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Abstract

Dynamic scheduling represents an important combinatorial optimisation prob-

lem which often appears in the real world. The di�culty in solving these

problems arises from their dynamic nature, which limits the applicability of

improvement based metaheuristics. Dynamic problems are usually solved using

dispatching rules (DRs), which iteratively construct the schedule. Recently such

heuristics have been constructed using various hyperheuristic methods, most no-

tably genetic programming. Although automatically designed DRs achieve good

performance, it is still very di�cult to design a single DR that would perform

a good decision at every decision point. As a remedy, DRs were combined into

ensembles to improve their performance. For that purpose it is required to de-

�ne how ensembles are constructed and how DRs in the ensemble collaborate.

This paper proposes a novel ensemble collaboration method based on a sim-

ilar method applied for static scheduling problems and adapts it for dynamic

problems. The goal is to obtain a collaboration method that produces better re-

sults than standard collaboration methods. Additionally, the paper investigates

the application of novel ensemble construction methods for dynamic scheduling.

The proposed methods are validated on dynamic unrelated machines scheduling
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problem and compared with existing ensemble construction and collaboration

methods. The obtained results demonstrate that the proposed collaboration

method performs better than standard ones. Further analyses provide addi-

tional insights into the proposed methods and outline several potential research

directions in the area of hyper-heuristic ensemble construction.

Keywords: genetic programming, unrelated machines environment,

scheduling, dispatching rules, ensembles

1. Introduction

Scheduling problems represent an important combinatorial optimisation prob-

lem in which certain jobs have to be allocated to a limited number of available

resources to optimise some user-de�ned criteria (Pinedo, 2012). Such prob-

lems are heavily investigated since they appear in many real-world situations5

like computer multiprocessor task scheduling (Wu & Wang, 2018), equipment

scheduling (Gedik et al., 2018), and manufacturing (Yu et al., 2002). Solving

such problems under dynamic conditions, in which not all information about

the problems is known beforehand, represents a particularly di�cult challenge.

The reason for this is due to the dynamic nature of the problem (e.g. it is not10

known which jobs and at which time they appear in the system) traditional im-

provement based metaheuristic methods like genetic algorithms (Vla²i¢ et al.,

2019), simulated annealing (Anagnostopoulos & Rabadi, 2002), tabu search(Lee

et al., 2013), variable neighourhood descent (Fanjul-Peyro & Ruiz, 2010), ant

colony optimisation (Arnaout et al., 2012) and others (Hart et al., 2005) can-15

not be easily applied. Therefore, such problems are usually solved using simple

constructive heuristics, called dispatching rules.

Dispatching rules (DRs) are simple heuristics that at each decision point

decide which job to schedule on which machine (Ðurasevi¢ & Jakobovi¢, 2018).

This means that they do not build the entire schedule up front, but rather each20

time at least one machine is available and some jobs are still not scheduled, the

DR is invoked to perform the decision on the next job that should be scheduled
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on a machine. In that way the DR can quickly react to any changes that happen

in the system, since they perform immediate decisions and do not perform any

decisions for the future of the system. However, DRs su�er from certain issues25

that di�erent research directions tried to mitigate over the years.

One of the most important issues associated with DRs is the di�culty in

manually designing new rules. Since many problem variants, criteria, and con-

ditions exists, DRs would need to be designed for all such combinations when

required. Naturally, this is almost impossible due to the sheer number of prob-30

lem variants that exist, as well as the fact that the design of such rules is a

time consuming process which requires expert knowledge. Therefore, di�erent

hyper-heuristic methods, most notably genetic programming (GP) (Poli et al.,

2008), have been used over the years to automatically design new DRs (Branke

et al., 2016; Nguyen et al., 2017). With such methods it is possible to e�ciently35

design new DRs that outperform manually designed DRs.

However, the performance of automatically designed rules is still limited,

and it is not possible to design a single rule which would perform well in all

possible situations (Ðurasevi¢ & Jakobovi¢, 2022). Therefore, di�erent ways of

improving the performance of DRs were investigated. One of the most investi-40

gated research directions in that regard is how individual DRs could collaborate

to achieve a better performance. This was most commonly achieved by combin-

ing individual DRs into ensembles that are collectively used to solve scheduling

problems (Park et al., 2015). Previous studies demonstrated that by creating

such ensembles the performance of individual DRs could be signi�cantly im-45

proved (Park et al., 2015; Ðurasevi¢ & Jakobovi¢, 2017a).

One of the most important decisions in ensemble design is how the rules work

together. So far, most studies have used a method that combines the decisions

of the individual rules of the ensemble into a single decision, e.g. by using the

summation and voting combination methods (Park et al., 2017). However, such50

methods have a limited overview of the problem, as they do not consider the

possible impact of their decision on the future of the system. Therefore, in this

study, we explore an alternative method where the DRs of the ensemble can
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collaborate to obtain a better overview of how the current decision might a�ect

future decisions. In this method, the rules are used independently to construct55

an approximation of the schedule by tentatively scheduling all currently available

jobs. These approximations are used to determine which rule would perform the

best scheduling decision at the current time, which is then selected and executed

in the real schedule. With such a strategy, the ensemble obtains a notion on how

each rule would perform in the longer term under the current system conditions60

and can select the most appropriate rule for the current decision point based

on this. The initial results obtained for this collaboration method showed great

potential compared to a single DR (Ðurasevi¢ et al., 2022). In this study, we

extend the investigation of this collaboration method in detail and compare it

with the standard sum and vote collaboration methods used in most studies.65

The contributions of this study can be summarised as follows:

� A novel collaboration method for ensembles of DRs in dynamic scheduling

environment

� Novel application of genetic algorithms to constructs ensembles of DRs

� Detailed analysis of various ensemble aspects for the evaluated collabora-70

tion methods

The rest of the paper is organised as follows. Section 2 outlines the related

literature. Section 3 describes the considered scheduling problem and the way

in which GP is used to automatically generate DRs. The ensemble collabora-

tion and construction methods are described in Section 4. The setup of the75

experiments is described in Section 5. Section 6 outlines the obtained results.

A deeper analysis of the obtained results is performed in Section 7. Finally,

Section 8 gives a short conclusion and outlines potential directions for future

work.
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2. Literature review80

In recent years, hyper-heuristics became an emerging area of research with

application on a wide range of problems (Burke et al., 2018). Generally, hyper-

heuristics can be classi�ed as methods used either to select or generate heuris-

tics for solving a certain optimisation problem. In the context of scheduling

problems, hyper-heuristic methods based on heuristic selection have been rarely85

used. For example, Vázquez-Rodríguez & Petrovic (2009) applied a genetic

algorithm to determine the sequence in which DRs should be applied to con-

struct a schedule to a certain problem, whereas Ochoa et al. (2009) perform

a �tness landscape analysis of the search space of selection hyper-heuristics,

showing that they are "easy" to search. Nguyen et al. (2013) used GP to con-90

struct rules for selecting the appropriate DR given certain system parameters.

However, this study demonstrated that such rules were inferior to DRs designed

by generative hyper-heuristics. And although other studies still investigated

methods used to select appropriate heuristics (Zahmani & Atmani, 2019; Ðura-

sevi¢ & Jakobovi¢, 2022), the main research direction was oriented towards the95

application of hyper-heuristics for generating new DRs.

Out of the many available hyper-heuristic methods used for heuristic gen-

eration, GP pro�led itself as the most popular method used to generate new

heuristics to solve various combinatorial problems (Burke et al., 2010, 2013).

Although GP has been used to generate heuristics for various problems like100

the travelling salesman problem (Du�o et al., 2019), vehicle routing problem

(Jacobsen-Grocott et al., 2017), capacitated arc routing problem (Liu et al.,

2020; Ardeh et al., 2021), its most prominent use was in the automated de-

sign of dispatching rules for various scheduling problems (Branke et al., 2016;

Nguyen et al., 2017).105

Designing new DRs with GP was performed for various scheduling environ-

ments like the single machine (Gil-Gala et al., 2019), job shop (Nguyen et al.,

2018), unrelated machines (Jaklinovi¢ et al., 2021), resource constrained project

scheduling (Chand et al., 2018; Ðumi¢ et al., 2018), and �exible job shop (Zhang
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et al., 2021c). In all of these, automatically designed DRs achieved a better per-110

formance than existing manually designed DRs. This motivated many di�erent

research directions to further investigate the application of GP for generating

DRs and improving their performance. Some prominent research directions in-

clude investigation of di�erent solution representations (Nguyen et al., 2013;

Branke et al., 2015; Planini¢ et al., 2022), multi-objective optimisation (Nguyen115

et al., 2013; Ðurasevi¢ & Jakobovi¢, 2017b; Xu et al., 2021), surrogate models

(Zhang et al., 2021e,b), feature selection (Zhang et al., 2021d, 2019), local search

(Gil-Gala et al., 2021), multitask GP (Zhang et al., 2021f,a), and many others.

An important objective present in most research dealing with the automated

design of DRs is to constantly increase the performance the generated rules. A120

popular way to achieve this is to apply ensemble learning, which has already

demonstrated a great e�ciency in improving the performance of various machine

learning models (Ganaie et al., 2022). Therefore, several studies proposed new

GP variants based on ensemble learning, such as BoostGP and BagGP (Iba,

1999; Paris et al., 2001), which were inspired by corresponding methods from125

the machine learning area. Over the years, ensemble learning methods in GP

became increasingly popular and applied in di�erent problem domains, such as

in classi�cation with unbalanced data (Bhowan et al., 2013), intrusion detection

(Folino et al., 2005), pattern (Folino et al., 2008) and image classi�cation (Fan

et al., 2022). Recent years also saw the development of novel ensemble learning130

methods such as M3GP (Muñoz et al., 2015), Ensemble GP (Rodrigues et al.,

2020), or diverse bagging and niching GP Wang et al. (2019b). This shows that

ensemble learning in GP is still and actively researched topic, with the aim of

continuously improving existing methods and results (Virgolin, 2021).

The �rst application of ensembles for scheduling problems was performed by135

Park et al. (2015). In this study the authors applied a cooperative coevolution

GP algorithm that simultaneously evolved DRs in di�erent subpopulations and

combined them into ensembles to achieve a better performance. The DRs were

evolved completely independently from each other, and only interacted when

they needed to be evaluated, thus being combined with representative rules140
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from other subpopulations to form ensembles. The results demonstrated that

the obtained ensembles were more robust than a single DR. Park et al. (2016)

applied a multilevel GP method to evolve ensembles. The idea of this method is

to perform the evolution in several levels, starting with the evolution of ensem-

bles, and then switching to the evolution of individuals. However, the proposed145

method did not obtain any improvement over the ensembles evolved by Park

et al. (2015), except from being able to evolve them in less time. (Hart & Sim,

2016) propose the application of NELLI-GP for the creation of ensembles. In

this method DRs are evolved and combined into ensembles by trying to specialise

DRs for di�erent problem instances in the training set. The obtained results150

demonstrate that the proposed method performed better than the method from

Park et al. (2015). Park et al. (2017) investigate di�erent combination methods

used to combine decisions of individual DRs in the ensemble. They apply four

methods, summation, voting, weighted summation, and weighted voting. The

experimental results show that the weighted variants of the methods achieved155

inferior results, as well as that the summation combination method achieved

the best results on average.

In all previous studies the methods used to construct ensembles also evolved

the DRs that constitute the ensemble. However, alternative methods were pro-

posed which use already existing DRs to construct ensembles. Ðurasevi¢ &160

Jakobovi¢ (2017a) propose a novel ensemble construction method denoted as

SEC to create ensembles for the unrelated machines environment. This method

uses a set of DRs generated by GP and combines them into an ensemble by

simple random combination. The method was compared to other ensemble

construction methods that also evolve DRs, such as BagGP, BoostGP, and co-165

operative coevolution. The obtained results demonstrated that SEC achieved a

superior performance in comparison to other ensemble learning methods. The

previously outlined methods were also applied by Ðumi¢ & Jakobovi¢ (2021)

on the resource constrained project scheduling problem. The obtained results

demonstrated that the SEC method again performed better than the other en-170

semble learning methods, even for this problem variant. Therefore, Ðurasevi¢
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& Jakobovi¢ (2019) further investigated the SEC method with di�erent ways

of constructing ensembles, where it was demonstrated that e�cient ensembles

could be constructed with simple greedy heuristics or random search for ensem-

bles.175

A novel way in which DRs in ensembles can collaborate was proposed by Gil-

Gala & Varela (2019). In these ensembles the DRs do not actually collaborate

with each other, rather each DR is executed individually on the considered

problem and then the best of the schedules obtained by any of the rules in

the ensemble is retained. In addition, the authors use a GA to construct the180

ensembles. However, such ensembles can be used only for o�ine problems where

the schedule can be constructed prior to the execution of the system, unlike the

ensembles used previously in the literature. This type of ensembles were further

investigated by (Gil-Gala et al., 2020b), where the authors compare ensembles

constructed from the manually designed ATC rule and GP generated rules. The185

results showed that the ensembles constructed from the ATC rule could not

compete with ensembles constructed from automatically generated DRs. (Gil-

Gala et al., 2020a) applied di�erent methods to construct ensembles, including

an iterated greedy method, a local search method, and a memetic algorithm that

achieved the best results. Aside from the application in scheduling, ensembles190

were also successfully applied on the capacitated arc routing problem as well

(Wang et al., 2019b,a).

Based on the idea of the previously described ensemble type, a novel ensem-

ble collaboration method was proposed for the dynamic scheduling environment

(Ðurasevi¢ et al., 2022). In this collaboration method, at each decision point195

all DRs in the ensemble are used independently to simulate the scheduling of

all currently available jobs in the system. After that simulation, the rule that

achieved the best value of the optimised criterion is executed to perform the

real scheduling decision. In that way, by considering only the currently avail-

able jobs, such a method is applicable in dynamic conditions. The ensembles200

were constructed by random sampling with the SEC method, and the obtained

results demonstrated that such ensembles were superior to individual rules. Be-

8



cause of the potential that this collaboration method has demonstrated, in this

study we extend the analysis by using alternative ensemble construction meth-

ods and providing a detailed comparison with classical ensemble collaboration205

methods.

3. Background

3.1. Unrelated machines scheduling

In this study the parallel unrelated machines environment is investigated.

This scheduling problem variant appears in many real-world situations like man-210

ufacturing, cloud environments and others (Pinedo, 2012). In this environment,

a set of n jobs must be scheduled on one of the m available machines. In the

considered problem several system properties are available, including:

� pij - processing time of job j on machine i,

� rj - release time of job j, i.e. the earliest time at which job j can be215

scheduled,

� dj - due date of job j, i.e. the time by which job j should be completed,

� wj - weight (importance) of the job.

Upon constructing a schedule, based on the previous system properties, for each

job the completion time Cj can be calculated, which in turns serves to de�ne220

di�erent scheduling objectives. The objective considered in this study is the to-

tal weighted tardiness (Twt), which can be de�ned as TWT =
∑

j wj max(Cj −
dj , 0), and represents a weighted linear combination of the amount of time that

each job spent executing after its respective due date. The problem under con-

sideration can be classi�ed as R|rj |TWT using the standard scheduling problem225

notation (Pinedo, 2012).

The above-described problem is considered under dynamic conditions. This

means that no information about the jobs is known by the scheduler until they

arrive. Naturally, the arrival times of jobs are also not known beforehand.
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Only when the job is released, do all its properties (weight, processing times,230

due date) become known and can be used for scheduling. As a consequence,

no information about the future of the system can be used when constructing

the schedule, only the information about jobs that have already been released.

Therefore, the whole schedule cannot be constructed in advance, but rather

must be constructed in parallel with the execution of the system. This makes235

DRs the ideal choice for solving such dynamic problems, as they only make the

next scheduling decision and do not schedule jobs in advance.

3.2. Designing DRs with GP

In general, DRs consist of two parts, the schedule generation scheme (SGS)

and the priority function (PF). The SGS speci�es how the entire schedule is con-240

structed, meaning when the scheduling decisions should be performed and which

job should be allocated to which machine. The outline of the SGS used by the

automatically designed DRs is shown in Algorithm 1 (Ðurasevi¢ & Jakobovi¢,

2020). This SGS is invoked each time there is at least one unscheduled job

in the system and at least one machine is free. At that point the SGS needs245

to determine which of the available jobs should be selected and scheduled on

a machine. This is done by assigning a priority to each job-machine pair and

then selecting the pair with the best priority value. The PF can be as simple

as simply selecting the job-machine pair with the lowest processing time, or can

be more complex as it is the case with the ATC rule (Ðurasevi¢ & Jakobovi¢,250

2018). It should be outlined that the SGS calculates the priority for each ma-

chine, regardless of whether they are available or not. The reason for this is to

introduce idle times in the schedule, i.e. to allow the SGS to determine that

maybe another machine would be more suitable for a job than the one that is

currently free. For example, another machine could soon become available and255

could process the considered job much faster, therefore it would be a waste to

schedule the considered job on on a machine on which it would execute much

longer.

From the previous description it is evident that the PF plays an important
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Algorithm 1: SGS used by generated DRs
1: while true do

2: Wait until at least one job and machine are available

3: for all available jobs j and each machine i in m do

4: Get the priority πij of scheduling j on machine i

5: end for

6: for all available jobs do

7: Determine the machine with the best πij value

8: end for

9: while jobs whose best machine is available exist do

10: Determine the best priority of all such jobs

11: Schedule the job with best priority

12: end while

13: end while

role in the construction of schedules, as it is responsible for ranking the jobs260

based on which the SGS will select the next job to be scheduled. Therefore, it

is important to use a good PF function which can provide a meaningful ranking

of jobs, i.e. a ranking that will prioritise jobs that should be scheduled sooner

in order to minimise the optimised criterion. Since designing new PFs manually

is di�cult, GP has often been applied to generate new and appropriate PFs for265

di�erent problems. To apply GP for the generation of DRs it is required to

specify the primitive set, i.e. the building blocks that will be used to construct

the solution. The set of terminal nodes that are used is denoted in Table 1.

This set consists both of simple system properties (processing time pt, weight

w) as well as more complicated terminals that are calculated based on several270

system properties (slack of a job SL, average of processing times pavg). As for

the function set, only simple operators are used because such a con�guration

lead to better results (Ðurasevi¢ et al., 2016). The function nodes that are used

are the summation, subtraction, multiplication, protected division (returns 1 if
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Table 1: Terminal set

Terminal Description

pt processing time of job j on machine i

pmin minimal processing time (MPT) of job j

pavg average processing time of job j across all machines

PAT time until machine with the MPT for job j becomes available

MR time until machine i becomes available

age time which job j spent in the system

dd time until which job j has to �nish with its execution

w weight of job j (wj)

SL slack of job j, −max(dj − pij − t, 0)

division by 0 is detected), and the unary positive operator (pos(x) = max(x, 0)).275

4. Ensembles of DRs

When considering ensembles of DRs, three design choices need to be con-

sidered. The �st choice is how the DRs in the ensemble should collaborate

to construct the schedule. The second is which method will be used to con-

struct the ensemble, i.e. select the individual DRs that will be contained in the280

ensemble. Finally, the size of the ensemble also needs to be speci�ed.

4.1. Ensemble size

The size of the ensemble is an important parameter that directly in�uences

its performance and execution time. Using a larger ensemble size usually leads to

better solutions until a certain point at which the performance of the ensemble285

starts to deteriorate again. Larger ensembles are more costly to evaluate, but

also much harder to interpret. As such, the goal is to keep the ensembles as

small as possible.
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4.2. Ensemble collaboration

In order to be able to apply the ensemble to a problem, it is required to290

de�ne how the rules contained in the ensemble should collaborate to construct

the solution. Until now, this has mostly been done using di�erent ensemble

combination methods, like summation and voting (Park et al., 2017). The idea

behind these methods is that for each decision point in the system all rules

in the ensemble are evaluated and the individual decisions are combined into295

a single decision which is then executed in the system. For example, in the

case of the voting method, the job which was selected by most DRs will be

scheduled next. The sum method, on the other hand, sums the priority values

obtained by each DR for each decision, and the decision with the overall best

priority value is executed. The bene�ts of these methods are that they are300

not expensive to calculate, but can easily outperform the results of individual

DRs. An alternative to this is the ensemble collaboration method used for static

scheduling, in which each rule in the ensemble constructs the entire solution and

the best solution is selected and returned as the �nal solution. The main bene�t

of such ensembles is that they perform much better than individual rules, but305

are still very e�cient to calculate. However, such a strategy is not applicable

for dynamic scheduling environments, as not all information is available at the

start of the system.

The ensemble collaboration method investigated in this paper, which was

proposed in (Ðurasevi¢ et al., 2022) and is denoted as parallel rule collabora-310

tion (PRC), is an attempt to adapt the latter ensemble collaboration method

to dynamic scheduling problems. This collaboration method is based on the

assumption that over time jobs get released into the system, and at one point

several jobs will be waiting in the queue to be scheduled. The idea is that

each rule in the ensemble independently simulates the scheduling of all cur-315

rently released jobs and the value of the optimised criterion is calculated for

each simulation. These simulations give a notion on how good each rule would

perform if it would be used to schedule jobs that are currently waiting, with

the assumption that no new jobs would arrive in the meantime. Based on these
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simulations, the rule that obtained the best value of the optimised criterion for320

the simulation can be selected and used to perform the next scheduling deci-

sion for the real schedule. Algorithm 2 outlines the SGS used with the PRC

collaboration method. It shows how in each scheduling decision all rules con-

tained in the ensemble are applied to schedule all available jobs in a simulation.

The rule which obtained the best criterion value for the simulated schedule is325

used to perform the next scheduling decision. This method slightly resembles

the rollout heuristic(Ðurasevi¢ & Jakobovi¢, 2020), which uses a combination

between exhaustive and heuristics search. The rollout procedure performs an

exhaustive enumeration of all possibilities for the next immediate decision, i.e.

which released job should be scheduled next. However, to determine which of330

these possibilities is the best one, it uses a simple heuristic rule to construct the

rest of the schedule and obtain the quality of each of them. This is then used to

determine which of the decisions in the exhaustive enumeration was the best,

and execute in on the real schedule.

Algorithm 2: SGS used by PRC
1: while unscheduled jobs are available do

2: Wait until at least one job and machine are available

3: for each rule k in the ensemble E do

4: Build the schedule only with released jobs at the current moment

5: Store the quality of the simulated schedule in F [k]

6: end for

7: Determine the rule kbest which has the lowest value objective value of

the simulated schedule based on their values in F [k]

8: Apply rule kbest to determine the next scheduling decision

9: end while

The number of released jobs used in the simulation can be varied, which335

represents a con�gurable parameter of PRC and we denote as look-ahead. This

parameter can take values between 1 and the current number of unscheduled
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jobs released in the system. Using a smaller look-ahead value will result in a

smaller computation time, whereas a larger parameter value will increase the

computation time but will also improve its performance since the simulation340

will be performed by considering a larger number of jobs.

4.3. Ensemble construction

The ensemble construction methods are tasked with �nding the best combi-

nation of DRs that should form the ensemble. All the algorithms tested in this

study represent ensembles as integer arrays consisting of unique numbers, where345

each number represents the index of a DR from the set of available rules. Figure

1 outlines an example of such an encoding, in which �ve DRs are available for

constructing ensembles, and an ensemble of size three needs to be constructed.

In this case, the solution is represented as an array consisting of three numbers,

which denote that the ensemble consists out of DRs with indices 1, 2, and 5.350

This ensemble is then interpreted using one of the previously described ensem-

ble collaboration methods, concretely with the PRC method in this example.

If at the current decision point (t == 0) six jobs are released in the schedule,

each DR performs a simulation by scheduling all released jobs and calculating

the criterion for such a solution. The DR that constructed the schedule with355

the lowest criterion value in its simulation is proclaimed the winner, and it is

used to schedule the next job. In this case DR 5 achieved the lowest Twt value,

meaning that it is used to determine which job should be scheduled at the cur-

rent moment, in this case job 3. When job 3 completes with its execution, the

ensemble is again used to determine the job that should be scheduled next.360

Although various ensemble construction methods have been used in the lit-

erature, in this study we focus on using methods that construct ensembles from

already generated DRs, as this methodology has shown a superior performance

for the considered problem (Ðurasevi¢ & Jakobovi¢, 2017a). The motivation of

this method is to divide the construction of ensembles from the generation of365

DRs, so that each method can solely focus on one part of the problem. There-

fore, one method, like GP, is used to generate a set of DRs, after which another
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Figure 1: Ensemble representation and decoding

method is used to combine these rules into ensembles. One such method that

uses existing DRs to construct ensembles is the simple ensemble construction

(SEC), which is selected due to its good performance in previous studies Ðura-370

sevi¢ & Jakobovi¢ (2019). SEC uses a set of existing DRs and applies a strategy

to determine which DRs from this set should be selected to form the ensem-

ble. The main decision that needs to be performed when de�ning SEC is which

strategy to use when selecting the rules for the ensemble. Therefore, various

strategies were proposed, which will be used for constructing ensembles:375

� Random - randomly select which DRs should form the ensemble

� Probabilistic - each rule has a probability proportional to its �tness of

being selected

� Grow - the ensemble is built incrementally by selecting the rule that leads

to the largest improvement in the performance of the ensemble when added380

to it

� Grow destroy - the ensemble is built in the same way as in the grow
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method, but with twice the size. After it is constructed, rules are it-

eratively removed from it by removing those which lead to the largest

improvement of the results until the desired ensemble size is reached385

� Instance based - selects DRs which perform the best on the instances on

which the currently constructed ensemble is achieving the worst results.

From the previous description it is evident that all strategies used by SEC are

either based on random or greedy selection. However, the selection of the right

combination of DRs that should form the ensemble is in itself an optimisation390

problem, and as such could also be tackled using evolutionary algorithms. This

provides motivation to investigate whether better ensembles could be obtained

by using a more sophisticated search procedure. For that purpose we propose

a simple GA using the previously described integer representation. A simple

crossover operator is used, which randomly selects indices (rules) from the par-395

ents and adds them to the child individual until the desired size. Therefore,

an index that appears in both parents will have a higher probability of being

transferred to the child than those that appear only once. During its execution,

the operator ensures that no duplicate indices are placed into the child. The

mutation operator, on the other hand, selects a random index in the individual400

and replaces it by a random index which is not yet contained in the individual.

For parent selection and replacement the 3-tournament selection is used.

In addition to the aforementioned GA, we also adapt the memetic GA

(MGA) from (Gil-Gala et al., 2020a). This algorithm uses a completely di�er-

ent intuition than all of the aforementioned methods. The previously described405

methods all rely on the calculation of the quality of the ensemble during their

execution. However, the MGA does not evaluate the ensemble. It constructs

the ensemble solely based on the �tness of individual DRs across all the prob-

lem instances. The MGA constructs the ensemble by selecting those rules that

would achieve the best result across the entire problem set when each of them410

would be executed individually on each instance and the best result obtained by

any of the rules would be selected for each instance. This method was used for
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the o�ine scheduling problem, thus each rule in the ensemble would construct

the solution and the best one would be selected. Regardless of this, we also

apply MGA to construct ensembles that will be used with the ensemble collabo-415

ration methods applicable for dynamic problems. The MGA is implemented as

a generational algorithm where parents are randomly selected for mating and a

tournament between the parents and the obtained o�spring is used to determine

which individual advance to the next generation (thus ensuring elitism). The

same encoding as in the aforedescribed GA is used to represent the individual.420

For the genetic operators the one point crossover is used, whereas the mutation

is based on randomly changing between 1 and half of the elements in the en-

semble. Finally, a local search algorithm is used as another genetic operator to

improve some of the individuals of the population after they are evaluated. It

uses a unique neighbourhood structure in which each neighbour is obtained by425

replacing the worst rule in the ensemble with another rule.

5. Experimental setup

In order to test the various ensemble collaboration and combination meth-

ods, a problem set of 180 instances was used. This set was divided into three

disjoint sets, namely the training, validation, and test sets. Each of these sets430

contains 60 problem instances with di�erent characteristics. The number of jobs

ranges from 12 to 100, whereas the number of machines ranges between 3 and

10. Additionally, the instances were generated with di�erent due date character-

istics, meaning that certain instances will be easier whereas other will be harder

to solve. More details about the problem instance generation procedure can be435

found in (Ðurasevi¢ et al., 2016). The objective in these problem instances is to

minimise the Total weighted tardiness (Twt) value. Since individuals are evalu-

ated on sets consisting out of several instances, their �tness value is calculated

as the sum of the Twt values obtained from the schedules constructed for each

instance. In addition, since the sets contain instances of di�erent sizes, the Twt440

values are additionally normalised to ensure that all the instances have a similar
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in�uence on the total �tness value.

The training set is used by GP to evolve individual DRs. This is done in a

way that GP was executed independently 50 times, and from each execution the

best individual on the training set was stored. This resulted in a set of 50 DRs445

that are used to construct the ensembles. The GP used a population of 1 000

individuals, a mutation probability of 0.3, and a termination criterion of 80 000

function evaluations. In addition, the subtree, uniform, context-preserving, and

size-fair crossover operators and subtree, hoist, node complement, node replace-

ment, permutation, and shrink mutation operators were used (Poli et al., 2008).450

It should be outlined that all the rules used for this part were obtained in a

previous study (Ðurasevi¢ et al., 2016) and that no new rule generation was

needed.

The validation set is used by the ensemble construction methods to select

which rules should form the ensemble. The random and probabilistic strategies455

used by SEC will construct 1 000 random ensembles and select the best one. The

GA uses a population of 100 individuals for PRC and 50 individuals for the sum

and vote combination method, a mutation probability of 0.7, and 1 000 function

evaluations. The MGA uses a population of 1 000 individuals, the crossover

probability of 0.8, mutation probability of 0.2, and the local search is executed460

for 5 iterations with a ratio of 0.2 (it is applied on every �fth individual). It

executes for 1 000 generations, which is more than the other methods, but again

it needs to be stressed out that the �tness function of this method is di�erent

and not comparable to the others. All the aforementioned parameters were

obtained after a preliminary parameter tuning phase.465

Finally, the test set is used to evaluate the evolved ensembles on unseen

problem instances. To validate the performance of the proposed PRC collab-

oration method, the summation and voting collaboration methods, which are

most commonly applied in the literature, are used as a baseline for comparison

Park et al. (2017); Ðurasevi¢ & Jakobovi¢ (2019). All the results denoted in the470

tables and �gures are calculated on this set. Each experiment is repeated 30

times to ensure statistical signi�cance. In the results section several descriptive
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statistics like the minimum, median, and maximum values will be denoted for

the 30 obtained ensembles in each experiment. In addition, to check whether

the results are statically signi�cant, the Kruskal Wallis test is used with the475

post-hoc Dunn test. The results are considered signi�cant if a p-value below

0.05 is obtained.

6. Results

In this section we denote the collaboration methods as sum (summation),

vote (voting), and PRC-n, where n denotes the number of available jobs used480

in the simulation. PRC-∞ will be used to denote the case when all available

jobs are used for the simulation. Regarding the ensemble construction methods,

they will be denoted as rand (random), prob (probabilistic), grow (grow), grdt

(grow destroy), and inst (instance based).

Table 2 shows the results obtained by each of the considered ensemble con-485

struction and collaboration methods. The best results for each ensemble collab-

oration method and each ensemble size are denoted with bold. As expected, it

can be seen that no single ensemble construction method is dominant over all the

case, which is veri�ed with statistical tests. For PRC-1, no signi�cant di�erence

exists between the ensemble construction methods for size 3 (p-value=0.10). On490

the other hand for size 5 (p-value=0.0014) the rand method is signi�cantly better

than the grow, grdt and inst methods, and for size 7 (p-value≈0) the inst method
is signi�cantly worse than any other ensemble construction method. In all other

cases, the ensemble construction methods perform equally well, which can be

seen from the table since the di�erence between their median values is small.495

For the PRC-∞ collaboration method and the ensemble size 3 (p-value≈0) the
MGA achieves statistically the best results, whereas for sizes 5 (p-value=0.153)

and 7 (p-value=0.1) there are no signi�cant di�erences between the construc-

tion methods. For the sum combination method, no signi�cant di�erence exists

for sizes 3 (p-value=0.12) and 5 (p-value=0.585) between the tested ensemble500

construction methods used. For size 7 (p-value≈0) MGA performs signi�cantly
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worse than rand, grow, grdt, and inst, while GA performs signi�cantly worse

than inst. For the vote collaboration method, in case of size 3 (p-value=0.008)

MGA performs better than grow and grdt, in case of size 5 (p-value≈0) MGA

is signi�cantly better than all methods except inst, and in case of size 7 (p-505

value≈0) MGA performs better than all other methods except GA and rand.

In all cases we see that when compared to the individual rules, the constructed

ensembles achieve better minimum, median and maximum values, which shows

that they can easily outperform the individual rules.

Based on the previous analysis, it is di�cult to outline which of the en-510

semble construction method would be the best. Therefore, for each parameter

combination we rank the median values of each construction method (1 being

the best), and then average the ranks across all parameter values to obtain the

average rank that each construction method obtained. The average ranks, as

well as the �nal rank of each method are denoted in Table 3. Additionally,515

the table also outlines the number of times the best median value was obtained

for each construction method and ensemble size (denoted as NB in the table).

These results show that certain methods tend to perform better than others

when considering all the results. Most notably, MGA achieved the lowest rank,

followed closely by rand and inst. On the other hand, GA, and the grow and520

grdt methods obtained the worst rank. Although these results are slightly sur-

prising, they just show that simple methods already perform well enough, and

that it is not required to use complicated optimisation algorithms to search for

the best ensemble. Rather, it makes more sense to search for a better strat-

egy by which the rules forming the ensemble should be selected, since based on525

the good results obtained by MGA and inst, this has a greater e�ect on the

performance of the construction methods.

To better outline how the di�erent ensemble construction methods perform

for the novel PRC ensemble combination methods, Figure 2 shows the box

plots for all three ensemble sizes. The box plots outline what was already530

demonstrated by statistical tests, which is that most methods achieve similar

results. The one results that stands out most is the one obtained by MGA
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Table 2: Results obtained by di�erent ensemble construction and collaboration methods

Collaboration Construction Size

3 5 7

min med max min med max min med max

PRC-1

rand 14.86 15.34 15.88 15.01 15.29 15.63 14.79 15.44 15.88

prob 15.03 15.42 15.93 14.91 15.42 16.08 15.08 15.43 16.01

grow 14.72 15.47 16.18 15.06 15.44 16.11 14.89 15.45 15.98

grdt 14.95 15.48 15.99 14.96 15.42 16.19 15.01 15.49 15.80

inst 14.95 15.34 15.92 15.09 15.50 15.95 15.27 15.63 16.11

GA 14.90 15.43 16.02 14.82 15.41 16.12 15.03 15.49 16.00

MGA 14.82 15.40 15.89 14.79 15.37 15.69 14.96 15.35 15.83

PRC-∞

rand 14.69 15.32 15.70 14.80 15.23 15.85 14.85 15.10 15.64

prob 14.73 15.32 15.53 14.89 15.20 15.58 14.78 15.15 15.95

grow 14.44 15.36 15.95 14.68 15.17 15.72 14.58 15.12 15.80

grdt 14.44 15.41 15.88 14.65 15.17 15.82 14.78 15.14 15.73

inst 14.81 15.15 15.76 14.69 15.09 15.55 14.68 15.15 15.66

GA 14.87 15.35 15.58 14.73 15.24 15.88 14.76 15.25 16.16

MGA 14.69 14.92 15.49 14.91 15.21 15.56 14.77 15.20 15.52

sum

rand 15.01 15.53 15.92 14.91 15.34 15.85 14.81 15.26 16.12

prob 15.01 15.49 15.80 14.73 15.36 15.91 15.01 15.35 15.93

grow 15.04 15.70 16.73 14.96 15.27 16.15 14.93 15.20 16.13

grdt 15.03 15.45 16.63 14.95 15.32 16.15 14.93 15.24 16.05

inst 14.70 15.51 16.08 14.87 15.33 15.88 14.93 15.22 15.88

GA 14.86 15.45 16.10 15.02 15.38 15.97 14.89 15.36 16.03

MGA 15.07 15.45 15.88 15.08 15.47 15.79 15.30 15.46 15.87

vote

rand 15.19 15.63 15.90 15.11 15.71 16.51 15.02 15.55 15.99

prob 14.98 15.61 15.87 15.09 15.61 16.14 15.04 15.73 16.55

grow 15.07 15.69 16.40 15.19 15.70 16.40 14.82 15.70 16.22

grdt 15.07 15.73 16.40 15.12 15.69 16.40 15.08 15.65 16.22

inst 15.14 15.73 16.29 14.99 15.53 16.46 15.07 15.66 16.02

GA 15.08 15.57 16.27 15.13 15.61 16.09 15.11 15.58 16.22

MGA 15.10 15.49 16.03 15.08 15.41 16.12 15.08 15.41 15.78

Individual rules 15.23 15.94 17.59 15.23 15.94 17.59 15.23 15.94 17.59
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Table 3: Collective statistics for di�erent ensemble construction methods

Construction method NB Avg. rank Final rank

MGA 6 3 1

rand 3 3.50 2

inst 2 3.75 3

prob 0 4.08 4

grdt 1 4.17 5

grow 2 4.33 6

GA 0 4.58 7

for ensemble size 3, which represents the best result from all the experiments

and is signi�cantly better than all others. Furthermore, it can be seen that

the performance for most methods increases with the increase of the ensemble535

size. In all considered cases the constructed ensembles perform signi�cantly

better than the individual DRs. Even more, for the larger ensemble sizes it

can be seen that even up to 50% of the obtained ensembles achieve a better

performance than the best individual DRs, which additionally speaks in favour

of their performance.540

When comparing the collaboration methods (using the construction method

which achieved the best median value) for the considered ensemble sizes, the

di�erences are much more evident. For ensembles of size 3 the collaboration

methods achieve signi�cantly di�erent results (p-value≈0), with PRC-∞ per-

forming signi�cantly better than all the other methods, and PRC-1 performing545

signi�cantly better than vote. For size 5 the results are again signi�cantly di�er-

ent (p-value≈0), with PRC-∞ achieving signi�cantly better results than other

collaboration methods. Finally for size 7 a signi�cant di�erence can again be

observed (p-value≈0) with PRC-∞ performing better than any other collabora-

tion method, and sum performing better than vote. These results demonstrate550

that the proposed PRC-∞ always signi�cantly outperforms the sum and vote
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(a) Ensemble size 3
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(b) Ensemble size 5
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(c) Ensemble size 7

Figure 2: Performance of the PRC-∞ collaboration method with ensembles constructed by

various construction methods
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Table 4: Collective statistics for di�erent ensemble collaboration methods

NB Avg. rank Final rank

PRC-1 1 2.52 2

PRC-∞ 20 1.05 1

sum 0 2.57 3

vote 0 3.86 4

collaboration methods that were mostly considered in the literature. Similarly

as for the ensemble construction methods, we denote the average and �nal rank,

as well as the number of best achieved median values for each ensemble collab-

oration method in Table 4. It can clearly be seen that the PRC-∞ method555

achieved the best median value in all experiments except one. On the other

hand, the sum and PRC-1 methods have a similar average rank, and as such

can be considered equally e�cient. This suggests that using only a single job

for the simulation might is enough to outperform the standard ensemble combi-

nation methods, but rather more jobs need to be considered to get a signi�cant560

improvement.

To better outline the di�erences between the various ensemble collaboration

methods, the best result for each of the collaboration methods is shown in Figure

3 for the three considered ensemble sizes. The �gure clearly shows that PRC-∞
constantly obtained much better results than the other methods, whereas the565

performance of the other methods depends highly on the size of the ensemble

that was used. However, all methods clearly outperformed individual DRs by a

large margin.

7. Further analysis

In this section, we further analyse di�erent elements of the proposed PRC570

method and make more detailed comparisons between the di�erent ensemble

construction and collaboration methods.
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Figure 3: Comparison of the best results obtained by each collaboration method

7.1. In�uence of the look-ahead parameter

In this section we investigate the in�uence the look-ahead parameter of the

PRC method. This parameter determines how many unscheduled jobs that are575

released into the system will be used in the simulations created by the DRs of

the ensemble to determine which rule performs the best decision. Naturally, it is

expected that as more jobs are considered in the look-ahead that the simulations

will be more precise. This will allow the ensemble to select the rules that

performs a better decision at the current point, which should result in an overall580

better performance of the ensemble. The method was tested with several values

for this parameter and the results are summarised in Figure 4. The tests were

performed using the rand, inst and MGA methods as they achieved the best

results.

For all three methods a similar behaviour can be observed for the tested585

look-ahead parameter values. As for the look-ahead parameter, it can be seen

that for smaller values (1-3) the method performs worse and is slightly unstable.

For example, for some cases (especially for the rand method) it can happen that

the increase in the look-ahead parameter does not lead to a better performance.

The reason for this is that it is di�cult to perform good approximations based590

only on a few jobs in the simulation. Thus a small variation in the look-ahead

parameter value can largely a�ect the behaviour of the ensemble. However,

as more jobs are used in the simulation, the results become more consistent,
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(a) Results obtained by the rand method
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(b) Results obtained by the inst method
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(c) Results obtained by the MGA

Figure 4: Results for di�erent values for the look-ahead parameter of PRC

especially when 7 or more jobs are used. It can even be seen that with smaller

look-ahead parameter values in some cases it is possible to achieve similar results595

to those when all released jobs are considered. Thus the execution time of the

method can be improved with no or a small decrease in the performance of

ensembles.

7.2. Composition of ensembles

An interesting thing which we want to investigate is the composition of en-600

sembles. We want to analyse whether any particular ensemble combination or
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construction method has a preference to select certain rules into the ensem-

ble. Figure 5 shows a histogram of the percentages that each of the 50 consid-

ered DRs appeared in the best ensembles constructed by each of the methods.

First, sub�gure 5a shows the histogram for the considered ensemble collabora-605

tion methods. We observe that regardless of the collaboration method that is

used, all of them have similar preferences. For example, all collaboration meth-

ods quite often use rules with indices 11, 15, 19, and 30 for constructing the

ensembles. On the other hand, there is also a group of rules that are rarely used

by any of the collaboration methods, such as rules with indices 2, 10, 12,14, 16,610

18, 23-26, 35, 40, 42-44. This shows that a lot or rules simply do not seem to

be suitable for being used in the ensembles. Additionally, in some cases certain

rules are used more often by speci�c collaboration methods, like in the case of

rule with index 3 that is mostly used by PRC-1, or rule 32 which is usually used

by PRC-∞ and vote. However, it is very interesting that a lot of rules are often615

selected for all collaboration methods, which would suggest that the selection of

the rules for the ensemble is not heavily dependent on the collaboration method

which.

Sub�gure 5b shows the distribution of rules used by di�erent ensemble con-

struction methods. In this case, more evident di�erences can be observed.620

Again, there are several DRs that are not selected by any ensemble construction

method, which are the same as those outlined previously. However, for those

ensembles which are selected most of the times it can be noticed that there is

discrepancy between the di�erent methods. Most notably, the inst and MGA

methods usually select certain rules more often than the other methods, whereas625

the other �ve methods behave more consistently with each other. However, this

is expected, as both MGA and inst use a completely di�erent strategy to select

the rules that form the ensemble in comparison to the other methods.

Based on the previous analysis, we can conclude that some rules are in-

herently more favoured to be selected to form ensembles, regardless of which630

ensemble combination or construction method is used. This suggests that some

DRs are a priori more suitable to be used for ensembles. However, the question
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is whether such a thing could be detected from those rules individually, without

constructing and evaluating ensembles. If yes, this could lead to the design of

methods that could construct general ensembles which could be used by any635

collaboration method in a much shorter time. One potential feature that could

be used for that is the individual performance of DRs. Figure 6 shows the de-

pendency between the individual �tness of DRs and the percentage by which

they appear in the best ensembles obtained by all collaboration and construc-

tion methods. This �gure suggests that the most �t rules appear more often in640

ensembles. However, it can also be seen that some quite poor rules appear in

the same percentage as some more �t rules. Thus, it seems that it is not possible

to solely use �tness for this decision. This is also backed up by the performance

of the probabilistic construction method which favoured the selection of more

�t individuals, but that did not lead to any improvement in the results. To gain645

a better notion on whether any correlation between the individual �tness and

percentage of it appearing the the best ensembles exists, the Spearman's Rho

correlation test was used. The correlation value of -0.414 was obtained, which

suggest a slight negative correlation. This partially backs up the previous ob-

servations, but still shows that because of the lack of a stronger correlation650

between these two measures we would require additional information by which

to determine the suitability of DRs for ensembles.

7.3. Generality of rules

In this section we further investigate whether ensembles constructed for one

collaboration method are reusable by di�erent collaboration methods. This655

analysis is performed by interpreting the ensembles constructed with one col-

laboration methods with the remaining three collaboration methods. Table 5

shows the summary of median values obtained for the ensembles of size 5, since

for this size most of the collaboration methods achieved the best overall results.

The methods denoted in the rows represent the collaboration method used dur-660

ing learning, whereas the method denoted in the column is the one used to

interpret the constructed ensemble. The di�erence between the obtained result
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Figure 6: Scatter plot denoting the dependency between the �tness of rules and the percentage

by which they appear in ensembles
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and the reference median value obtained when the same collaboration method

was used both during ensemble construction and evaluation is denoted in brack-

ets. A negative value denotes that the obtained value is lower than the refer-665

ence value (meaning the results improved), whereas a positive value denotes

it is larger (meaning the results deteriorated). The table shows that certain

collaboration methods are more resilient. For example, ensembles constructed

with any collaboration methods can be interpreted with PRC-∞ or vote and the

results will be similar to those that were obtained if those two methods would670

have been used during the ensemble construction process. This can best be seen

from the fact that in both cases the results do not deteriorate more than by 1%

for all cases. The situation with PRC-1 is slightly di�erent, as the results are

somewhat worse when ensembles constructed for other collaboration methods

are interpreted as PRC-1 ensembles. However, the sum collaboration method675

is the least general, meaning that when using it on ensembles constructed by

other collaboration methods, the results are in many cases signi�cantly worse.

The deterioration of the results in comparison to the reference median values

can even reach up to 3%. Looking from the side of the methods, the inst and

MGA methods seem to obtain ensemble sets which work generally the best for680

all collaboration methods. Since MGA evolves the same ensemble regardless of

the collaboration method, the results only depend on the collaboration method

that is used to interpret them.

These observations are quite important as they show several things. First,

they give additional proof that similar rules are used by di�erent ensemble col-685

laboration methods. Therefore, one ensemble can in most cases be e�ciently

interpreted with an alternative ensemble collaboration method. Second, the

PRC-∞ method demonstrated to be the most resilient method to these changes,

which means that the ensembles can be constructed using a more computation-

ally e�cient collaboration method, and then this ensemble can later be inter-690

preted with CRP-∞.

To further investigate the generality of the PRC method, we investigate how

the ensembles evolved for the PRC-1 and PRC-∞ perform when using di�erent
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Table 5: Results obtained when interpreting ensembles obtained for one collaboration method

with other collaboration methods

Interpretation

PRC-1 PRC-∞ sum vote

PRC-1

rand 15.29 15.19 (-0.01) 15.47 (+0.13) 15.67 (-0.04)

prob 15.42 15.33 (+0.16) 15.77 (+0.41) 15.57 (-0.04)

grow 15.44 15.17 (0) 15.67 (+0.40) 15.68 (-0.02)

grdt 15.42 15.16 (-0.01) 15.75 (+0.43) 15.68 (-0.01)

inst 15.50 15.04 (-0.05) 15.30 (-0.03) 15.57 (+0.04)

GA 15.41 15.39 (+0.15) 15.67 (+0.29) 15.73 (+0.12)

MGA 15.37 15.21 (0) 15.47 (0) 15.41 (0)

PRC-∞

rand 15.64 (+0.35) 15.20 15.74 (+0.40) 15.69 (-0.02)

prob 15.50 (+0.08) 15.17 15.70 (+0.34) 15.77 (+0.16)

grow 15.50 (+0.06) 15.17 15.70 (+0.43) 15.77 (+0.07)

grdt 15.50 (+0.08) 15.17 15.84 (+0.52) 15.80 (+0.11)

inst 15.42 (-0.08) 15.09 15.39 (+0.06) 15.54 (+0.01)

GA 15.50 (+0.09) 15.24 15.73 (+0.35) 15.69 (+0.08)

MGA 15.37 (0) 15.21 15.47 (0) 15.41 (0)

sum

rand 15.49 (+0.20) 15.14 (-0.06) 15.34 15.74 (+0.03)

prob 15.56 (+0.14) 15.19 (+0.02) 15.36 15.65 (+0.04)

grow 15.62 (+0.18) 15.20 (+0.03) 15.27 15.59 (-0.11)

grdt 15.56 (+0.14) 15.22 (+0.05) 15.32 15.65 (-0.04)

inst 15.59 (+0.07) 15.17 (+0.08) 15.33 15.63 (+0.10)

GA 15.46 (+0.05) 15.22 (-0.02) 15.38 15.71 (+0.10)

MGA 15.37 (0) 15.21 (0) 15.47 15.41 (0)

vote

rand 15.66 (+0.37) 15.11 (-0.09) 15.67 (+0.33) 15.71

prob 15.69 (+0.27) 15.13 (-0.04) 15.68 (+0.32) 15.61

grow 15.51 (+0.07) 15.18 (+0.01) 15.62 (+0.35) 15.70

grdt 15.50 (+0.08) 15.15 (-0.02) 15.60 (+0.28) 15.69

inst 15.52 (+0.02) 15.14 (+0.05) 15.25 (-0.08) 15.53

GA 15.51 (+0.10) 15.11 (-0.13) 15.73 (+0.35) 15.61

MGA 15.37 (0) 15.21 (0) 15.47 (0) 15.41
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Figure 7: Results for applying the PRC-1 and PRC-∞ methods with di�erent look-ahead

parameters

number of jobs for the look-ahead parameter. Figure 7 shows the box plot of

the results for PRC-1 (denoted as 1 in the image) and PRC-∞ (denoted as695

∞ in the image) across di�erent look-ahead values. The results demonstrate

that regardless which collaboration method was used when constructing the

ensembles, both work equally well when used with di�erent look-ahead values.

This observation is important, as it shows that the lowest look-ahead value can

be used during construction of the ensembles to speed up the learning process.700

Then, when required, this parameter can freely be varied to larger values without

any performance loss.

7.4. Runtime analysis

Table 6 outlines execution times in seconds obtained by all ensemble col-

laboration methods for the considered ensemble sizes. These execution times705

represent the average of executing 30 ensembles for each method when solving

all instances in the test set. In addition, the execution time obtained for the

individual DRs, which is equal to 0.08 seconds, is also outlined. As can be seen,

the vote and sum method have a quite similar execution time, which is only

slightly larger than the execution time of the individual DRs. On the other710

hand, the execution times of the PRC method are signi�cantly higher. Even

when only a single job is considered in the simulation, the method is slower by

a factor similar to the number of rules in the ensemble. As the number of jobs

in the simulation increases, the execution times increase, however, the increase
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Table 6: Execution times in seconds of di�erent ensemble collaboration methods

Size
Method

DR sum vote PRC-1 PRC-2 PRC-3 PRC-5 PRC-7 PRC-10 PRC-20 PRC-∞

3 0.08 0.12 0.10 0.25 0.42 0.53 0.71 0.85 0.95 1.01 1.00

5 0.08 0.18 0.15 0.39 0.66 0.90 1.20 1.43 1.62 1.96 1.95

7 0.08 0.23 0.21 0.53 0.91 1.19 1.64 1.97 2.47 2.60 2.80

is smaller as more jobs are considered. The reason for this is that there are715

less situations in the system when such a large number of unscheduled jobs is

available. In the end, for a reasonable number of jobs in the simulation (7 or

higher) the method is about an order of magnitude slower than the individual

DRs, equalling to a few seconds. Although even these values should be accept-

able for dynamic systems, it should be noted that this is the execution time for720

the entire test set, therefore individual scheduling decisions are performed in a

much smaller time.

Table 7 shows the execution times for di�erent ensemble construction meth-

ods. The sum combination method was used during measurement, but based

on the ratios between the execution times of collaboration methods it would725

be easy to approximate their execution times also for the other collaboration

methods. As can be seen, the rand, prob and GA methods have a similar execu-

tion times for all ensemble sizes, which is expected as they were �xed to evolve

1000 ensembles. This just shows that using additional probability calculations

in the prob method, or genetic operators in GA does not lead to any signi�cant730

overhead. The execution times for the grow and grdt methods are denoted for

constructing only a single ensemble. Therefore it can be seen that the execution

times for constructing only a single ensemble are quite high. The reason for

this is that they greedily construct the schedule and therefore perform many

ensemble evaluations. However, as seen by the results, they did not perform735

better than the faster and more simple rand method. Finally, inst and MGA

have the lowest execution times, although they achieve among the best results.

The reason is that MGA does not use the evaluation of ensembles at all, while
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Table 7: Execution times in seconds of di�erent ensemble construction methods

Size
Method

rand prob grow grdt inst GA MGA

3 116.50 115.00 9.20 32.68 0.33 105.53 7.89

5 168.00 167.00 22.71 80.71 0.71 156.40 12.87

7 222.90 219.50 40.17 149.54 1.21 207.00 14.01

inst does only each time a new rule is added to the ensemble. This makes these

two methods the most e�cient.740

7.5. Ensemble size analysis

A valid question that can be raised is whether the results could be further

improved if larger ensemble sizes would be used aside from those that were

used for the main experiments. Figure 8 shows the median values obtained by

the collaboration methods for di�erent ensemble sizes. As can be seen from745

the results, using larger ensemble sizes does not bring any improvement over

smaller ensembles. On the contrary, the results of PRC-1 and sum deteriorate

signi�cantly with a too large increase of the ensemble size. PRC-∞ and vote

seem to be more resilient to the number of rules in the ensemble and even

obtain some good results for certain larger sizes. This �nding is important as750

it motivates to keep ensembles smaller, which also has a positive e�ect on their

runtime.

7.6. Analysis on the frequency of using rules in the ensemble

In this section we shortly analyse how many times each rule in the ensembles

generated for the PRC-∞ collaboration method are actually selected to perform755

the decisions. The method used for the construction of the ensemble was the

instance based method. The reason for selecting this method was due to its

property that larger ensembles always contain the same DRs as the smaller

ones, therefore it is easier to denote the change in the application percentage of
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Figure 8: Median values obtained for di�erent ensemble sizes when using the ensembles con-

structed by MGA

DRs as the ensemble size increases. However, similar distributions were observed760

also for other ensemble construction and collaboration methods.

Table 8 provides the summary for three selected rules, one for each of the

considered ensemble sizes. The table denotes the individual �tness of each rule

in the ensemble, and for each rule the percentage of decisions in which this rule

was applied. As it can be seen, usually one rule is applied in most situations.765

For ensemble size 3 this rule is applied in around 80% of situations, whereas

for the ensembles of sizes 5 and 7 it is applied in around 76% of cases. For

the other rules it can again be seen that one or two rules are usually applied in

more situations than others. Especially for size 7, some rules are applied only

in around 2% of decisions. Looking at the �tness of the rules contained in the770

ensembles, one can notice that rules of di�erent quality are selected to form the

ensemble, from worse (rules 45 and 46), to better ones (rule 33). Even more, one

of the worst rules in the ensemble (rule 46) is actually used to perform most of

the decisions. Regardless of this, the ensembles in the end achieve a signi�cant

improvement in the performance in comparison to the individual rules. These775

results demonstrate how the rules can complement each other, since one rule

37



Table 8: Frequency of applying individual DRs in the ensemble used by PRC-∞

Ensemble

size

Rule Ensemble

�tness46 15 30 11 1 33 45

Rule �tness 16.02 15.77 15.67 15.72 15.92 15.31 16.23

Application

percentage

3 80.28 14.20 5.52 - - - - 14.80

5 76.55 5.97 3.38 10.90 3.20 - - 14.69

7 76.43 5.57 2.96 8.73 2.20 2.42 1.70 14.68

that generally performs good decisions can be used in most of the cases, and

with other rules being applied to more speci�c situations to improve the results.

Furthermore, this analysis also shows that even poor rules can be improved by

complementing them with additional rules that make better decision in certain780

situations.

7.7. In�uence of the set used for ensemble construction

The �nal thing we analyse is whether there is really a need for using the

validation set, or can the same training set that was used to generate DRs also

be used to construct the ensembles. For that purpose, the main experiments785

were performed once again, however, this time by using the training set dur-

ing the construction of the ensembles. Table 9 shows only a short summary

of the results when comparing both sets. The table outlines the number of

times better ensembles were obtained using the validation or training set, as

well total di�erence between their median values (a negative value denotes that790

better median values were obtained using the validation set in addition). The

results denote that it is not easy to say that using either set is better. Cer-

tain construction methods seem to work better with a certain set, although in

more cases better median values were obtained when using the validation set

to construct the ensembles. Thus it might seem to be slightly better to use795

the additional validation set, since it might reduce the chance of over�tting the

ensembles to the problems that were already used for designing DRs. However,
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Table 9: Summary of the results when using the validation or the training set for constructing

ensembles

Validation better Training better Median di�erence

rand 10 2 -0.83

prob 8 4 -0.80

grow 7 5 -0.15

grdt 3 9 0.04

inst 5 7 0.50

GA 7 5 -0.24

MGA 6 6 0.17

even if the training set is used to construct the ensembles, it will not lead to a

large di�erence in the results.

8. Conclusion800

This paper investigates the application of a novel ensemble collaboration

method based on a di�erent premise than standard methods that combine the

decisions of individual rules into a single one. The paper also investigates two

novel applications of evolutionary algorithms to construct ensembles. The re-

sults demonstrated that the proposed ensemble collaboration method achieves805

a signi�cantly better performance than standard collaboration methods used

in the literature. Furthermore, it was demonstrated that the performance of

proposed collaboration method was not largely a�ected by the choice of rules

in ensemble or the look-ahead parameter, which outlines its resilience to the

choice of parameters. Naturally, the proposed collaboration method does have810

certain limitations that need to be taken into account. The execution time of

this method is larger than those of the other standard collaboration methods

like vote and sum, although still being small enough to be applicable in dy-

namic environments. Furthermore, this collaboration method is only applicable
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in overloaded systems, since it is required that a certain number of jobs are wait-815

ing to be scheduled at each point in time so that the ensemble can construct a

simulation of the schedule.

The additional analysis of the obtained results show several interesting �nd-

ings. First, it is demonstrated that algorithms which rarely evaluate ensembles,

but perform the selection of the rules only based on their individual performance,820

achieve equally good results as the more expensive ones, but in a smaller execu-

tion time. In addition, the analyses demonstrate that all ensemble collaboration

methods in most cases use similar rules to construct ensembles. This shows that

some rules are inherently better suited to form ensembles than others. As a re-

sult, an ensemble of rules could be constructed regardless of which collaboration825

method is used to interpret it, meaning that only a single ensemble needs to be

constructed and can be interpreted using di�erent collaboration methods. All

these �ndings provide interesting insights in hyper-heuristic ensembles, which

show that certain design choices in the construction of ensembles need to be

reevaluated.830

Based on the obtained results, we identify three main future research di-

rections. First, we plan to research alternative ensemble combination methods

to investigate whether it is possible to discover better ways in which rules in

the ensemble could collaborate. Furthermore, it would be interesting to inves-

tigate the combination of both collaboration methods, i.e. creating ensembles835

of ensembles. This could potentially improve the results at the cost of a slower

execution time. Finally, as the MGA and the instance based strategy for SEC

achieved among the best results, this provides more motivation to research en-

semble constructing methods which are not guided by the performance of the

constructed ensemble, but rather by certain properties of the individual rules.840
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