four MO problems with di�erent number of criteria to be optimised.
The results show that ensembles of DRs achieve better Pareto fronts compared to individual DRs. Moreover, the
results show that SEC achieves equally good or even slightly better results than NSGA-II and NSGA-III when
constructing ensembles, while it is simpler and slightly less computationally expensive. This shows the potential of
using ensembles to increase the performance of individual DRs for MO problems.

Keywords: Unrelated machines environment, Genetic programming, Ensemble learning, Multi-objective
optimisation

1. Introduction

Scheduling is a popular combinatorial optimisa-
tion problem where a certain number of jobs must
be assigned to a �nite number of machines, with
the aim of optimising some user-de�ned criteria
[1]. Due to their complexity, scheduling problems
have usually been solved using various metaheuris-
tic methods [2]. However, these methods can only
be used to solve static scheduling problems where
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the information about all jobs is known in advance.
On the other hand, they can hardly be applied
to dynamic problems where not all properties of
the problem are known a priori. For this reason,
problem-speci�c heuristics, so-called dispatching
rules (DRs), have been developed for solving dy-
namic scheduling problems.
DRs are simple heuristics that build the sched-

ule incrementally by deciding which job to sched-
ule next on a machine that becomes available [3].
As such, they only use the information currently
available in the system to make the next imme-
diate scheduling decision. Therefore, these rules
can easily take into account any changes in the
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system, such as the arrival of new jobs, or the
breakdown of a particular machine. Until recently,
DRs were usually designed manually by domain
experts. However, this trend is slowly changing to-
wards the use of methods to automatically create
new DRs. Of the many approaches used for this
purpose, genetic programming (GP) [4] has been
most commonly used to automatically design new
DRs. GP has been used to design DRs for a variety
of scheduling problems, such as the single machine
environment [5], the job shop environment [6], un-
related parallel machines environment [7], the re-
source constrained project scheduling problem [8]
and others [9]. Automatically designing DRs al-
lows greater �exibility in their design as well as
achieving DRs that perform better than existing
manually designed DRs [7,10].
The added �exibility in automated DR design

is important, especially when creating DRs for
highly speci�c or more di�cult problem variants,
such as multi-objective (MO) scheduling prob-
lems. So far, most manually designed DRs have
been created to optimise only a single criterion
[11] However, the number of problems where mul-
tiple criteria need to be optimised is increasing,
with various criteria like the makespan, total �ow-
time, total weighted tardiness, or total energy con-
sumption being optimised simultaneously. Auto-
matic design of DRs using GP solves this problem,
as various MO optimisation algorithms can be cou-
pled with GP to generate DRs that optimise mul-
tiple criteria simultaneously. Several studies have
already shown that e�cient MO DRs can be de-
signed for various scheduling problems [12,13].
Even though automatically generated DRs out-

perform manually designed DRs, their perfor-
mance is still limited, as it is di�cult, if not im-
possible, to create a single rule that works well in
all possible scheduling situations. Many methods
have been described in the literature to improve
the individual performance of DRs, such as using
multitask learning [14] or surrogate models [15].
However, another line of research is the simulta-
neous use of multiple rules to perform scheduling
decisions. Two of the most well-known approaches
here are the selection of appropriate DRs based
on certain characteristics of the problem instance
[16] or the simultaneous use of multiple DRs to
perform the scheduling decisions [17,18]. The lat-
ter method has gained attention especially in the
context of automatically designed DRs of single-

objective optimisation (SO). In such cases, the en-
sembles consisted of DRs designed for the optimi-
sation of only one criterion, and as a result, the
�nal ensemble was also specialised for the optimi-
sation of only that speci�c objective.
However, ensembles can also be created from

DRs developed for the simultaneous optimisation
of several criteria. The question remains whether
such a methodology is useful in the context of MO
optimisation, as it is now important to obtain not
only good but also robust solutions that generalise
well. In a preliminary study, it was shown that
an existing ensemble construction method can be
adapted to construct ensembles from existing rules
developed for multiple criteria optimisation [19].
Such ensembles were more e�cient than single
rules from which they were formed. Although the
results are promising, the preliminary study only
considered a single MO problem and did not per-
form a detailed analysis of the method. The aim of
this study is to extend the previous one by intro-
ducing new ensemble design algorithms and inves-
tigating their performance on a wider set of MO
problems. Furthermore, the results will be anal-
ysed in depth to gain better insight into the appli-
cation of ensembles in the context of MO optimi-
sation.
The remainder of the paper is arranged as fol-

lows. Section 2 contains the literature review deal-
ing with automated design of DRs. Section 3 out-
lines the background of the study, more speci�cally
the description of the unrelated machines environ-
ment and the automated design of DRs with GP.
The methodology for creating ensembles of DRs
for MO problems is described in Section 4. The
experimental setup is described in Section 5, while
the experimental results are presented in Section
6. Further analyses and discussion on the results
are given in Section 7. Finally, Section 8 draws
the conclusion of the paper and identi�es potential
research directions for the future.

2. Literature review

In recent years, GP has been increasingly used
as a hyper-heuristic method [20], especially in the
context of scheduling [9,21] and the uncapacitated
arc routing problem [22,23]. Since the very �rst
studies in the �eld of automated design of DRs,
the �eld has evolved in many directions, including
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surrogate models [15,24], feature selection [25,26],

multitask GP [27,14], and others [28,16]. In addi-

tion to the aforementioned research directions, the

design of MO DRs and the application of ensemble

learning are two commonly explored areas.

2.1. Multi-objective optimisation

MO has become one of the most intensively re-

searched areas of evolutionary computation, with

applications in various �elds such as transport

[29,30], neuroevolution [31], computer animation

[32], various engineering problems [33,34], machine

learning [35] and feature selection [36]. In the con-

text of automated DR design, Tay and Ho [37]

were the �rst to consider developing DRs for a MO

problem. They transformed the MO problem into

a SO problem using a linear weighted combination

of objectives. In [6], a MO algorithm was used for

the �rst time to obtain Pareto fronts of DRs. The

authors applied HaD-MOEA to optimise a single

job shop scheduling problem with 5 criteria. The

results obtained showed that DRs suitable for op-

timising multiple objectives can be developed. In

[12], the authors extend the previous study by ap-

plying NSGA-II and NSGA-III to develop DRs for

two MO scheduling problems.

Automatic design of MO DR for the unrelated

machines environment was studied in [13], where

the authors evaluated 4 MO algorithms on dif-

ferent problems with 3 to 9 criteria. The results

show that automatically designed rules are better

suited for MO optimisation than standard man-

ually designed rules. In [38,39] the authors opti-

mise a problem with multiple �owtime related ob-

jectives and use NSGA-II and SPEA2 to generate

new DRs. In [40], the impact of di�erent problem

characteristics of the job shop environment on the

performance of a MO GP method is analysed. The

results show that the developed rules are robust

enough to perform well on problems with di�erent

characteristics. In [41], the authors propose a novel

GP method coupled with a Pareto local search to

improve the quality of the developed DRs. Finally,

in [42], simultaneous optimisation of energy e�-

ciency and mean delay is considered, but the fo-

cus of the study is on schedule construction rather

than MO optimisation.

2.2. Ensemble learning

Ensemble learning is a popular machine learn-
ing method for building powerful classi�cation and
prediction models [43], which have applications in
various �elds, such as predicting the cracking risk
of concrete, emotions [44] or deception detection
[45]. Especially recently, ensembles in deep learn-
ing [46,47] have attracted much attention, where
single they obtain better generalisation proper-
ties for various problems such as facial expression
recognition [48] or object recognition [49].
The �rst application of ensembles for DRs was

in [17], where cooperative coevolution was used to
evolve ensembles of DRs. In this method, the en-
tire population was divided into a �xed number of
subpopulations, with each subpopulation evolving
one rule of the ensemble. The experiments showed
that ensembles created in this way performed bet-
ter than individual DRs. Therefore, the research
was extended in [50], by using a GP method that
developed groups of rules (ensembles) in the �rst
stage and the individual rules in the second stage.
However, no signi�cant improvement in the results
was achieved compared to the basic method of
[17]. In [51], a novel method for creating ensem-
bles of DRs was proposed, NELLI-GP, where rules
are developed for subsets of problem instances to
specialise in, and then combined into ensembles.
The results obtained show an improvement over
previous methods.
In [52], the authors compare di�erent meth-

ods to combine the decisions of each DR in
the ensembles to reach the �nal ensemble de-
cision. Standard ensemble combination methods
from machine learning were used, such as voting,
weighted voting, sum and weighted sum. The re-
sults show that the best ensembles were obtained
using the sum combination method. Four ensem-
ble construction methods, cooperative coevolu-
tion, BagGP, BoostGP and SEC, were studied
in [53]. Cooperative coevolution is similar to the
method used in [17], while BagGP and BoostGP
are GP variants inspired by bagging and boosting
methods from machine learning. SEC is a novel
method that uses a di�erent intuition when con-
structing ensembles. Instead of developing DRs at
the same time as constructing ensembles, SEC as-
sumes that already developed DRs exist and uses
them to construct ensembles by randomly sam-
pling these rules. Results show that SEC performs
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signi�cantly better than alternative methods that
develop DRs and construct ensembles simultane-
ously. The performance of SEC is validated in [54]
by applying it to the problem of resource con-
strained project scheduling and in [18] by a deeper
analysis of the method.
In [5], the authors propose a new type of ensem-

bles, where each rule is executed independently
to create the entire schedule, and the best solu-
tions obtained are selected. These ensembles were
further investigated in [55], where they were con-
structed from the manually designed ATC rules,
which did not show as good results as when us-
ing GP evolved rules. In [56], the authors also
investigated the performance of di�erent meth-
ods for constructing ensembles and found that the
proposed memetic algorithm performed the best.
Since the previous type of ensembles constructs
the entire schedule, it is only applicable to static
problems where all information about the system
is known in advance. To alleviate this problem,
in[57] this ensemble method is modi�ed not to con-
struct the entire schedule, but only a portion of
the schedule based on the information known up
to that point. With this modi�cation, the ensem-
bles can be used for dynamic environments and
they outperform the standard ensemble variants
that use the sum or vote combination method.

2.3. Ensemble learning for MO problems

To date, only one preliminary study has exam-
ined the use of ensembles of DRs in the context of
solving MO scheduling problems [19]. This study
considered a single MO problem involving three
criteria and reported a brief analysis of the results.
The results were promising and indicated that en-
sembles of DRs could be used in the context of
MO optimisation to obtain better results than by
individual DRs. This motivated us to extend this
research and conduct a more comprehensive inves-
tigation of the application of ensembles to solve
MO scheduling problems.

3. Background

3.1. The unrelated machines environment

The unrelated machines environment is a
scheduling problem in which a set of n jobs have to

be scheduled on one of the m available machines
[1]. Each job in the environment has the following
properties:

� processing time pij � time required to process
job j on machine i.

� release time rj � arrival time of job j into the
system.

� due date dj � time until job j should �nish
executing.

� weight wj � importance of job j.

Using the properties described earlier, a sched-
ule can be constructed for this problem. Based on
the schedule created, additional properties can be
calculated for each job, which include:

� Completion time Cj � the time when job j
completed with its execution.

� Flowtime Fj � the amount of time that the job
spent in the system, de�ned as Fj = Cj − rj .

� Tardiness �ag Uj � denotes whether job j was
tardy or not. If job j was tardy then Uj = 1,
otherwise Uj = 0.

� Tardiness Tj � the amount of time that job j
was tardy, de�ned as Tj = max(Cj − dj , 0).

Based on the previously de�ned job properties
several criteria can be used to evaluate the quality
of schedules. This study considers the following:

� Cmax - maximum completion time of all jobs:
Cmax = maxj(Cj).

� Ft - total �owtime: Ft =
∑

j Fj .
� Mus - machine usability: Mut =
maxi(

Pi

Cmax
) − mini(

Pi

Cmax
), where Pi is

de�ned as the sum of processing times of all
jobs executed on machine i.

� Nwt - weighted number of tardy jobs: Nwt =∑
j wjUj .

� Twt - total weighted tardiness: Twt =∑
j wjTj .

The Cmax, Ft, Nwt, and Twt criteria were se-
lected because they are among the most fre-
quently considered criteria in the unrelated ma-
chines environment[11], while Mus was selected
because optimising this criterion negatively a�ects
other scheduling criteria.
Although the problem described earlier can be

considered under both static and dynamic condi-
tions, this study examines the problem under dy-
namic conditions where no information about a
job is known until it is released in the system. Once
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it is released, all information about it is available
and it can be immediately considered for schedul-
ing. Therefore, standard search based methods are
not applicable to this problem variant and the fo-
cus has to be shifted to simple constructive heuris-
tics, namely DRs.

3.2. Construction of MO DRs

As mentioned earlier, DRs build the solution to
a scheduling problem incrementally by deciding at
each decision point which job to schedule on which
machine. This makes DRs suitable for solving dy-
namic scheduling problems [3]. They can be di-
vided into a schedule generation scheme and a pri-
ority function.
The schedule generation scheme (SGS) repre-

sents the outline of the DR, i.e. it determines when
a scheduling decision must be made and which de-
cisions are eligible for it. Each time the SGS de-
termines that there is at least one released job and
one available machine, it determines whether to
schedule one of the released jobs on one of the
available machines. To make this decision, it uses
a priority function (PF) to calculate the priori-
ties for assigning each of the available jobs to each
of the machines. Based on the priority values ob-
tained for each decision, the SGS selects the job
with the best priority and schedules it. Due to its
simplicity, the SGS is designed manually as it usu-
ally follows a similar pattern, although some de-
sign decisions may a�ect its performance [58].
The PF used by the SGS uses certain system

properties to calculate a numerical value for each
possible decision. For example, a simple PF could
schedule jobs according to their release times, i.e.
jobs would be scheduled on a "�rst in, �rst out"
(FIFO) basis. Unfortunately, designing good PFs
for various criteria and scheduling problems is a
tedious task, which is why this process is usually
automated using various methods, most notably
genetic programming GP and similar methods [59]
The reason for this is that PFs can be easily rep-
resented by expression trees, which is exactly the
representation used by GP.
To apply GP to generate PFs, it is necessary

to de�ne the primitive set of nodes that will be
used to construct the PFs. Table 1 shows the set
of terminal and function nodes used by GP, se-
lected based on preliminary experiments [7]. The
terminal nodes provide basic information about

Table 1

The symbols set

Node Description

Terminals

pt processing time of job j on machine i

pmin minimal processing time (MPT) of job j

pavg average processing time of job j across all machines

PAT time until machine with the MPT for job j becomes available

MR time until machine i becomes available

age time which job j spent in the system

dd time until which job j has to �nish with its execution

w weight of job j (wj)

SL slack of job j, −max(dj − pij − t, 0)

Functions

+ binary addition

− binary subtraction

∗ binary multiplication

/ binary secure division, returns 1 if division by 0 occurs

POS POS(x) = max(x, 0)

the problem such as the processing time (pt), but
also more complex information such as the time re-
maining before a job is late (SL). The set of func-
tion nodes includes only the most basic function
nodes, as the inclusion of more complex functions
did not improve the results [7].
Since the standard GP is only suitable for op-

timising a single objective, it must be combined
with a MO algorithm to optimise MO problems.
In this study, GP is used in combination with the
NSGA-II [60] and NSGA-III [61] algorithms to de-
velop DRs suitable for optimising multiple objec-
tives simultaneously.

4. Constructing ensembles for MO problems

4.1. Ensemble Construction

In order to use ensembles for a given problem,
the methods for both constructing and combining
ensembles need to be de�ned. The ensemble con-

struction method speci�es how ensembles are con-
structed from individual DRs. The construction of
MO ensembles is outlined in Figure 1 and can be
divided into three phases. In the �rst phase, GP
is used in conjunction with the MO algorithms,
NSGA-II and NSGA-III, to evolve Pareto fronts
of DRs for a given problem, where a given set of
problem instances for training. The GP can be run
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Fig. 1. Outline of the proposed method

any number of times, and each time it is run, the
�nal Pareto front of DRs is obtained as a result.
In the second phase, the DRs obtained from the

�rst phase are used by an ensemble construction
method to create ensembles. For ensemble con-
struction, the previously proposed SEC method
for SO problems is used [53]. Although di�erent
strategies can be used to select the DRs that will
form the ensemble [18], the original version ran-
domly selectsK DRs from the set of available DRs,
where K represents the size of the ensemble to be
constructed. This process is repeated N times and
the best ensemble is returned as the solution.
However, the original SEC method is not appli-

cable to MO problems, since a Pareto set of solu-
tions must be determined instead of a single so-
lution. Therefore, SEC is modi�ed as described in
Algorithm 1 by introducing the concept of non-
dominated sorting. The method has three parame-
ters: the number of ensembles it constructs N , the
size of the ensemble ES, and the set of rules used
to construct the ensembles R. In each iteration,
the method constructs an ensemble by randomly
selecting ES rules from R and stores it in a set of
constructed ensembles. When the required number
of ensembles is constructed, the set of ensembles

is sorted non-dominantly and divided into fronts.
The �rst Pareto front, consisting of solutions that
are not dominated by any other solution, is then
returned as the �nal result. The method can be
executed once or several times. The result of the
second phase are the Pareto fronts obtained from
each execution.
Instead of using SEC to create ensembles, other

methods can also be used in the second phase.
Therefore, NSGA-II and NSGA-III are used in-
stead of SEC to construct ensembles from exist-
ing DRs and to assess the performance of the SEC
method. Both algorithms use a simple integer rep-
resentation, where each gene represents the index
of the DR to be included in the ensemble. The al-
gorithm uses a crossover operator that uniformly
selects DRs from each parent, and a mutation that
randomly changes one DR in the individual to an-
other DR. These variants of the MO algorithms
used to create the ensembles will be referred to
as E-NSGA-II and E-NSGA-III in the rest of the
text.
Furthermore, during the construction of ensem-

bles, two execution strategies can be used to deter-
mine which of the DRs obtained in the �rst phase
should be used in the construction of ensembles in
the second phase. The �rst strategy, referred to as
IND, uses only DRs obtained from a single GP run
in the �rst phase to construct ensembles in the sec-
ond phase. This strategy is less computationally
intensive as only a single GP run needs to be per-
formed in the �rst phase, although it results in a
less diverse set of DRs. In the second strategy, re-
ferred to as ALL, the Pareto sets of DRs obtained
from multiple GP executions in the �rst phase are
merged and used to form ensembles. This strat-
egy is more computationally intensive as multiple
executions of GP must be performed in the �rst
phase, although the individual runs can be per-
formed in parallel. However, this strategy results
in more diverse sets of DRs that are used to form
ensembles.
Finally, in the third phase, when a new schedul-

ing problem needs to be solved, an ensemble is
selected based on the trade-o� between the crite-
ria and used to create the schedule for the prob-
lem at hand. It is important to note that the �rst
two phases can be performed at any time before
a scheduling problem is solved, so both DRs and
ensembles are created in advance. This means that
when a new problem instance is solved, one of the
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Algorithm 1 The adapted SEC method for MO
problems
Data: N,ES,R
Result: The �rst front of solutions
while | constructed |< N do

E ← ∅;
while | E |< ES do

Select a random DR from R \ E, and add it to E;
end

constructed ← constructed ∪ {E};
end

Perform nondominated sorting on the constructed set;
return �rst front of constructed

previously developed ensembles can be used imme-

diately to create the schedule, which signi�cantly

reduces the complexity of the approach and makes

it suitable for dynamic real-time environments.

4.2. Ensemble Combination

In order for the ensemble to come to a decision,

two ensemble combination methods are used, sum

and vote [52]. In the sum combination method, the

priorities of all rules are summed to a single value,

and the scheduling decision with the lowest aggre-

gated value is selected and executed. In the voting

combination method, on the other hand, each rule

casts a vote for a single scheduling decision (the

one that received the lowest priority value) and the

decision with the most votes is executed. In the

event of a tie, the job that was released the soon-

est is selected and executed. A potential problem

in the sum combination method is that a single

DR could completely control the behaviour of the

ensemble if its priorities are of larger magnitudes

than those of other rules. This problem does not

appear in the vote method, since the decision of

each rule is equally important, but ties are more

likely to occur especially for smaller ensembles.

An example of how these two methods perform

the decision for an ensemble of three rules is shown

in Figure 2. In this example, the ensemble must de-

cide which of three available jobs to schedule next.

Therefore, each rule in the ensemble calculates the

priority for each job, denoted as πj , based on which

the ensemble's combination methods make their

decision. As can be seen, the combination methods

can arrive at di�erent decisions even though they

consist of the same DRs.

5. Experimental setup

This section explains the design of the experi-
ments. In the �rst phase, DRs were developed for
the MO problems considered by coupling GP with
NSGA-II and NSGA-III. The reason why NSGA-
II and NSGA-III were chosen to perform MO op-
timisation is that previous studies have shown
that they generally perform better than other MO
methods such as MOEA/D or SPEA2 [13,12]. For
both algorithms, a population consisting of 1 000
individuals was used, while the mutation probabil-
ity was set to 0.1 for NSGA-II and 0.9 for NSGA-
III. The termination criterion of 100 000 function
evaluations was used. In addition, the subtree,
uniform, context-preserving and size-fair crossover
operators were used, as well as the subtree, hoist,
node complement, node replacement, permutation
and shrink mutation operators [4]. All parameters
were selected based on previous experiments [13].
Both algorithms were run 30 times, and the re-
sult of each run is a Pareto front of non-dominated
DRs.
The DRs from phase 1 are used by the ensemble

construction methods to create ensembles of DRs
in the second phase using SEC, E-NSGA-II, and
E-NSGA-III. E-NSGA-II and E-NSGA-III use the
same parameters as NSGA-II and NSGA-III to de-
velop individual rules. All algorithms use a termi-
nation criterion of 10 000 function evaluations of
ensembles and are tested with ensemble sizes of
3, 5 and 7 and with the sum and vote combina-
tion methods. All experiments were run 30 times
to obtain statistically signi�cant results.
To develop and test the rules and ensembles,

a set of 120 instances from previous studies was
used [7], in which the number of jobs and machines
ranged from 12 to 100 and from 3 to 10, respec-
tively. These instances were divided into two in-
dependent sets, the training set and the test set.
The training set is used by GP to evolve individual
DRs and by the ensemble construction methods to
form ensembles. The test set, on the other hand, is
used to evaluate the quality of the obtained Pareto
fronts of rules and ensembles in unseen problems.
All methods were evaluated on four selected

MO unrelated machines scheduling problems. Us-
ing the standard notation for scheduling problems
[1], each problem is represented as R | rj | X,
where R denotes the unrelated machines environ-
ment, rj indicates that job release times are con-
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Fig. 2. Example of the ensemble combination methods.

sidered, and X represents the set of optimised cri-
teria. Speci�cally, the following optimisation prob-
lems are considered:

� R | rj | Cmax, Twt
� R | rj | Cmax,Mus, Twt
� R | rj | Cmax, F t,Mus, Twt
� R | rj | Cmax, F t,Mus,Nwt, Twt

More MO problems were assessed, but it was found
that for the same number of objectives the meth-
ods produced comparable results and similar con-
clusions could be drawn. Therefore, for each num-
ber of objectives, a single problem was selected to
outline and analyse the results.
Since the quality of the Pareto fronts is being

examined, the hypervolume (HV) indicator is used
to evaluate the Pareto fronts obtained [62]. The
reason for choosing this indicator is that it is the
most widely used [63], but also because other stud-
ies have con�rmed its e�ciency compared to other
indicators [64]. For each problem, there is a di�er-
ent reference point, which is obtained by selecting
the worst values for each criterion. In addition, the
HV values are normalised to scale them between 0
and 1. Since 30 runs were made for each method,
the tables in the results section only give the me-
dian of the HV values obtained for each experi-
ment.
In a �rst analysis, all data obtained were

checked with the Shapiro-Wilk test to see if they
were normally distributed. Since the results of
most experiments were not normally distributed,
the statistical di�erences between the results were

tested with the non-parametric Kruskal-Wallis
test and the Dunn post hoc test to determine the
pairwise di�erences with the Bonferroni correction
method. The di�erences are considered signi�cant
if a p-value below 0.05 is obtained, as this value
is commonly used in other similar studies to infer
the signi�cance of the results [10,14].
All algorithms and experiments were imple-

mented using in the C++ programming language
using the ECF1 framework. All experiments were
executed on a system with AMD Ryzen Thread-
ripper 3990X 64-Core Processor 2.90 GHz, 128 GB
RAM, and the Windows 10 operating system.

6. Results

6.1. Optimisation of two criteria

Table 2 shows the results obtained for the R |
rj | Cmax, Twt problem. The �rst part of the ta-
ble (labelled 'IND' in the rule rules column) de-
scribes the results of ensembles created with DRs
from individual Pareto fronts, i.e. the results ob-
tained from a single MO algorithm run. Then, the
results for ensembles created with the union of all
Pareto fronts are presented (labelled 'ALL'). For
each experiment, the algorithm used to develop
each rule is given in the 'RCM' column, while the
method used to create the ensemble is given in the
'ECM' column. Finally, at the bottom the results

1http://ecf.zemris.fer.hr/
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for the individual rules developed by NSGA-II and
NSGA-III are outlined. The results of the statisti-
cal tests when comparing ensembles and individual
rules are given in brackets next to the HV values.
The �rst entry in the brackets denotes the result
of the comparison between the ensemble and the
rules developed by NSGA-II, while the second en-
try denotes the result of the comparison between
the ensembles and the rules obtained from NSGA-
III. The symbol + means that the ensembles per-
form signi�cantly better than the individual DRs,
≈ that they perform equally well, and − that the
ensembles perform signi�cantly worse than the in-
dividual rules.
The results for this problem show that no im-

provement can be achieved when ensembles are
created from individuals obtained from a single
run in the �rst phase of the algorithm. However,
even in the ALL scenario, when multiple Pareto
fronts of DRs are combined and used to create en-
sembles, the ensembles only achieve better perfor-
mance than DRs in a few cases. SEC and the two
GA methods used to create ensembles (E-NSGA-
II, E-NSGA-III) achieve similar performance with
no signi�cant di�erences. As for the ensemble pa-
rameters, slightly better HV values are obtained
when the vote combination method and ensem-
ble sizes 3 and 5 are used. Finally, we �nd that
all ensembles created from the rules developed by
NSGA-II in the ALL scenario perform better than
individual rules, for all parameter values.
The results for the ALL scenario are shown in

Figure 3. Here we see that ensembles created using
DRs developed by NSGA-II lead to improvements
in results that are less dispersed than the results
of individual DRs. However, the same is not true
for ensembles constructed from rules developed by
NSGA-III, as they perform as well as individual
rules. The reason for this is not entirely clear, as
no signi�cant di�erences were found when examin-
ing the Pareto fronts obtained with both NSGA-II
and NSGA-III. Finally, we see that smaller ensem-
bles tend to perform better with the vote combi-
nation, although this does not occur consistently
in all experiments to be accepted as a general rule.
To illustrate the Pareto fronts, they are shown

for DRs (developed by NSGA-III) and ensembles
(constructed with SEC using rules developed by
NSGA-III for the best combination of parameters)
in Figure 4. The �gure shows the total Pareto
fronts merged from all algorithm executions. We
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Fig. 3. Box plot of the results for the R | rj | Cmax, Twt
problem.
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Fig. 4. The Pareto front obtained for R | rj | Cmax, Twt

problem.

see that the Pareto front obtained by ensembles
are inferior to those obtained by individual rules,
giving better coverage of the objective space as
well as better convergence of solutions. The likely
reason for this is that SEC had only a limited num-
ber of DRs (36) available for creating ensembles.
This number of rules seems to be insu�cient and
the ensemble construction methods were not able
to construct ensembles that outperform individ-
ual DRs. This suggests that a larger set of ensem-
ble construction rules is needed for MO problems,
which will be examined in the following sections.

6.2. Optimisation of three criteria

Table 3 gives an overview of the results obtained
when optimising the R | rj | Cmax,Mus, Twt
problem. We see that forming ensembles from indi-
vidual Pareto fronts does not yield signi�cant im-
provement. However, the ensembles created from
the combined Pareto fronts perform well overall,
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Table 2

Results for the HV metric for the R | rj | Cmax, Twt

problem

Rules RCM ECM
sum vote

3 5 7 3 5 7

IND

NSGA-II E-NSGA-II 0.77 (≈|≈) 0.77 (≈|≈) 0.76 (≈| −) 0.79 (≈|≈) 0.78 (≈|≈) 0.77 (≈|≈)
NSGA-III E-NSGA-III 0.79 (≈|≈) 0.79 (≈|≈) 0.77 (≈|≈) 0.80 (≈|≈) 0.79 (≈|≈) 0.78 (≈|≈)

NSGA-II SEC 0.77 (≈|≈) 0.78 (≈|≈) 0.76 (≈|≈) 0.79 (≈|≈) 0.78 (≈|≈) 0.78 (≈|≈)
NSGA-III SEC 0.79 (≈|≈) 0.78 (≈|≈) 0.78 (≈|≈) 0.80 (≈|≈) 0.80 (≈|≈) 0.79 (≈|≈)

ALL

NSGA-II E-NSGA-II 0.84 (+ |≈) 0.85 (+ |≈) 0.83 (+ |≈) 0.88 (+ | +) 0.85 (+ |≈) 0.85 (+ |≈)
NSGA-III E-NSGA-III 0.80 (≈|≈) 0.80 (≈|≈) 0.77 (≈| −) 0.78 (≈|≈) 0.78 (≈|≈) 0.80 (≈|≈)

NSGA-II SEC 0.84 (+ |≈) 0.85 (+ |≈) 0.83 (+ |≈) 0.88 (+ | +) 0.85 (+ |≈) 0.85 (+ |≈)
NSGA-III SEC 0.80 (≈|≈) 0.80 (≈|≈) 0.79 (≈|≈) 0.78 (≈|≈) 0.80 (≈|≈) 0.78 (≈|≈)

NSGA-II 0.79

NSGA-III 0.81

as can be seen from the ensembles created by SEC,
where all ensembles performed signi�cantly bet-
ter than individual DRs. On the other hand, the
ensembles created by GAs were not as successful
and did not achieve better results for all parameter
combinations. However, there were no signi�cant
di�erences between the ensembles created by SEC
or the two GAs, which means that both methods
construct ensembles of similar quality.
From Figure 5 we see that, compared to individ-

ual DRs, ensembles not only produce much better
results, but also less scattered results. Therefore,
in this problem, it was possible to signi�cantly im-
prove the results by using ensembles. As far as the
in�uence of the parameters is concerned, the sum
combination method performs equally well regard-
less of the size of the ensemble. This cannot be
said for the vote combination method, as it per-
forms best when only three rules are used in the
ensemble. Furthermore, we see that at ensemble
size 3, the vote combination method performs bet-
ter than the sum method, which changes as the
ensemble size increases and the sum combination
method performs better. This is an interesting be-
haviour, suggesting that it is more di�cult to cre-
ate larger ensembles of good quality using the vote
combination method. The reasons for this are dis-
cussed in a later section.
Figure 6 outlines the Pareto fronts obtained by

MO DRs and ensembles. Since it is di�cult to
visualise the Pareto fronts for three criteria, the
Pareto fronts are given for each pairwise combina-
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Fig. 5. Box plot of the results for the
R | rj | Cmax,Mus, Twt problem.

tion of criteria. The �gure shows that ensembles
achieve better coverage of the objective space, but
also better convergence, which is best seen in from
Figures 6a and 6c. In these �gures we see that
the ensembles in the middle of the objective space
perform better than individual DRs. This means
that ensembles are much better than DRs at �nd-
ing solutions that o�er a trade-o� between the op-
timised criteria, which is important in MO opti-
misation. On the other hand, ensembles and rules
perform equally well at the extremes of the objec-
tives, i.e. when they focus more on optimising a
single objective, they perform equally well.

6.3. Optimisation of four criteria

The results for the R | rj | Cmax, F t,Mus, Twt
problem are given in Table 4. Again, ensembles
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Table 3

Results for the HV metric for the R | rj | Cmax,Mus, Twt problem

Rules RCM ECM
sum vote

3 5 7 3 5 7

IND

NSGA-II E-NSGA-II 0.78 (≈|≈) 0.77 (≈|≈) 0.77 (≈|≈) 0.78 (≈|≈) 0.78 (≈|≈) 0.73 (≈|≈)
NSGA-III E-NSGA-III 0.79 (≈|≈) 0.78 (≈|≈) 0.77 (≈|≈) 0.80 (≈|≈) 0.79 (≈|≈) 0.78 (≈|≈)

NSGA-II SEC 0.79 (≈|≈) 0.78 (≈|≈) 0.77 (≈|≈) 0.79 (≈|≈) 0.78 (≈|≈) 0.78 (≈|≈)
NSGA-III SEC 0.79 (≈|≈) 0.78 (≈|≈) 0.77 (≈|≈) 0.79 (≈|≈) 0.79 (≈|≈) 0.78 (≈|≈)

ALL

NSGA-II E-NSGA-II 0.81 (+ |≈) 0.81 (+ | +) 0.81 (+ |≈) 0.81 (+ | +) 0.80 (≈|≈) 0.80 (≈|≈)
NSGA-III E-NSGA-III 0.81 (+ |≈) 0.80 (≈|≈) 0.81 (+ | +) 0.81 (≈|≈) 0.80 (≈|≈) 0.79 (≈|≈)

NSGA-II SEC 0.81 (+ | +) 0.81 (+ | +) 0.81 (+ | +) 0.82 (+ | +) 0.81 (+ | +) 0.80 (≈|≈)
NSGA-III SEC 0.81 (+ | +) 0.81 (+ | +) 0.81 (+ | +) 0.81 (+ | +) 0.81 (+ |≈) 0.80 (≈|≈)

NSGA-II 0.79

NSGA-III 0.79
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Fig. 6. The Pareto front obtained for the R | rj | Cmax,Mus, Twt problem denoted through pairwise combinations of the
three optimised criteria Pareto front.

created from individual Pareto fronts do not per-
form well. However, those created from the union
of all Pareto fronts perform much better, espe-
cially if they use rules developed by NSGA-II. In
this case, the ensembles created by SEC perform
signi�cantly better than individual DRs in all but
one experiment. The SEC method performs better
than both GAs, as it signi�cantly outperforms the
results of the individual DRs in more cases.
Figure 7 outlines the boxplot of the results.

Compared to individual DRs, ensembles achieve
better distributed results in most of the exper-
iments performed. However, as in the previous
problem, we observe some deterioration in the
quality of the results when the size of the ensemble
is increased. And while this was only observed for
the vote combination method in the last problem,

such behaviour is observed here for both meth-
ods, although it is more pronounced for the vote
combination method. Thus, for the largest ensem-
ble sizes, the results are similar to those obtained
with single DRs. Furthermore, the sum combina-
tion method achieves better results, since in the
case of using DRs developed by NSGA-II, it clearly
outperforms the vote combination methods for en-
semble sizes 5 and 7.
Figure 8 shows the obtained Pareto fronts,

which show that ensembles provide better cover-
age of the objective space compared to individual
DRs. For pairs of criteria that are not con�icting,
such as those shown in Figures 8a, 8c and 8e, both
methods obtain results that optimise both criteria
well. However, when considering the Pareto fronts
including the Mus criterion, which con�icts with
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Table 4

Results for the HV metric for the R | rj | Cmax, F t,Mus, Twt problem

Rules RCM ECM
sum vote

3 5 7 3 5 7

IND

NSGA-II E-NSGA-II 0.75 (≈|≈) 0.74 (≈|≈) 0.73 (≈|≈) 0.75 (≈|≈) 0.74 (≈|≈) 0.74 (≈|≈)
NSGA-III E-NSGA-III 0.74 (≈|≈) 0.74 (≈|≈) 0.73 (≈|≈) 0.75 (≈|≈) 0.74 (≈|≈) 0.73 (≈|≈)

NSGA-II SEC 0.75 (≈|≈) 0.74 (≈|≈) 0.74 (≈|≈) 0.76 (≈|≈) 0.75 (≈|≈) 0.75 (≈|≈)
NSGA-III SEC 0.75 (≈|≈) 0.74 (≈|≈) 0.73 (≈|≈) 0.75 (≈|≈) 0.75 (≈|≈) 0.73 (≈|≈)

ALL

NSGA-II E-NSGA-II 0.77 (+ | +) 0.77 (≈|≈) 0.76 (≈|≈) 0.77 (+ | +) 0.76 (≈|≈) 0.75 (≈|≈)
NSGA-III E-NSGA-III 0.78 (+ | +) 0.76 (≈|≈) 0.75 (≈|≈) 0.77 (+ | +) 0.76 (≈|≈) 0.76 (≈|≈)

NSGA-II SEC 0.78 (+ | +) 0.77 (+ | +) 0.77 (+ | +) 0.78 (+ | +) 0.77 (+ | +) 0.75 (≈|≈)
NSGA-III SEC 0.77 (+ | +) 0.76 (≈|≈) 0.75 (≈|≈) 0.77 (+ | +) 0.76 (≈|≈) 0.75 (≈|≈)

NSGA-II 0.75

NSGA-III 0.75
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Fig. 7. Results for the HV metric for the
R | rj | Cmax, F t,Mus, Twt problem.

the other criteria, we see that ensembles provide

better coverage of the objective space, which can

be seen in Figures 8b, 8d, and 8f. Here it is in-

teresting to observe that the DRs provide good

coverage of the objective space for the standard

scheduling criterion (Cmax, Ft or Twt), which

can be seen from the fact that many solutions are

grouped in the space where these objectives are

minimised. However, the remaining part of the ob-

jective space is poorly covered, and ensembles ei-

ther achieve better solutions (as seen in Figure 8f)

or better coverage of the objective space ( seen in

Figure 8d). This suggests that both DRs and en-

sembles perform equally well on combinations of

criteria that do not con�ict with each other, while

ensembles can achieve solutions that o�er a better

trade-o� between highly con�icting criteria.

6.4. Optimisation of �ve criteria

Table 5 shows the HV obtained when optimis-
ing the R | rj | Cmax, F t,Mus,Nwt, Twt prob-
lem. For the IND scenario, the ensembles can only
match the performance of the individual DRs,
while the ensembles in the ALL scenario perform
signi�cantly better in all situations, except when
using the vote combination method with larger en-
semble sizes. Both the ensembles created by SEC
and the GAs achieve equally good results, with
the ensembles created by SEC achieving a slightly
better HV value.
Figure 9 shows the ability of ensembles to im-

prove on the results achieved by individual rules,
as the ensembles obtained a signi�cantly better
distribution of results for each con�guration. In
addition, the dispersion of results obtained by en-
sembles is lower than that of individual rules,
which means that the algorithm is more sta-
ble and less likely to lead to scattered solutions.
Smaller ensembles performed better than larger
ones, meaning that there is no need to construct
larger ensembles, which in turn has a positive im-
pact on execution time as smaller ensembles can
be constructed and interpreted more quickly. We
also �nd here that the results gradually deteriorate
as the size of the ensemble increases, especially in
the case of the vote combination method. Finally,
the ensembles created with the sum combination
method perform better in all cases.
The Pareto fronts obtained by DRs and ensem-

bles are outlined in Figure 10. For most pairs of cri-
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Fig. 8. The Pareto front obtained for the R | rj | Cmax, F t,Mus, Twt problem denoted through pairwise combinations of
the four optimised criteria Pareto front.

Table 5

Results for the HV metric for the R | rj | Cmax, F t,Mus,Nwt, Twt problem

Rules RCM ECM
sum vote

3 5 7 3 5 7

IND

NSGA-II E-NSGA-II 0.67 (≈|≈) 0.66 (≈|≈) 0.66 (≈|≈) 0.67 (≈|≈) 0.66 (≈|≈) 0.66 (≈|≈)
NSGA-III E-NSGA-III 0.66 (≈|≈) 0.66 (≈|≈) 0.65 (≈|≈) 0.66 (≈|≈) 0.66 (≈|≈) 0.65 (≈|≈)

NSGA-II SEC 0.68 (≈| +) 0.67 (≈|≈) 0.66 (≈|≈) 0.68 (≈| +) 0.67 (≈|≈) 0.67 (≈|≈)
NSGA-III SEC 0.66 (≈|≈) 0.66 (≈|≈) 0.67 (≈|≈) 0.67 (≈|≈) 0.67 (≈|≈) 0.66 (≈|≈)

ALL

NSGA-II E-NSGA-II 0.70 (+ | +) 0.69 (+ | +) 0.68 (+ | +) 0.69 (+ | +) 0.68 (≈| +) 0.67 (≈|≈)
NSGA-III E-NSGA-III 0.68 (+ | +) 0.68 (+ | +) 0.68 (+ | +) 0.68 (+ | +) 0.67 (≈|≈) 0.66 (≈|≈)

NSGA-II SEC 0.70 (+ | +) 0.69 (+ | +) 0.69 (+ | +) 0.69 (+ | +) 0.68 (+ | +) 0.67 (≈| +)
NSGA-III SEC 0.69 (+ | +) 0.69 (+ | +) 0.69 (+ | +) 0.69 (+ | +) 0.68 (+ | +) 0.67 (≈|≈)

NSGA-II 0.66

NSGA-III 0.65
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Fig. 9. Results for the HV metric for the
R | rj | Cmax, F t,Mus,Nwt, Twt problem

teria, it can be seen that both rules and ensembles
provide similar coverage of the objective space.
However, some �gures like Figure 10d, 10f, and 10i
show that ensembles provide better coverage of the
objective space, especially in the middle. We note
that this is also the case when considering theMus
criterion, as it con�icts with the other scheduling
criteria. Therefore, ensembles again provide better
coverage of the objective space, especially for parts
of the objective space that represent a compromise
between con�icting criteria.

7. Further analysis and discussion

7.1. Ensemble composition analysis

In this section we analyse the composition of
the ensembles created by SEC to see if certain ob-
servations can be made about their composition.
Only the ALL scenario is considered, as better re-
sults were obtained in this case. Furthermore, the
�gures are only outlined for selected problems, as
similar patterns were observed for all problems.
Figure 11 shows the frequency with which each

DR is used in the ensembles constructed for the
R | rj | Cmax, F t,Mus,Nwt, Twt problem, ag-
gregated for ensemble combination methods and
sizes. Although some DRs are used more fre-
quently than others, the di�erences in their fre-
quency of use are not large. On the contrary, most
DRs are used to some extent to form ensembles,
suggesting that no DR is inherently unsuitable to
be used to form ensembles. Rather, it seems that
any rule can be used to form high quality ensem-
bles; this is probably why SEC performs better
when using larger DR sets, as it can more easily

Table 6

Average Jaccard similarity values for ensembles.

Optimised criteria Mean similarity

Cmax, Twt 0.166

Cmax,Mus, Twt 0.005

Cmax, F t,Mus, Twt 0.002

Cmax, F t,Mus,Nwt, Twt 0.001

�nd DRs that work well when combined in an en-
semble.
Since more or less all DRs are used in the con-

struction of ensembles, we ask whether there is
some similarity between the constructed ensembles
in the sense that they consist of similar DRs. For
this purpose, we calculate the average Jaccard sim-
ilarity index between all pairs of the constructed
ensembles for all problems and present them in
Table 6. The values range from 0 to 1, with 0 in-
dicating no similarity and 1 indicating complete
similarity between two groups. We note that only
in the problem where two criteria are optimised
is there a noticeable similarity, while in the larger
problems there is almost no similarity between the
ensembles. This is probably also due to the fact
that for the two criteria problem there were only
about 30 DRs available for ensemble construction,
while for other problems this number was much
higher (at least 700).
Another point of view from which the ensem-

bles can be analysed is their relative performance
compared to the DRs used to construct them. To
this goal, we calculate the average performance of
the DRs in the ensemble for all criteria and sub-
tract it from the objective values achieved by the
ensemble. A positive value means that the ensem-
ble performs better, while a negative value means
that the individual rules that make up the ensem-
ble perform better on average. Table 7 shows the
relative average values for all MO problems in %.
From this we can see that the ensembles perform
better on average than the DRs from which they
were formed. We see that, with one exception, the
ensembles perform signi�cantly better on certain
criteria than the individual rules that form them.
In particular, for the Twt, Ft and Nwt criteria
the ensembles perform better than the rules that
make them up by about 50%, 20%, and 10%, re-
spectively.
As an example, Table 8 shows the perfor-

mance of a randomly selected ensemble and the
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Fig. 10. The Pareto front obtained for the R | rj | Cmax, F t,Mus,Nwt, Twt problem denoted through pairwise combinations
of the �ve optimised criteria Pareto front.
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Fig. 11. Frequency of using DRs in ensembles

Table 7

Average relative di�erence between the objective values ob-
tained by the ensemble and DRs it consists of

Optimised criteria Twt Nwt Ft Cmax Mus

Cmax, Twt 5.80 - - 0.01 -

Cmax,Mus, Twt 57.87 - - 2.15 4.98

Cmax, F t,Mus, Twt 58.55 - 22.17 1.79 0.27

Cmax, F t,Mus,Nwt, Twt 51.76 13.24 22.51 2.11 -0.26

5 DRs that make it up for the R | rj |
Cmax, F t,Mus,Nwt, Twt problem, with the best
value for each criterion outlined in bold. The table
shows that the ensemble performs best for 3 of the
5 criteria considered. However, what is more inter-
esting is the observation that even though some
rules perform poorly on certain criteria, the en-
semble performs well on all �ve criteria considered.
The worst performance is obtained for the Mus
criterion, which is to be expected since further im-
provement on this criterion would probably lead
to a deterioration of the results on all other crite-
ria. However, this also shows that good ensembles
can be formed from DRs that do not necessarily
perform well on all criteria, which means that the
�tness of individual DRs is not a reliable indicator
of how the ensemble will perform.

7.2. Runtime analysis

This section outlines the runtime of the pro-
posed method. The runtime can be divided into
two independent parts: the time required to con-
struct the ensembles and the execution time of the
ensemble in solving a problem. The �rst part is
more computationally intensive, as a large number

Table 8

Performance of a selected ensemble and the individual rules
from which it is constructed.

Twt Nwt Ft Cmax Mus

Ensemble 17.15 8.23 161.81 39.24 0.13

D
R
in
de
x

424 18.33 8.41 164.39 39.59 0.12

1260 70.50 16.94 442.89 49.17 0.07

658 20.29 9.21 198.74 40.67 0.10

1503 102.90 21.11 486.93 48.16 0.06

589 19.24 7.78 168.47 40.76 0.14
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Fig. 12. Execution times of algorithms for ensemble con-
struction

of ensembles must be constructed to obtain a good

quality Pareto front. Figure 12 outlines the execu-

tion time of SEC and the two GAs when construct-

ing ensembles. It shows that already for the lowest

ensemble size more than 10 minutes are needed to

construct the ensembles (given that 10 000 ensem-

bles are constructed with the methods) and that

the execution time increases linearly with the in-

crease of the ensemble size. However, this part can

be executed o�ine before a speci�c problem has

to be solved, and ensembles can be prepared in

advance.

Then, when a new scheduling problem instance

needs to be solved, a suitable ensemble is selected

from the set of prepared ones and applied on the

problem to create the schedule. In this case, the ex-

ecution time for the ensemble is almost negligible,

as a single ensemble takes about 0.1-0.2 seconds to

solve all 60 instances in the test set. This means

that the time required for the ensemble to make

a single decision is even lower, meaning it can be

used to solve dynamic problems in real time.
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7.3. Result discussion

When comparing the results of SEC and GAs
for creating ensembles, no signi�cant di�erence
was found, which means that both methods work
equally well. However, SEC o�ers a few slight
advantages over GAs. Firstly, SEC is simpler as
this method randomly samples ensembles and non-
dominantly sorts the set of solutions obtained. The
GAs contain additional elements, such as muta-
tion and crossover operators, that need to be de-
�ned and a method for determining the diversity
of solutions in the objective space. With SEC,
only the ensemble-related parameters (combina-
tion method and size) and the stopping condi-
tion need to be de�ned, whereas with GAs, ad-
ditional parameters such as population size, mu-
tation probability, tournament size and the like
need to be selected. Finally, SEC is also somewhat
less computationally intensive due to its inherent
simplicity, as can be seen from the runtime anal-
ysis. This demonstrates that SEC is equally good
in constructing ensembles as other more complex
optimisation methods.
Although the results obtained in the experimen-

tal analysis demonstrate that ensembles improve
the performance of individual rules, there are sev-
eral factors that in�uence their performance. First,
a large set of diverse DRs is required to con-
struct high quality ensembles, otherwise no im-
provements are obtained as demonstrated in the
IND scenario where a Pareto front from a single
run was used for ensemble construction. It seems
that an individual Pareto front does not o�er the
necessary diversity between DRs, thus rules ob-
tained from Pareto fronts of several executions
should be used together to obtain better results.
Regarding the parameters for creating ensem-

bles, the best results were obtained when smaller
ensemble sizes were used, most frequently with size
3. Moreover, the results generally deteriorated as
the size of the ensemble increased, which was not
observed with the SO optimisation [18]. The rea-
son why the results deteriorate with increasing en-
semble size is that it becomes more di�cult to
�nd a combination of ensembles that work well to-
gether. This suggests that it is more di�cult for
the ensemble construction methods to �nd a larger
number of rules that work well together, especially
since there is a large set of rules to choose from and
the selection of rules is random. A possible remedy

would be to use a more sophisticated method to
select the rules to form the ensemble. However, the
ensemble composition analysis conducted earlier
did not reveal any regularities in the structure of
ensembles that could be used for this purpose, so
this needs to be investigated further. Regardless,
the strategy of random selection for the composi-
tion of the ensemble has already proven su�cient
to achieve signi�cant performance improvements
over individual DRs.
As far as the ensemble combination method is

concerned, neither method consistently performs
better. However, the results show that the perfor-
mance of the vote combination method deterio-
rates more as the size of the ensemble increases.
While similar behaviour is observed with the sum
method, the deterioration in results is smaller and
larger ensembles generally perform better with
the sum method than with the vote combination
method. The reason why the vote method is more
prone to this behaviour is because of the way it
makes the decisions. With the vote combination
method, it is possible that adding a rule to the
ensemble does not change its decisions if it is out-
voted by all other rules in the ensemble. Although
a similar situation can occur with the sum combi-
nation method, it is not as pronounced. Thus, it
is more di�cult for the vote method to construct
ensembles that provide the required trade-o� be-
tween the considered objective.
Finally, the visualisations of the Pareto fronts

between ensembles and individual rules show that
for most problems ensembles achieve Pareto fronts
with better coverage of the objective space. Al-
though ensembles and rules obtain equally good
solutions at the extremes of each criterion, ensem-
bles obtain solutions that o�er a better trade-o�
between di�erent criteria. This is particularly ev-
ident when optimising con�icting criteria. In this
case, ensembles provide a better coverage of the
objective space, which is a signi�cant advantage in
multi-objective optimisation.

8. Conclusion

This study investigated the use of ensembles of
DRs in the context of multi-objective scheduling
problems, motivated by the fact that there is a
limit to the performance of a single DR. Creat-
ing ensembles of DRs has already been shown to
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be a fairly e�cient method for improving the per-
formance of DRs. However, so far they have not
been used to improve the performance of MO DRs.
Therefore, in this study, two di�erent methods for
creating MO ensembles of DRs were proposed and
evaluated on several MO scheduling problems with
di�erent numbers of criteria to be optimised.
The results show that ensembles improve the

performance of individual rules for MO problems,
as evidenced by achieving better coverage of the
objective space. Although the method performs
well on all problems tested, the main advantage of
ensembles over individual rules becomes more evi-
dent as the number of optimised criteria increases.
The results also show that the SEC method per-
forms as well as more sophisticated GAs, prov-
ing to be well suited for ensemble construction
even for MO problems. However, the performance
of ensemble construction methods is largely in-
�uenced by several elements. First of all, a large
and diverse set of DRs must be used for ensem-
ble construction, otherwise no improvements can
be achieved. In addition, the best results were ob-
tained with smaller ensembles, highlighting the
di�culty of �nding larger rule sets that work well
together. Although a possible remedy would be to
use a more sophisticated DR selection strategy to
construct the ensembles, the analysis of the struc-
ture of the ensembles did not reveal any regular-
ities that could be used for this purpose. There-
fore, further investigation is needed to resolve the
problems observed in some situations.
In future studies, we plan to take the research

in several directions. One goal would be to investi-
gate SEC with other ensemble construction meth-
ods speci�c to MO problems, which would guide
the ensemble construction method to select those
rules that better cover certain parts of the search
space. This would serve to reduce the randomness
in the selection process of the DRs that make up
the ensemble Another direction would be to apply
the method to other problems, such as the vehicle
routing problem, to test its performance on di�er-
ent combinatorial problems. It would also be in-
teresting to investigate alternative ensemble com-
bination methods, apart from the most commonly
used sum and vote methods, such as Borda count-
ing and the like Finally, we also plan to develop
a hybrid algorithm that can simultaneously evolve
both ensembles and DRs. In this case, the algo-
rithm can focus more on developing DRs that are

more suitable for use in ensembles, rather than us-
ing rules developed for individual use.
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