
Ensembles of priority rules to solve scheduling problems
in real-time

Francisco J. Gil-Galaa,∗, Marko –Durasevićb, Ramiro Varelaa, Domagoj
Jakobovićb

aDepartment of Computer Science, University of Oviedo, 33271, Gijón, Spain
bFaculty of Electrical Engineering and Computing, University of Zagreb, 10000, Zagreb,

Croatia

Abstract

Priority rules are one of the most common and popular approaches to real-time

scheduling. Over the last decades, a number of methods have been developed

to automatically generate priority rules. Moreover, combining rules into en-

sembles showed to be better than using a single rule in many cases. In this

paper, we analyze different ways to create and use ensembles of rules previously

evolved by genetic programming. In our study, we classify ensembles as either

collaborative or coordinated, depending on how the rules are used. In the first

case, all the rules contribute to build the same solution, while in the second

case, each rule works independently on its own solution, and the best of them

is taken as the solution of the ensemble. We observed that each method has its

own strengths and weaknesses, which motivates their use in combination. From

this hypothesis, we developed new methods to evolve and combine collaborative

and coordinated ensembles and evaluated these methods on the One Machine

Scheduling Problem with time-varying capacity and total tardiness minimiza-

tion. The results of the experimental study provided interesting insights into

the use of ensembles and show that our proposals outperform previous methods

∗Corresponding author
Email addresses: giljavier@uniovi.es (Francisco J. Gil-Gala),

Marko.Durasevic@fer.hr (Marko –Durasević), ramiro@uniovi.es (Ramiro Varela),
Domagoj.Jakobovic@fer.hr (Domagoj Jakobović)

Preprint submitted to Computers and Industrial Engineering March 23, 2023

for the same problem.

Keywords: Scheduling, Priority Rules, Ensembles, Metaheuristics,

Hyperheuristics.

1. Introduction

Scheduling problems arise in many real-world environments, such as injection

moulding industry[38], bus driver scheduling [29], and electric vehicle charging

[50]. In this paper, we focus on the One Machine Scheduling Problem (OMSP)

with variable capacity over time and the objective of total tardiness, which is

denoted as (1, Cap(t)||
∑
Tj) in the standard α|β|γ notation proposed in [21].

In this problem, the objective is to schedule a set of jobs without exceeding

the capacity of the machine. Therefore, a priority must be computed for each

of the jobs, and the machine processes them in the given order. The unique

characteristic of the (1, Cap(t)||
∑
Tj) problem is that some of the jobs can be

processed in parallel, since the machine has a capacity that varies over time and

is usually equal or greater than 2.

The (1, Cap(t)||
∑
Tj) problem was introduced in [24] in the context of

scheduling the charging times of a large fleet of electric vehicles. Hernandez-

Arauzo et al. [24] proposed to solve the (1, Cap(t)||
∑
Tj) problem using the

Apparent Tardiness Cost (ATC) rule, which was used as a guideline for creating

a schedule builder. This framework is commonly referred to as on-line schedul-

ing [23], as it can be used to create the schedule in parallel with its execution,

in which case the decisions must be made quickly. The reason why ATC and

similar rules can be used for on-line scheduling is their low time complexity

compared to classical metaheuristics such as genetic algorithms [34].

The performance of existing priority rules for various scheduling problems

is still very limited, which makes it difficult to use an appropriate priority rule

for the problem under consideration. Therefore, many studies put their focus

2

on the automatic design of priority rules using different methods, among which

Genetic Programming (GP) stands out as the most commonly used [2].

Using GP, human competitive results have already been obtained in various

fields such as hardware design, bioinformatics, symbolic regression and schedul-

ing [31]. GP is usually interpreted as a hyper-heuristic since it can be applied

to obtain heuristics or rules that can solve any number of problems. According

to the taxonomy proposed by Burke et. al. [3], this paradigm is often referred

to as hyper-heuristics based on heuristic generation. In recent years, many

works have applied GP to evolve rules for various NP -hard problems, such as:

bin packing [3], job shop scheduling [22, 36, 48], resource constrained project

scheduling [4, 5, 8], scheduling unrelated parallel machines [12], one machine

scheduling [6, 16] or travelling salesman problem [7], among others.

In general, GP is used as a learning algorithm in which the fitness of individ-

uals (rules) is computed from the results obtained by the rules in solving a set

of instances of a given problem, usually called the training set. As in machine

learning, the solution (the best rule evolved by GP) is evaluated on an unseen

set of instances, which is in turn called the test set. Although the rules evolved

by GP usually outperforms the ATC rule and other manually created rules, the

results are still far from those obtained with evolutionary algorithms, leaving

much room for improvement [34]. Since GP is a stochastic method, it is neces-

sary to run it several times to evolve good rules. Usually, only the best evolved

rule is used, which means that most of the evolved rules are simply discarded in

the end. For these reasons, several papers studied the simultaneous application

of a set of priority rules to generate schedules, i.e., ensembles [9, 18, 41].

In contrast to GP, which has long been used in on-line scheduling problems,

ensemble methods have only recently gained attention and are being applied in

the context of on-line scheduling problems [9, 41]. We define an ensemble as a set

3

of rules that can be classified as coordinated and/or collaborative depending on

how the rules construct the solution. On the one hand, collaborative approaches

use the rules together to construct a single solution [9, 41]. The rules collaborate

by using a particular combination method that aggregates the decisions of all

the rules in the ensemble into a single decision. The coordinated approach, on

the other hand, is based on each rule building its own solution independently

and then choosing the best solution among them [18].

In this paper, we are interested in creating ensembles specifically designed

to solve the (1, Cap(t)||
∑
Tj) problem. In previous studies, only coordinated

ensembles were considered for this problem. In this work, we develop collabo-

rative ensembles; to do that we adapted the algorithms proposed in [18], which

were used to design coordinated ensembles. Moreover, we study the influence of

the cardinality and the composition of the problem set used by the algorithms

for learning rules (GP [16]) and ensembles (mainly hybrid evolutionary algo-

rithms [18]). Finally, we also propose to combine coordinated and collaborative

ensembles to improve their performance. Experimental results show that collab-

orative ensembles achieve better results than a single rule. On the other hand,

coordinated ensembles achieve much better results than collaborative ensembles

when solving a large set of unseen instances.

The aims of this paper may be summarised as:

1. Adaptation of previous methods for constructing collaborative ensembles

for the single machine scheduling problem.

2. Analyse ensemble cardinality and combination methods on the running

time and performance of collaborative ensembles.

3. Combine collaborative and coordinated ensembles to further improve their

efficiency.

4. Analyse and evaluate the effectiveness of combining collaborative and co-

4

ordinated ensembles that improves the current state of the art.

The main contributions of the paper may be summarized as follows

• Develop collaborative ensembles for the (1, Cap(t)||
∑
Tj) problem and es-

tablish a fair comparison between collaborative and coordinated ensembles

on this problem.

• Analyze the strong and weak points of each class of ensembles and study

different possibilities to exploit both of them in combination to obtain a

synergistic effect.

• Establish a clear comparison of the best combination methods with the

state-of-the-art proposals for the (1, Cap(t)||
∑
Tj) problem.

The remainder of the paper is organized as follows. In the next section we

analyse the literature related to hyper-heuristics and scheduling under on-line

conditions. In section 3 we provide the working hypotheses and purpose of

the paper. Next we introduce the (1, Cap(t)||
∑
Tj) problem and review the

proposed methods based on hyper-heuristics. Then, in section 5 we describe

the proposed approach of creating collaborative and coordinated ensembles. In

section, 6 we report the results of the experimental study. Finally, in sections

7 and 8, we summarize the main conclusions and outline some ideas for future

work.

2. Preliminaries and literature review

As mentioned, the Genetic Programming framework proposed by John R.

Koza [30] has proven to be one of the most successful methods to automati-

cally generate priority rules; however, there are other emerging methods such as

state-space search [17], Cartesian genetic programming [32] or gene expression

5

programming [39], which achieved good results as well. In addition to meta-

heuristics, machine learning techniques, such as neural networks [1, 13], have

also been considered.

As for ensembles of priority rules, they have been created using different

methods from different points of view. Park et al. [42] used the DeJong’s

cooperative coevolution framework [43] for the job shop scheduling problem.

The evolved ensembles are used in a conventional cooperative manner with a

voting method to schedule the next operation. Hart and Sim [22] proposed

an artificial immune network to evolve ensembles consisting of sequences of

expression trees used sequentially to schedule each operation. These ensembles

outperformed the ensembles developed in [42].

In their works about the Unrelated Parallel Machine Problem, –Durasević

and Jakobović [9, 10] identified two key issues in constructing the ensembles:

how the rules are combined and how they are selected for composing the en-

semble. They proposed four learning approaches to create ensembles of priority

rules for the unrelated machines environment: simple ensemble combination,

BagGP, BoostGP, and cooperative coevolution. The simple ensemble combina-

tion method [9] was initially based on a simple random search, which gener-

ates up to 20 000 ensembles from random combinations of priority rules. They

used exhaustive search for enumerating all possible solutions. BagGP evolves

each rule on a different training set, while BoostGP applies the AdaBoost algo-

rithm proposed in [14] for rule selection. The cooperative coevolution method is

an evolutionary algorithm that divides the problem into several sub-problems,

which are then solved by means of a sub-population each. The simple ensemble

combination outperformed BagGP, BoostGP and cooperative coevolution. For

this reason, they focused on this method and proposed five greedy methods:

• Random selection selects rules uniformly.

6

• Probabilistic selection selects rules based on their fitness.

• Grow incrementally builds the ensemble, adding the rule that provides the

largest improvement of the ensemble’s quality.

• Grow-destroy uses the grow method to build a large ensemble and then

removes those rules from the ensemble whose removal results in the best

improvement of the ensemble’s quality.

• Instance based is similar to the grow method but the quality of the rules

is interpreted as the number of problem instances on which the ensemble

achieves the best results.

These methods were analyzed considering ensembles of sizes 3, 5 and 7. From

an exhaustive experimental study, the authors concluded that ensembles made

up of about 5 rules obtained better results than a single priority rule. The best

methods being instance-based, grow and grow-destroy, even though ensembles

calculated by random selection were sometimes better on average.

Regarding combination methods, –Durasević and Jakobović [9, 10] explored

the two classic ways for combining rules into ensembles to take a decision, the

sum and vote combination methods, which are common in the context of ma-

chine learning [28]. Park et al. [42, 40] and Hart and Sim [22] used majority

voting. Besides, Park et al. [41] studied four popular combination methods: ma-

jority voting, linear combination, weighted majority voting and weighted linear

combination.

Gil-Gala et al. [18] proposed an alternative approach to exploit the ensem-

bles where the rules are used in parallel to obtain a number of solutions to the

problem instance. In this way, they obtain as many solutions as there are rules,

whereas the previous approaches only obtain a single solution. They formulate

the problem of computing ensembles of priority rules as the Optimal Ensemble

7

of Priority Rules Problem (OEPRP) and proposed three algorithms to solve it,

namely an Iterated Greedy Algorithm (IGA), which is inspired by a similar al-

gorithm for the Maximum Coverage Problem (MCP) [25], a Genetic Algorithm

(GA) and a Local Search Algorithm (LSA).

In our study, we classify ensembles as either collaborative or coordinated,

depending on which of the above methods is used to create a solution. In the

first case, all rules contribute to build the same solution. In contrast, in the

coordinated ensembles, each rule searches for a solution and the best of these

solutions is considered as the solution generated by the ensemble.

3. Working hypotheses and purpose of the paper

As mentioned earlier, coordinated ensembles are able to outperform individ-

ual priority rules in the (1, Cap(t)||
∑
Tj) problem, and collaborative ensembles

were good in unrelated parallel machines. But as far as we know, they have not

yet been systematically compared on the same problem. Therefore, one of the

goals of this paper is to make a fair comparison between the two classes of en-

sembles in solving the (1, Cap(t)||
∑
Tj) problem. To this end, we consider the

method proposed in [18] to obtain coordinated ensembles from a pool of priority

rules evaluated on a set of training instances, and we will develop algorithms to

evolve collaborative ensembles from the same set of rules and training sets. We

will also try to highlight the weaknesses and strengths of each type of ensemble

and explore the possibility of combining the two to achieve a synergistic positive

effect.

4. The (1, Cap(t)||
∑

Tj) problem

In the (1, Cap(t)||
∑
Tj) problem, we are given a number of n jobs {1, . . . , n},

all of which are available at time t = 0, that must be scheduled on a single

8

machine. The unique characteristic of this problem is that the capacity of the

machine varies over time as Cap(t) ≥ 0, t ≥ 0. The goal is to allocate starting

times stj , 1 ≤ j ≤ n to the jobs such that (1) at any time t ≥ 0 the number

of jobs that are processed in parallel on the machine, X(t), cannot exceed the

capacity of the machine; i.e., X(t) ≤ Cap(t) and (2) the processing of jobs on

the machine cannot be preempted, i.e., Cj = stj + pj , where pj is the duration

of the job j and Cj its completion time. The objective is to minimize the total

tardiness defined as
∑

j=1,...,n max(0, Cj − dj), where dj is the due date of the

job j.

5
4

1

2

6

7

t

 tCap

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 tX

Figure 1: A feasible schedule to a (1, Cap(t)||
∑
Tj) instance with 7 jobs. Cap(t) denotes the

capacity of the machine over time and X(t) is the capacity consumed by the jobs.

The (1, Cap(t)||
∑
Tj) problem stems from the Electric Vehicle Charging

Scheduling Problem (EVCSP) described in [24]. The EVCSP is a dynamic

problem motivated by the charging station designed in [46], in which a number

of electric vehicles arrives to their parking lots over time, at times that are not

known in advance, and their charging periods must be scheduled subject to some

constraints, namely limited power, no interruption and balanced load on the

three-phase feeder. In [24], the EVCSP is modeled as a sequence of static prob-

lems that are in turn decomposed into three instances of the (1, Cap(t)||
∑
Tj)

problem each.

Due to the fact that the EVCSP must be solved online, each one of the

(1, Cap(t)||
∑
Tj) instances must be solved in real-time. In [24], the authors

proposed an effective solution by means of a stochastic schedule builder guided

by the ATC rule. Other approaches have been proposed in the literature to solve

9

the EVCSP by means of metaheuristics such as genetic algorithm or ant colony

optimization algorithm [15, 33], but neither of them fulfil the requirements to

solve the problem online.

In [34], the authors propose a memetic algorithm to solve the

(1, Cap(t)||
∑
Tj) problem. This approach provided the best known solutions

for the benchmark set considered in our experimental study (see Section 6), but

unfortunately it does not satisfy the real-time requirements arising from the

online nature of the EVCSP. However, the schedule builder proposed in [34] can

be easily adapted for chromosome decoding to obtain schedules in real-time.

This schedule builder is shown in Algorithm 1; it builds a schedule iteratively,

so that at each step it non-deterministically selects the job that can be sched-

uled at the earliest time from the partial schedule created so far. This schedule

builder has some interesting properties, for example, that it can generate any

schedule in the space of left-shifted schedules that is dominant, i.e., contains at

least one optimal schedule. It is clear that the non-deterministic selection of

the next job can be done using a priority rule: the rule computes a priority for

each candidate job j in US∗ and the job with the highest priority is selected.

One candidate is the classic ATC rule, which may be easily adapted to

many scheduling problems with due date objectives; for the (1, Cap(t)||
∑
Tj)

problem, this rule estimates the priority of the job j as:

1

pj
exp

[
−max(0, dj − γ(α)− pj)

gp̄

]
(1)

where pj and dj are the duration and the due date of job j respectively, γ(α)

denotes the earliest starting time for a job in US∗, p̄ is the average processing

time of the jobs in US and g is a look-ahead parameter introduced by the user.

Of course, a rule specifically tailored to the (1, Cap(t)||
∑
Tj) problem, or an

ensemble of rules, might perform better.

10

Algorithm 1 Schedule Builder.
Data: A (1, Cap(t)||

∑
Tj) problem instance P.

Result: A feasible schedule S for P.
US ← {1, 2, ..., n};
X(t)← 0, t ≥ 0;
while US 6= ∅ do

// Calculate γ(α) as the earliest staring time for the next job
γ(α)← min{t′|∃u ∈ US;X(t) < Cap(t), t′ ≤ t < t′ + pu};
// Determine all jobs that may start at γ(α)
US∗ ← {u ∈ US|X(t) < Cap(t), γ(α) ≤ t < γ(α) + pu};
Non-deterministically pick a job u ∈ US∗;
// Schedule job u at γ(α)
stu ← γ(α);
X(t)← X(t) + 1, stu ≤ t < stu + pu;
US ← US − {u};

end
return The schedule S = (st1, st2, ..., stn);

5. Building rules and ensembles

In this section, we review the methods that have been proposed to evolve sin-

gle rules and coordinated ensembles for the (1, Cap(t)||
∑
Tj) problem starting

from a set of rules. Besides, we describe how the algorithms proposed to devise

coordinate ensembles may be adapted to calculate collaborative ones starting

from the same set of rules. Finally, we consider some ideas for combining both

types of ensembles with the aim of taking advantage of their strong points and

avoiding the weak ones.

5.1. Designing priority rules with GP

Given the success of Genetic Programming (GP) [30] in evolving priority

rules for some problems as the job shop scheduling [37, 1], in [16] we proposed a

GP to evolve rules for the (1, Cap(t)||
∑
Tj) problem. In this approach, the rules

are built from the functions and terminal symbols given in Table 1. Besides,

the used grammar restricts the expression trees to dimensionally compliant ex-

pressions and avoids generation of some equivalent expressions; in this way the

search space is drastically reduced w.r.t. the full space of arithmetically correct

expressions. Moreover, a maximum depth D of the expression tree with typical

11

values between 4 and 8 is considered to ensure both the readability of the rules

and affordability of the search space. The rules evolved by GP demonstrated

better performance than classic rules, such as the ATC rule. For further details

of the GP approach, we refer the reader to [16].

Table 1: Functional and terminal sets used to build expression trees. Symbol “-” is considered
in unary and binary versions. max0 and min0 return the maximum and the minimum of an
expression and 0, respectively.

Binary functions - + / × max min

Unary functions - pow2 sqrt exp ln max0 min0

Terminals pj dj γ(α) p̄ 0.1 . . . 0.9

5.2. Building ensembles from priority rules

In this section we consider the construction of ensembles from an existing set

of priority rules R, each of them already evaluated on a set of instances P of the

(1, Cap(t)||
∑
Tj) problem denoted the training set. The objective (tardiness)

values are recorded in a matrix T|R|×|P|, so that Tij is the tardiness of the

schedule produced by the rule Ri on the instance Pj . In principle, an ensemble

is just a set of priority rules of a certain size, so it can be represented by a vector

of single rules, whether they are used as collaborative or coordinated ensembles.

Moreover, in this paper we consider the possibility of combining ensembles in

such a way that one or more elements of an ensemble can in turn represent

another ensemble. An example of such a combination is shown in Figure 2. In

this case, we have a two-level ensemble with 3 elements in the first level, of

which the last two are single rules, while the first one is an ensemble with only

two single rules in the second level. In this way, we could design ensembles with

many levels, but we will limit our study to ensembles with only two levels. In

the following sections, we will justify the actual usefulness of combined multi-

level ensembles and show how they can be used. We will also address the most

important aspects of creating ensembles, namely how to evaluate a candidate

12

ensemble and how to combine or modify ensembles, using the same algorithms

proposed in [18] for creating coordinate ensembles.

Figure 2: An example of ensemble composed of two rules and one ensemble, in turn composed
of two single rules. Each rule is represented by the arithmetical expression in each array
position; linked to each position is either the expression tree of a rule or the array of an
ensemble.

5.2.1. Evaluation of ensembles

The evaluation of an ensemble, as for individual rules, consists in solving the

instances of the training set P. Then, the performance of the ensemble can be

determined as the inverse of the accumulated tardiness of all |P| schedules ob-

tained. Let us first consider single-level coordinated or collaborative ensembles.

A coordinated ensemble is evaluated based on the tardiness values generated by

each rule for the instances of the training set. More precisely, for each instance

of P, the best tardiness from all rules in the ensemble is considered. In this way,

the evaluation of a coordinated ensemble is not very time consuming, since the

tardiness value that each rule Ri generates for the instance Pj , Tij , is known

in advance. This is one of the advantages of coordinated ensembles. Figure

3 shows an example of a matrix T for a problem with 6 candidate rules and

a training set with 7 instances. The performance of the ensemble {r0, r1, r4}

is given by the values in the grey cells. In this case, only the rules r0 and r1

contribute to the performance measure of the ensemble, as they cover all the

13

instances of the test set, therefore the rule r4 could be removed from the ensem-

ble. Notice that even thought the rule r0 has the worst average fitness on all

instances, it achieves the best performance on most of the instances and thus it

has a significant impact on the performance of the ensemble.

0 1 2 3 4 5 6

0 5 5 1 2 4 1 80

1 6 4 2 3 5 2 3

2 7 3 20 4 7 15 8

3 8 8 8 6 6 10 40

4 9 14 10 9 5 15 10

5 10 15 15 10 15 10 8

Instances

Rules

Figure 3: An example of a matrix of the tardiness values for a problem with 6 candidate
rules and a training set with 7 instances.

On the other hand, evaluating a collaborative ensemble requires generating

new solutions for all instances of P using the Algorithm 1, this time obtaining

the priorities of the candidate jobs in US∗ from aggregating the priorities of

all the rules in the ensemble. In this way, the time required is greater than

that for evaluating a coordinated ensemble, which is one of the drawbacks of

collaborative ensembles. We consider here the two most typical aggregation

methods: summation and voting, as considered in [9]. In the first method, the

priorities of each rule are summed and the job with the largest summed value is

selected. In the voting method, the jobs are sorted from worst to best by each

rule and each job is given a number of votes equal to its position in the sorted

list. Then the votes received by each job are added together and the job in US∗

with the largest number of votes is selected. In both cases, ties can be resolved

by other criteria, such as the ATC rule [41], the shortest turnaround time rule

(SPT) [9], or even by chance. The voting method tends to lead to more draws,

14

while the summation method can introduce bias resulting from different scales

in the priorities computed by the rules. Figure 4 shows an example of both

aggregation methods for a situation with 4 jobs and 3 rules.

1 2 3 5

-2 -5 0 1

50 80 60 30

Jobs

Rules

49 77 63 36 5 7 9 9

Sum Vote

1 2 3 4

2 1 3 4

2 4 3 1

Figure 4: An example of summation and voting methods for an ensemble with 3 rules and 4
jobs. The first one will choose the second job as it presents the largest value of the summation
of priorities, while the voting method would select the third one due to the largest sum of
votes. In all cases the selected job is the one which has the highest value (priority or sum of
votes).

As for the evaluation of multi-level ensembles, even if we restrict ourselves to

two-level combinations, we must be aware that not all combinations are useful.

For example, if the ensembles in the two levels are coordinated, the combined

ensemble is equivalent to a coordinated ensemble of larger size. On the other

hand, if we have a collaborative ensemble in the first level, it may not make

sense to put a coordinated ensemble in the second level, and if we put collabo-

rative ensembles in the second level the combined ensemble is in fact equivalent

to a collaborative ensemble of a larger size. Therefore, the only reasonable com-

bination of ensembles in two levels is to consider the ensemble in the first level

as coordinated and the ensembles in the second level as collaborative, so this is

the only combination we consider here.

In accordance with the above, the way to evaluate a multi-level ensemble

15

follows from the way in which the coordinated ensemble is evaluated at the first

level. The only difference is in the contribution of the collaborative ensembles

in the second level. If we only have the tardiness produced by the individual

rules on the test set, i.e., the matrix T|R|×|P|, each collaborative ensemble must

compute its own solution, as indicated above. However, we could start the

process not only with the set of evaluated rules R, but also with a set of pre-

evaluated collaborative ensembles E ; in this case, the evaluation would be similar

to that for the coordinated ensembles. We will consider this option in our

experimental study.

5.2.2. Algorithms for building ensembles of priority rules

As mentioned before, when forming ensembles, we start from a set R of

priority rules evolved by the GP proposed in [16]. From these rules, ensembles

of a certain size P are built with the algorithms proposed in [18], namely an

Iterated Greedy Algorithm (IGA), a Genetic Algorithm (GA), a Local Search

Algorithm (LSA), and a Memetic Algorithm (MA) combining GA and LSA.

These algorithms were developed for the creation of coordinated ensembles, but

they may be adapted for the creation of collaborative or multi-level ensembles

by simply choosing the right evaluation operators and input data, i.e., the set

of rules R for coordinated and collaborative ensembles, and additionally a set

of collaborative ensembles E for multi-level ensembles. We will discuss these

algorithms in the following paragraphs.

IGA starts with an empty ensemble and in each iteration adds a new rule

to the partial ensemble created so far, provided that this rule improves the

quality of the ensemble. More precisely, the rule that produces the greatest

improvement is chosen. The process continues until P rules are selected or none

of the remaining rules can improve the ensemble. IGA is particularly suitable

for creating coordinated ensembles. In this case, the evaluation of an ensemble

16

after adding a new rule is fast, since only the instances in the training set P for

which the rule is better than the ensemble before the rule addition need to be

identified. Moreover, if none of the remaining rules is able to improve on the

ensemble formed so far, then this ensemble is optimal, in the sense that it is the

best that can be generated from the set of rules R, and its size is thus an upper

bound on the lowest size of an optimal ensemble. Unfortunately, none of these

properties apply to the formation of collaborative ensembles.

GA implements a generational evolutionary strategy with random selection,

conventional recombination, and tournament replacement between every two

parents and their two offspring. It uses an encoding scheme based on variations

of rules in R taken P at a time. Thus, a chromosome represents an ensemble

of size K ≤ P due to the possible repetitions. Since the order of the rules

is not relevant, single point crossover and mutation operators are used and

chromosomes are shuffled before mating.

LSA exploits a neighbourhood structure defined such that a single move

exchanges one rule in the current ensemble for another one in R. We consider

both hill-climbing (HC) and gradient descent (GD) as selection strategies. The

stopping condition is satisfied if no improvement is obtained in the current

iteration. As in the case of IGA, LSA is very suitable for coordinated ensembles

but too time consuming for collaborative ensembles. For this reason, we used

this method only for the former ones.

LSA has been used in combination with both IGA and GA. In the first case,

we used it in two ways: to improve only the final solution of IGA and also to

improve each partial ensemble. When combined with GA, LSA is applied to

a set of chromosomes after they have been evaluated. An improved ensemble

replaces the original one in the population; in this way we have a memetic

algorithm (MA) with Lamarckian evolution [47, 44].

17

6. Experimental study

We have conducted an experimental study aimed to compare collaborative

and coordinated ensembles and also to assess the performance of the proposed

combined multi-level ensembles. To this end, we extended the algorithms pro-

posed in [19] to build all types of ensembles. The algorithms are implemented

in Java and were ran on a Linux cluster (Intel Xeon 2.26 GHz, 128 GB RAM).

We first describe the benchmark rule sets and (1, Cap(t)||
∑
Tj) problem

instances used in the experiments and summarize some previous results from

single rules and coordinated ensembles. Then we analyze the results of collabo-

rative ensembles and make a comparison with coordinated ensembles. Finally,

we show the results of combined multi-level ensembles and illustrate their ad-

vantage over collaborative and coordinated ensembles.

6.1. The benchmark set and previous results

In this study, we used the set of (1, Cap(t)||
∑
Tj) problem instances and

rules proposed in [18]. The first one includes 2000 instances with 60 jobs each

and a machine whose capacity varies over time between 2 and 10, and were

created to resemble the actual instances derived from the EVCSP [24]; 1000

instances are used for training and the remaining 1000 for testing. The set

of rules is composed of 1000 general rules that were evolved by GP on the

training instances. Specifically, the set of 1000 training instances was divided

into 20 subsets with 50 instances each, then 50 rules were evolved on each

subset. Another 1000 specialized rules were evolved for each one of the 1000

problem instances of the training set. After removing equivalent rules (those

that calculate the same schedules to each of the 1000 instances of the training

set), we obtained a set of 1930 diverse rules.

The results obtained in [18] with these rules and the coordinated ensembles

of 10 rules each on the entire sets of 1000 training and 1000 test instances

18

are summarized in Table 2. In the first two rows, we include the results from

the ATC rule (g = 0.3 being the best value from the 10 values 0.1; 0.2; ...; 1.0

considered in these experiments) and the best from all 1930 rules evolved by

GP. The next two rows show the values of the ensemble consisting of the 10

ATC rules and the ensemble consisting of the 10 best rules evolved by GP.

The next 5 rows show the results of the coordinated ensembles obtained by the

algorithms IGA, GA, LSA with random restarts, IGA followed by a single run

of LSA (IGA-LSA) and MA respectively. In the cases of IGA and IGA-LSA

only one ensemble was computed while for GA, LSA alone and MA 30 runs

were performed and the best and average values are reported in the table. We

can see that in each case the ensembles give much better results than single

rules and that the ensembles created by the 5 proposed algorithms are better

than the ensembles composed of 10 ATC rules or even the 10 best rules evolved

by GP. MA is the best method overall. To better compare the above results,

the last row of the table shows the value of the coordinated ensemble composed

of all 1930 rules, which is indeed a lower bound on the value of a coordinated

ensemble that can be formed from these rules.

Table 2: Summary of the previous results from coordinated ensembles and comparison to the
results from single rules. The training and test sets are composed of 1000 either one.

Training Test
Method Best Avg. Best Avg.

Best ATC rule (g=0.3) 1645.60 1644.26
Best GP rule 1632.92 1637.29

Ensemble 10 ATC rules 1576.07 1578.69
Ensemble 10 best GP rules 1570.14 1573.92

IGA 1551.50 1559.74
GA 1550.82 1551.24 1557.61 1558.95
LSA 1550.89 1552.69 1558.15 1560.13

IGA-LSA 1551.38 1559.19
MA 1550.82 1550.83 1557.61 1557.92

Best rule for each instance 1498.32

19

6.2. Collaborative versus coordinate ensembles

In this section, we first address the construction and evaluation of collab-

orative ensembles, and then perform a comparison between collaborative and

coordinated ensembles. As mentioned earlier, the creation of collaborative en-

sembles is much more time consuming than the creation of coordinated ensem-

bles, especially for some of the described algorithms. For this reason, we only

considered IGA and GA in this study.

We start with a series of preliminary experiments in which collaborative

ensembles are evolved from a training set of 50 instances. Specifically, each

one is trained on a single instance from the training set, combining summation

and voting methods, three cardinality values, 3, 5 and 10, and both algorithms

IGA and GA. Only one run was done for each combination; so, we have 600

ensembles in all. GA was parameterized with fairly standard values, namely 100

chromosomes, 100 generations, and crossover and mutation probabilities of 0,8

and 0,2 respectively, while IGA was run until it completed the formation of the

ensemble. The results of these ensembles are summarized in Table 3, where each

value represents the average tardiness of 50 specialized ensembles, each of which

solves the corresponding instance of the training set. The average running time

of each combination in seconds and the average size of the ensembles are also

given. The purpose of this experiment is to analyze the performance limit of

the collaborative ensembles. The first observation we can draw from the table

is that in all cases the average tardiness produced by the ensembles is lower

than the average tardiness produced by the best rule for each instance, which

is shown in the last row of the table. This indeed represents a difference with

the coordinated ensembles, for which this value is a lower bound. Thus, it is

clear that a collaborative ensemble can perform better in solving an instance

than the best rule for that instance, which represents an advantage of this type

20

of ensembles over coordinated ensembles.

Table 3: Summary of the results (tardiness) obtained by specialized collaborative ensembles
evolved using IGA and GA with the sum and vote combination methods on the 50 instances of
the training set. Each instance was solved by the corresponding specialized ensemble, and the
average from the 50 instances is shown for each algorithm. The last row represents the result
achieved by the best rules for each instance. Additionally, it reports the average run-time
(seconds), the number of symbols and rules of each combination.

Configuration Results

Algorithm Method Cardinality Tardiness Cardinality Symbols Time (s)

3 1478.64 2.04 47.62 15.70
Sum 5 1477.54 2.22 51.92 22.84

10 1471.38 2.54 60.82 62.66
IGA 3 1473.60 2.16 51.64 35.04

Vote 5 1471.70 2.46 58.80 59.60
10 1477.54 2.22 51.92 22.28

3 1467.76 3.00 83.88 109.82
Sum 5 1460.78 5.00 136.58 175.42

10 1470.94 10.00 277.88 161.26
GA 3 1486.56 3.00 79.44 49.48

Vote 5 1476.04 5.00 131.08 80.38
10 1455.18 10.00 270.92 334.34

Single rule 1489.46 23.10

Furthermore, we can see that GA is better than IGA and that voting is

better than summation in both cases, especially in combination with GA. These

results are reasonable as GA takes more time than IGA. Moreover, the quality

of ensembles improves in direct proportion to the cardinality of the ensemble.

Overall, GA with voting is the best option. Ensembles with cardinality higher

than 10 would give better results, but in our study we keep a limit of 10 rules

as this is appropriate for the online requirements of EVCSP.

Regarding the time taken by the ensembles to solve the instances of the

(1, Cap(t)||
∑
Tj) problem, there are significant differences depending on both

the selection method and the cardinality of the ensemble. Figure 5 shows the

boxplots of the times required to solve the test set using the 1930 rules and

using the 1930 collaborative ensembles consisting of 3 or 10 random rules. It

21

can be seen that the voting method takes more time due to the normalization

and aggregation of the priority values of each rule. Moreover, in all cases, the

ensembles are more time consuming than individual rules. We need to be aware

that the ensembles evaluated in coordinated form require 3 or 10 times the time

required for individual rules, depending on their cardinality.

Rule E Sum C3 E Sum C10 E Vote C3 E Vote C10

0
10

20
30

40

S
ec

on
ds

Figure 5: The run-time (seconds) taken by rules and collaborative ensembles when solving
the test set (1000 instances).

Let us now consider the comparison between collaborative and coordinated

ensembles. To this end, we created sets of ensembles that were trained using

50 instances. We obtained 20 ensembles of each class, collaborative and co-

ordinated. Figure 6 shows the best and average convergence patterns of GA,

averaged over the 20 runs. These experiments were performed in the aforemen-

tioned cluster, where GA takes about 3 minutes in a single run, while it would

take only 3 seconds if the ensembles were trained on only one problem instance.

Table 4 summarizes the results of both types of ensembles on the training

set and the test set, along with the tardiness values obtained by the best of

the rules in each set. We can see that the ensembles perform better than the

22

0 20 40 60 80 100

16
00

16
20

16
40

16
60

16
80

17
00

17
20

Generations

A
vg

. T
ar

di
ne

ss

●

●●
●●

●
●
●●

●●●
●●

●●●●●
●●

●

Avg
Best

Figure 6: Convergence pattern of GA over 100 generations when calculates collaborative
ensembles of 10 rules, selection by voting and trained with 50 problem instances. The values
are averaged for 20 runs.

best rule in each case, and the coordinated ensembles perform better than the

collaborative ensembles. These results, together with the fact that coordinated

ensembles are much easier to compute, show a clear advantage of coordinated

over collaborative ensembles.

Table 4: Summary of the results from ensembles on training (50 instances) and test (1000
instances) sets. Best Rule is the best of 1930 rules in average on the instances in each set.
Collaborative and Coordinated are mean values of the 20 ensembles of each class averaged for
all instances in the sets.

Set Best Rule Collaborative Coordinated
Training 1608.96 1592.45 1527.35

Test 1642.87 1631.56 1565.72

To gain better insight into collaborative ensembles, GA was run to generate

one specialized ensemble for each of the 1000 instances of the entire training set

and 20 general ensembles for each of the 20 subsets of 50 instances. Then, the

23

entire test and training sets were solved by all 1400 ensembles (1000 special-

ized and 400 general). Using the results of these experiments, we analyzed the

dominance of the rules and ensembles in terms of the number of times a rule

or ensemble provides the best solution for an instance. The results are summa-

rized in Table 5, where we can see that the specialized ensembles are absolutely

dominant over all methods on the training set, but they dominate only in about

half of the instances of the test set, where again general ensembles dominate

over rules and specialized rules dominate over general rules.

Table 5: Dominance of rules and ensembles on the training and test set, measured as the
number of instances for which a type of rules or ensembles produce the best solution.

Dominance
Method Training Test

Rule General 6 70
Specialized 41 172

Ensemble General 22 242
Specialized 931 516

From the above, it follows that collaborative ensembles are still interesting

because they are able to give results for certain instances that can be better

than the results of the best rules for those instances, which, as mentioned, is

a lower bound for coordinated ensembles. Therefore, collaborative ensembles

can have high performance on subsets of instances of the training and testing

sets, so they can contribute to the formation of powerful combined multi-level

ensembles, which would definitely justify the interest in this type of ensembles.

6.3. Evaluation of combined ensembles

To evaluate the performance of the combined ensembles, i.e., the coordi-

nated ensembles consisting of rules and collaborative ensembles, we used the

MA described in Section 2 with the following parameters: 100 individuals, 500

generations, crossover and mutation probabilities of 0,8 and 0,2, LSA was ap-

plied to 20% of individuals in each generation, limited to 100 neighbors and

24

5 iterations, as proposed in [18]. MA was run 30 times for each subset of 50

training instances. We also used the 1930 rules and the 1400 collaborative en-

sembles created in previous experiments as building blocks. To analyze the

contribution of each type of rules and ensembles, we ran experiments starting

from 7 different subsets: Rules (General, Specialized or Both types), Ensembles

(General, Specialized or Both types), and Both (Rules and Ensembles of each

type together). Table 6 shows the tardiness values averaged for the 30 ensem-

bles from each subset. The differences between the combined ensembles evolved

from the 7 subsets of rules and the collaborative ensembles can be better seen

from the boxplots in Figure 7. From these results, we can observe that the

combined ensembles formed only from rules of any type, which are in fact single

collaborative ensembles, are clearly inferior to those formed from collaborative

ensembles, with the sole exception of the combined ensembles composed by just

specialized collaborative ensembles. This result shows that this type of ensem-

bles is so specialized to certain instances that it cannot cover other instances.

It is also clear that general collaborative ensembles are the best building blocks

for building combined ensembles. Even though collaborative ensembles perform

worse than coordinated ensembles when applied to the whole set of instances

(see Table 4), they show high performance on some subsets, so their combina-

tion gives the best overall performance for the whole set of instances. Therefore,

combined ensembles are the best option as long as they include general collab-

orative ensembles as a building block and are independent of considered rules

and specialized ensembles. In fact, Kruskal-Wallis tests showed no statistical

differences between these three combinations.

25

Table 6: Tardiness values of the combined ensembles generated by MA from different subsets
or rules and collaborative ensembles.

Training Test
Set Best Avg Best Avg

Gen. 1551.91 1552.10 1558.30 1559.44
Rules Spe. 1553.48 1553.50 1561.17 1561.81

Both 1550.82 1550.83 1557.61 1557.92
Gen. 1541.75 1541.75 1549.84 1550.74

Ensembles Spe. 1548.08 1548.17 1556.39 1556.56
Both 1541.72 1541.81 1549.78 1550.79

Rules + Ens. Both 1541.52 1541.62 1550.27 1551.06

●●●●
●
●●

●●●●

●●
●

Gen_R Spe_R Both_R Gen_E Spe_E Both_E Both

15
42

15
44

15
46

15
48

15
50

15
52

15
54

(a) Training set (1000 instances).

●

●

●●●

●●●●

●

●

●

●●●●●●

Gen_R Spe_R Both_R Gen_E Spe_E Both_E Both

15
50

15
52

15
54

15
56

15
58

15
60

15
62

(b) Test set (1000 instances).

Figure 7: Box plots of the results in Table 6.

7. Conclusions

In this paper, we show that the performance of schedule builders for the

(1, Cap(t)||
∑
Tj) problem can be improved by using new ensemble approaches.

On the one hand, ensembles can be used in a collaborative or coordinated man-

ner, but both approaches can also be combined. In this paper, we proposed

an approach where coordinated ensembles consist not only of rules, but also of

other ensembles that create a single solution collaboratively (through combina-

tion methods).

The experiments show that better results can be obtained by using collabo-

rative ensembles than by using single priority rules. Moreover, a combination of

26

collaborative and coordinated ensembles led to the best results on the consid-

ered problem. Through various analyses, we found that the way the rules and

collaborative ensembles are evolved has a significant impact on the quality of

the coordinated ensembles. As expected, when trained with a small set of in-

stances, they tend to specialise in a particular type of instance. However, when

a larger set of instances is used, they tend to generalise without over-fitting to

the training set. Also, when creating smaller ensembles, it is preferable to build

them from ensembles that generalise well across different instances, while for

large ensemble sizes it is better to include ensembles or rules that specialise in

a smaller number of instances.

8. Future work

This work leaves several lines open for future research. First, the methodol-

ogy proposed in this work can be extended from various points of view:

1. The development of surrogate models to reduce the high computational

cost of these approaches.

2. The use of local improvement mechanisms specifically designed for collab-

orative ensembles can help to achieve better results.

3. Try other combination schemes such as majority voting, linear combi-

nation, weighted majority voting, and weighted linear combination [41].

Other methods from machine learning can also be adapted, such as Borda

Count [45].

On the other hand, priority rules can be used to improve the performance

of other algorithms. For example, Vlasic et al. [49] improved evolutionary

algorithms by population initialization with rules for the unrelated machine

environment problem. Moreover, priority rules and ensembles can also be used

as upper bounds for other algorithms such as Branch-and-Bound. They could

27

also be used to correct branch selection [35] or for guiding other algorithms such

as the rollout algorithm [11].

Finally, the same methodology could be applied to develop online methods

for other scheduling problems, which would allow comparison with methods

proposed in the literature, such as job shop [26] or resource-constrained project

scheduling problem [5], as well as considering additional constraints such as

setup times and precedence constraints for the single-machine environment [27,

20].

Acknowledgements

This work has been supported in part by Spanish Government under research

projects PID2019-106263RB-I00 and Croatian Science Foundation under the

project IP-2019-04-4333.

References

[1] Branke, J., Hildebrandt, T., Scholz-Reiter, B., 2015. Hyper-heuristic evo-

lution of dispatching rules: A comparison of rule representations. Evolu-

tionary Computation 23, 249–277. doi:10.1162/EVCO-a-00131.

[2] Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M., 2016. Automated

design of production scheduling heuristics: A review. IEEE Transactions on

Evolutionary Computation 20, 110–124. doi:10.1109/TEVC.2015.2429314.

[3] Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J., 2012. Automating

the packing heuristic design process with genetic programming. Evolution-

ary Computation 20, 63–89. doi:10.1162/EVCO a 00044.

[4] Chand, S., Huynh, Q., Singh, H., Ray, T., Wagner, M., 2018. On the

use of genetic programming to evolve priority rules for resource con-

28

strained project scheduling problems. Information Sciences 432, 146–163.

doi:10.1016/j.ins.2017.12.013.

[5] Chand, S., Singh, H., Ray, T., 2019. Evolving heuristics for the re-

source constrained project scheduling problem with dynamic resource

disruptions. Swarm and Evolutionary Computation 44, 897–912.

doi:10.1016/j.swevo.2018.09.007.

[6] Dimopoulos, C., Zalzala, A., 2001. Investigating the use of genetic pro-

gramming for a classic one-machine scheduling problem. Advances in En-

gineering Software 32, 489–498. doi:10.1016/S0965-9978(00)00109-5.

[7] Duflo, G., Kieffer, E., Brust, M.R., Danoy, G., Bouvry, P., 2019. A gp

hyper-heuristic approach for generating tsp heuristics, in: IPDPSW’19:

IEEE International Parallel and Distributed Processing Symposium Work-

shops, pp. 521–529. doi:10.1109/IPDPSW.2019.00094.

[8] Dumić, M., Šǐsejkovic, D., Čorić, R., Jakobović, D., 2018. Evolving pri-

ority rules for resource constrained project scheduling problem with ge-

netic programming. Future Generation Computer Systems 86, 211–221.

doi:10.1016/j.future.2018.04.029.

[9] Durasević, M., Jakobović, D., 2018. Comparison of ensemble learning meth-

ods for creating ensembles of dispatching rules for the unrelated machines

environment. Genetic Programming and Evolvable Machines 19, 53–92.

doi:10.1007/s10710-017-9302-3.

[10] Durasević, M., Jakobović, D., 2019. Creating dispatching rules by

simple ensemble combination. Journal of Heuristics 25, 959–1013.

doi:10.1007/s10732-019-09416-x.

[11] Durasević, M., Jakobović, D., 2020. Automatic design of dispatching

29

rules for static scheduling conditions. Neural Computing and Applications

doi:10.1007/s00521-020-05292-w.

[12] Durasević, M., Jakobović, D., Knežević, K., 2016. Adaptive scheduling on

unrelated machines with genetic programming. Applied Soft Computing

48, 419–430. doi:10.1016/j.asoc.2016.07.025.

[13] Eguchi, T., Oba, F., Toyooka, S., 2008. A robust scheduling rule us-

ing a neural network in dynamically changing job-shop environments.

International Journal of Machine Tools and Manufacture 14, 266–288.

doi:10.1504/IJMTM.2008.017727.

[14] Freund, Y., Schapire, R.E., 1995. A decision-theoretic generalization of

on-line learning and an application to boosting, in: EuroCOLT ’95: Pro-

ceedings of the Second European Conference on Computational Learning

Theory, Springer-Verlag. p. 23–37.

[15] Garćıa-Álvarez, J., González, M.A., Vela, C.R., 2018. Metaheuristics for

solving a real-world electric vehicle charging scheduling problem. Applied

Soft Computing 65, 292–306. doi:10.1016/j.asoc.2018.01.010.

[16] Gil-Gala, F.J., Menćıa, C., Sierra, M.R., Varela, R., 2019. Evolv-

ing priority rules for on-line scheduling of jobs on a single machine

with variable capacity over time. Applied Soft Computing 85, 105782.

doi:10.1016/j.asoc.2019.105782.

[17] Gil-Gala, F.J., Menćıa, C., Sierra, M.R., Varela, R., 2020. Exhaustive

search of priority rules for on-line scheduling, in: Proceedings of the 2020

Conference on ECAI 2020: 24th European Conference on Artificial Intelli-

gence. doi:10.3233/FAIA200365.

30

[18] Gil-Gala, F.J., Menćıa, C., Sierra, M.R., Varela, R., 2021. Learn-

ing ensembles of priority rules for on-line scheduling by hybrid evolu-

tionary algorithm. Integrated Computer-Aided Engineering 28, 65–80.

doi:10.3233/ICA-200634.

[19] Gil-Gala, F.J., Varela, R., 2019. Genetic algorithm to evolve ensembles

of rules for on-line scheduling on single machine with variable capacity,

in: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F.,

Toledo Moreo, J., Adeli, H. (Eds.), Bioinspired Systems and Biomedi-

cal Applications to Machine Learning. Proceefingd, Springer International

Publishing, Cham. pp. 223–233. Proceedings of IWINAC 2019.

[20] González, M.A., Palacios, J.J., Vela, C.R., Hernández-Arauzo, A.,

2017. Scatter search for minimizing weighted tardiness in a single

machine scheduling with setups. Journal of Heuristics 23, 81–110.

doi:10.1007/s10732-017-9325-1.

[21] Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization and ap-

proximation in deterministic sequencing and scheduling: a survey. Annals

of Discrete Mathematics 5, 287 – 326. doi:10.1016/S0167-5060(08)70356-X.

[22] Hart, E., Sim, K., 2016. A hyper-heuristic ensemble method for

static job-shop scheduling. Evolutionary Computation 24, 609–635.

doi:10.1162/EVCO-a-00183.

[23] Hernández-Arauzo, A., Puente, J., González, M.A., Varela, R., Sedano, J.,

2013. Dynamic scheduling of electric vehicle charging under limited power

and phase balance constraints, in: ICAPS’13: Proceedings of SPARK’13.

Scheduling and Planning Applications workshop, pp. 1–8.

[24] Hernández-Arauzo, A., Puente, J., Varela, R., Sedano, J., 2015.

Electric vehicle charging under power and balance constraints as dy-

31

namic scheduling. Computers & Industrial Engineering 85, 306 – 315.

doi:10.1016/j.cie.2015.04.002.

[25] Hochbaum, D.S., 1997. Approximation algorithms for np-hard problems,

chapter Approximating Covering and Packing Problems: Set Cover, Vertex

Cover, Independent Set, and Related Problems, pp. 94–143.

[26] Ingimundardottir, H., Runarsson, T.P., 2018. Discovering dispatching rules

from data using imitation learning: A case study for the job-shop problem.

Journal of Scheduling 21, 413–428. doi:10.1007/s10951-017-0534-0.

[27] Jakobović, D., Marasović, K., 2012. Evolving priority scheduling heuris-

tics with genetic programming. Applied Soft Computing 12, 2781 – 2789.

doi:doi.org/10.1016/j.asoc.2012.03.065.

[28] Kittler, J., Alkoot, F., 2003. Sum versus vote fusion in multiple classifier

systems. IEEE Transactions on Pattern Analysis and Machine Intelligence

25, 110– 115. doi:10.1109/TPAMI.2003.1159950.

[29] Kletzander, L., Musliu, N., 2020. Solving large real-life bus driver schedul-

ing problems with complex break constraints, in: ICAPS’20: Proceedings

of the International Conference on Automated Planning and Scheduling,

pp. 421–429.

[30] Koza, J.R., 1992. Genetic Programming: On the Programming of Com-

puters by Means of Natural Selection. MIT Press.

[31] Koza, J.R., 2010. Human-competitive results produced by ge-

netic programming. Genetic Programming and Evolvable Machines

11, 251–284. URL: https://doi.org/10.1007/s10710-010-9112-3,

doi:10.1007/s10710-010-9112-3.

32

[32] Manazir, A., Raza, K., 2019. Recent developments in cartesian ge-

netic programming and its variants. ACM Computing Surveys 51, 1–29.

doi:10.1145/3275518.

[33] Mavrovouniotis, M., Ellinas, G., Polycarpou, M., 2019. Elec-

tric vehicle charging scheduling using ant colony system, in: 2019

IEEE Congress on Evolutionary Computation (CEC), pp. 2581–2588.

doi:10.1109/CEC.2019.8789989.

[34] Menćıa, C., Sierra, M.R., Menćıa, R., Varela, R., 2019. Evolutionary one-

machine scheduling in the context of electric vehicles charging. Integrated

Computer-Aided Engineering 26, 1–15. doi:10.3233/ICA-180582.

[35] Morikawa, K., Nagasawa, K., Takahashi, K., 2019. Job shop scheduling

by branch and bound using genetic programming. Procedia Manufacturing

39, 1112 – 1118. doi:10.1016/j.promfg.2020.01.359.

[36] Nguyen, S., Mei, Y., Xue, B., Zhang, M., 2019. A hybrid genetic program-

ming algorithm for automated design of dispatching rules. Evolutionary

Computation 27, 467–496. doi:10.1162/evco a 00230.

[37] Nguyen, S., Zhang, M., Johnston, M., Tan, K., 2013. Dynamic Multi-

objective Job Shop Scheduling: A Genetic Programming Approach. volume

505. pp. 251–282. doi:10.1007/978-3-642-39304-4 10.

[38] Nicolò, G., Ferrer, S., Salido, M., Giret, A., Barber, F., 2019. A multi-

agent framework to solve energy-aware unrelated parallel machine schedul-

ing problems with machine-dependent energy consumption and sequence-

dependent setup time, in: ICAPS’19: Proceedings of the International

Conference on Automated Planning and Scheduling, pp. 301–309.

[39] Nie, L., Shao, X., Gao, L., Li, W., 2010. Evolving scheduling rules with gene

33

expression programming for dynamic single-machine scheduling problems.

The International Journal of Advanced Manufacturing Technology 50, 729–

747.

[40] Park, J., Mei, Y., Nguyen, S., Chen, A., Johnston, M., Zhang, M., 2016. Ge-

netic programming based hyper-heuristics for dynamic job shop scheduling:

Cooperative coevolutionary approaches, in: GECCO’16: Proceedings of the

2016 on Genetic and Evolutionary Computation Conference, p. 109–110.

doi:10.1145/2908961.2908985.

[41] Park, J., Mei, Y., Nguyen, S., Chen, G., Zhang, M., 2018. An investi-

gation of ensemble combination schemes for genetic programming based

hyper-heuristic approaches to dynamic job shop scheduling. Applied Soft

Computing 63, 72–86. doi:10.1016/j.asoc.2017.11.020.

[42] Park, J., Nguyen, S., Zhang, M., Johnston, M., 2015. Evolving ensembles

of dispatching rules using genetic programming for job shop scheduling,

in: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., Garćıa-

Sánchez, P., Burelli, P., Risi, S., Sim, K. (Eds.), Genetic Programming,

Springer International Publishing, Cham. pp. 92–104.

[43] Potter, M., De Jong, K., 2000. Cooperative coevolution: an architecture for

evolving coadapted subcomponents. Evolutionary computation 8, 1—29.

doi:10.1162/106365600568086.

[44] Raidl, G.R., Puchinger, J., Blum, C., 2019. Metaheuristic Hybrids.

Springer International Publishing. pp. 385–417. doi:10.1007/978-3-319-

91086-4 12.

[45] Rico, N., Pérez-Fernández, R., Dı́az, I., 2020. The borda count as a tool

for reducing the influence of the distance function on kmeans, in: de la

34

Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (Eds.), Hybrid

Artificial Intelligent Systems, Springer International Publishing, Cham. pp.

450–461.

[46] Sedano, J., Portal, M., Hernández-Arauzo, A., Villar, J.R., Puente, J.,

Varela, R., 2013. Intelligent system for electric vehicle charging: Design

and operation. DYNA 88, 640–647. doi:10.6036/5788.

[47] Talbi, E., 2009. Metaheuristics - From Design to Implementation. Wiley.

[48] Tay, J.C., Ho, N.B., 2008. Evolving dispatching rules using genetic pro-

gramming for solving multi-objective flexible job-shop problems. Comput-

ers & Industrial Engineering 54, 453–473. doi:10.1016/j.cie.2007.08.008.

[49] Vlasić, I., Durasević, M., Jakobović, D., 2019. Improving genetic algorithm

performance by population initialisation with dispatching rules. Computers

& Industrial Engineering 137, 106030. doi:10.1016/j.cie.2019.106030.

[50] de Weerdt, M., Albert, M., Conitzer, V., van der Linden, K., 2018. Com-

plexity of scheduling charging in the smart grid, in: IJCAI’18: Proceedings

of the Twenty-Seventh International Joint Conference on Artificial Intelli-

gence, pp. 4736–4742.

35

