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Abstract Dispatching rules are often the method of choice for solving various
scheduling problems, especially since they are applicable in dynamic scheduling envi-
ronments. Unfortunately, dispatching rules are hard to design and are also unable to
deliver results which are of equal quality as results achieved by different metaheuris-
tic methods. As a consequence, genetic programming is commonly used in order to
automatically design dispatching rules. Furthermore, a great amount of research with
different genetic programming methods is done in order to increase the performance
of the generated dispatching rules. In order to additionally improve the effectiveness
of the evolved dispatching rules, in this paper the use of several different ensemble
learning algorithms is proposed in order to create ensembles of dispatching rules for
the dynamic scheduling problem in the unrelated machines environment. Four dif-
ferent ensemble learning approaches will be considered, which will be used in order
to create ensembles of dispatching rules: simple ensemble combination (proposed in
this paper), BagGP, BoostGP and cooperative coevolution. Additionally, the effec-
tiveness of these algorithms is analysed based on some ensemble learning parameters.
Finally, an additional search method, which finds the optimal combinations of dis-
patching rules to form the ensembles, is proposed and applied. The obtained results
show that by using the aforementioned ensemble learning approaches it is possible
to significantly increase the performance of the generated dispatching rules.

Keywords Dispatching rules · genetic programming · scheduling · unrelated
machines environment · ensemble learning.

1 Introduction

Scheduling can be defined as a decision making process concerned with the allocation
of tasks to scarce resources with the intention of optimising one or more user defined
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scheduling objectives [40]. Although different approaches have been defined for solv-
ing various scheduling problems, dispatching rules represent the methods of choice
when dealing with dynamic scheduling problems. Dispatching rules (DRs) usually
represent a simple function which determines the priorities of jobs that need to be
scheduled, and based on those priorities decides which job should be scheduled. They
are very popular methods for solving scheduling problems since they can be designed
to optimise various scheduling criteria, and can be used for different scheduling en-
vironments and conditions. Since designing good DRs usually represents a lengthy
trial and error process, researchers have focused on defining procedures which could
automatically design new dispatching rules.

In order to deal with the problem of manual design of DRs, many different
machine learning methods were used in order to automatically create DRs [6]. One
of the most commonly used procedures in the automatic development of DRs is
genetic programming (GP) [41], [25]. By using GP it is possible to create DRs for a
wide variety of different scheduling conditions and scheduling objectives. This feature
becomes even more important when there is a need to design DRs for arbitrary user
defined criteria, since DRs for such criteria might not even exist. Additionally, DRs
generated by GP have in most cases been able to outperform manually designed DRs.
Because GP is able to generate good DRs efficiently, in recent years a lot of research
has been undertaken in order to apply GP for generating DRs for a wide variety of
scheduling problems, as well as to improve the performance of the generated DRs.

This paper analyses if the performance of DRs generated by GP can be improved
by using different ensemble learning approaches. The motivation for using ensemble
learning approaches comes from the fact that, in the machine learning field, en-
semble learning approaches have shown to improve the results achieved for various
classification problems [42]. Four ensemble learning approaches will be considered:
simple ensemble combination, BagGP, BoostGP and cooperative coevolution. For
each of the considered approaches the influence of the ensemble size and the en-
semble combination method on the results will be analysed. Additionally, for all the
aforementioned approaches a further step, which tries to find a better subset of DRs
that should form the ensemble, is introduced.

The remainder of this paper is organised as follows. Section 2 gives a short
literature overview concerned with the automatic creation of DRs with GP. The
unrelated machines environment is described in Section 3. Section 4 describes the
GP procedure used in order to automatically create DRs, while Section 5 describes
the ensemble learning approaches used in this paper. The results achieved by the
ensemble learning approaches are outlined in Section 6. In Section 7 a short discussion
about the achieved results is given. Finally, Section 8 gives a short conclusion and
outlines possibilities for future work.

2 Literature Overview

Since it is able to evolve quite complex expressions and functions, GP has been used
in the field of hyper-heuristics quite often [9], [8]. Consequentially, GP is also used
in order to evolve new DRs for different scheduling problems. One of the first uses
of GP in scheduling was in order to generate a sequence in which existing DRs need
to be applied in order to create the schedule [10]. Miyashita later evolved DRs for
the job-shop environment by using GP with a terminal set that contained several
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job properties [26]. In his work, Miyashita considered the scheduling environment as
a multi agent system where each machine represented an individual agent. Based on
that he proposed three different models: the homogeneous model, the distinct agent
model and the mixed agent model. The homogeneous model generated a single DR
for all machines in the scheduling environment. On the other hand, the distinct agent
model generated a distinct DR for each machine in the scheduling environment. Fi-
nally, the mixed agent model combines the two aforementioned models in a way that
two DRs are evolved, first of which will be used by bottleneck machines, while the
second will be used by all other machines. Although the mixed agent model achieved
the best results among the three multi-agent models, it comes with an obvious disad-
vantage, which is that the knowledge about which machines are bottlenecks needs to
be known before the system starts with its execution. In their work, Jakobović et al.
propose a GP model which extends the mixed agent model from Miyashita. Their GP
approach generates three expressions instead of one. Two of those expressions rep-
resent regular DRs, while the third expression represents a decision function which
determines which of the two DRs will be used for a concrete machine. In that way
there is no need to have prior knowledge about which machines represent bottleneck
resources, but this can rather be determined during the system execution using the
decision function. Apart from its application in the single machine and job-shop envi-
ronments, GP was also used to create new DRs in the parallel machines environment
with good results [23].

Unlike in the aforementioned works, where only a single optimisation criterion
was considered, Tay and Ho have used GP to generate DRs which were designed
to optimise three criteria at the same time [45]. Hildebrandt et al. have performed
an extensive analysis on creating DRs for the job-shop environment [17]. Jakobović
and Marasović have further investigated the creation of DRs for the single machine
and job-shop environments [24]. In their work they analysed the influence of the GP
parameters on the quality of the evolved DRs. Apart from that they also analysed
scheduling in the single machine environment under various constraints like set-
up times and precedence constraints, and have also shown that GP was able to
achieve better results than some standard DRs. Gene expression programming [12],
a method similar to GP, was also used in order to evolve DRs for both the single
machine environment [36] and job-shop environment [35]. The problem of global
perspective of DRs and how GP can be used in order to evolve DRs with a better
global perspective was analysed in [19]. In a study by Hunt et al. it was shown that
GP is able to evolve optimal DRs for the static two machine job-shop environment,
which demonstrates that with the right parameters GP is able to evolve optimal DRs.
Different representations in GP were analysed by Nguyen et al. and it was shown
that the representation used for evolving DRs influences the quality of the generated
DRs [30]. A new GP approach which evolved iterative dispatching rules (IDRs) was
proposed by Nguyen et al. in [32]. Although the aforementioned approach was able to
achieve better results than GP which evolves standard DRs, IDRs can only be used
in the static environment in which information about the scheduling environment
is known beforehand. Ðurasevic et al. have compared several GP approaches for
creating DRs in the unrelated scheduling environment, including GEP, IDRs and
dimensionally aware GP [11]. Apart from generating DRs for the standard scheduling
problems GP has also been applied in order to generate DRs for the order and
acceptance (OAS) scheduling problem [38], [28], [27]. In the OAS problem, aside
from scheduling jobs on machines, the system needs to decide which jobs will be
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accepted for scheduling. The generated DRs have also shown to be better than the
standard DRs for the OAS problem, which shows that GP can generate DRs even
for other forms of scheduling problems.

GP was also used in order to generate complete scheduling procedures (SPs),
which consist of both DRs and due-date assignment rules (DDARs) [29], [33]. Those
approaches used the cooperative coevolution procedure in order to generate two
expressions (one of which represents a DR, while the other represents a DDAR) which
together form a SP. The SPs evolved by GP have shown to be able to outperform
some standard SPs from the literature. Nguyen et al. have used GP in order to
generate DRs for optimising five scheduling criteria simultaneously and have shown
that GP was able to evolve efficient DRs for the considered multi-objective criteria
[31], [34]. A more in depth review of creating DRs by using GP can be found in [6].

Ensemble learning is often used in order to improve the performance of classifier
systems [42]. Although ensemble learning approaches like bagging [7] or boosting
[15] are commonly used in the machine learning community, ensemble learning ap-
proaches have not been as extensively used together with GP in order to improve its
performance. Some notable applications of GP ensembles in the literature include
classification with unbalanced data [4], [5], pattern classification [14] and intrusion
detection [13]. GP ensemble learning approaches have been used for creating ensem-
bles of DRs in only few occasions. In their work Park et al. [3] used the cooperative
coevolution approach in order to create ensembles of DRs, and it was shown that
such an approach achieves better results than standard GP. Unfortunately, in their
work they only considered the static scheduling environment and did not addition-
ally consider dynamic scheduling. Hart and Sim [16] propose a new hyper-heuristic
called NELLI-GP which was used to solve static job-shop scheduling problems. This
method creates an ensembles of DRs where each DR in the ensemble tries to adapt
to a certain subset of problem instances.

3 Unrelated Machines Environment

The unrelated machines environment can be defined as a scheduling environment
which consists of n jobs that need to be scheduled on one of them available machines.
Each machine can only execute one job at a time, and similarly, each job can only
be executed by one machine. Preemption is not allowed, meaning that when a job
starts executing on a given machine, it will execute until it is completed, after which
a new job can be scheduled on the machine. Additionally, if release times are defined
for jobs, then no job can start with execution before its respective release time. In
this environment each job consists of several parameters:

– processing time pij - defines the time needed for job with the index j to be
executed on machine with the index i

– release time rj - defines the time in which the job with the index j becomes
available

– due date dj - defines the point in time until which the job with the index j should
finish with its execution, otherwise a certain loss will be incurred

– weight wj - defines the weight (importance) of the job with index j

After constructing the entire schedule, certain metrics are calculated for each job:
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– Cj - finishing time of job j
– Fj - flowtime of job j:

Fj = Cj − rj . (1)

– Tj - tardiness of job j:
Tj = max{Cj − dj , 0}. (2)

– Uj - flag if job is tardy or not:

Uj =
{

1 : Tj > 0
0 : Tj = 0 . (3)

Based on the previously defined job metrics, many different scheduling criteria
can be defined [1], [2]. This study will focus on optimising the following four schedul-
ing criteria:

– Twt - total weighted tardiness:

Twt =
∑

j

wjTj , (4)

– Nwt - weighted number of tardy jobs:

Nwt =
∑

j

wjUj . (5)

– Ft - total flowtime:
Ft =

∑
j

Fj , (6)

– Cmax - maximum finish time of all jobs:

Cmax = max
j
{Cj}. (7)

Apart from the scheduling criteria which are optimised, it is also important to
outline under which scheduling conditions the problem is solved. If all job parameters
are available before the system starts with its execution, then this type of schedul-
ing is called static scheduling. As a consequence, search based methods (like genetic
algorithms or ant colony optimisation) can be used in order to construct the sched-
ule before the start of the system execution. On the other hand, if job parameters
become available only as the jobs are released into the system, and no knowledge
about their values is available beforehand, then this type of scheduling is called dy-
namic scheduling. Since there is a need to quickly adapt to the changing scheduling
conditions, search based methods most often cannot be used for this type of schedul-
ing. Because of that reason, DRs are the most commonly used methods for creating
schedules in dynamic environments, since they can quickly react to the changing en-
vironment. In this paper the dynamic scheduling environment is considered, in which
job parameters become available only when the job is released, and the schedule is
constructed together with the execution of the system. Therefore, since the schedule
is constructed in parallel with the execution of the system it is important that the
scheduling decision can be performed quickly in order to not incur any additional
delay.
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4 Creating DRs with GP

DRs which are constructed in this study can be divided into two parts: a meta-
algorithm and a priority function (PF). The meta-algorithm defines a procedure
which is used in order to create the entire schedule incrementally. Although the
meta-algorithm defines a global scheduling procedure, it still needs to use a concrete
PF which is used to calculate priority values for jobs and machines. These priority
values are then used by the meta-algorithm in order to determine which job should
be scheduled on which machine and in which order. Algorithm 1 represents the meta-
algorithm which is used in this study. This procedure tries to find the best mapping
between a job and a machine. If the machine on which the chosen job should be
scheduled is available, then the job is immediately scheduled on that machine. On
the other hand if the machine is currently busy and executing another job, then the
job will not be scheduled, but the scheduling decision will be postponed to a later
moment in time.

Algorithm 1 Meta-algorithm used for GP scheduling

1: while unscheduled jobs are available do
2: wait until a job becomes ready or a job finishes;
3: for all available jobs and all machines do
4: obtain the priority πij of job j on machine i;
5: end for
6: for all available jobs do
7: determine the best machine (the one for which
8: the best value of priority πij is achieved);
9: end for
10: while jobs whose best machine is available exist
11: do
12: determine the best priority of all such jobs;
13: schedule the job with the best priority;
14: end while
15: end while

Unlike the meta-algorithm, which is manually defined, the PFs used by it are
evolved by GP. However, in order for GP to be able to evolve quality DRs, relevant
information about the scheduling environment and its current state, which will be
available to GP in the evolution process, needs to be defined. This is done by speci-
fying a set of terminal nodes which will be used by GP in the construction of DRs.
Table 1 represents the set of selected terminal nodes which will be used in the evo-
lution process. The time variable, which appears in the description of some terminal
nodes, represents the current time of the system. Terminals pt, dd and w represent
given properties of the jobs. The pmin and pavg terminals are included in order
to give DRs the ability to determine whether the currently considered processing
time belongs to faster or slower processing times of the job (which depends on the
machine). The SL terminal is included since it is commonly used in some standard
DRs, as well as a terminal in many other studies. The remaining two terminals are
more machine centric, with TMR allowing us to determine how soon the consid-
ered machine will be available, and TFMA how soon the machine with the shortest
processing time will be available. The latter is useful since jobs will quite often be
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scheduled on the machine with the fastest processing time. Therefore the inclusion
of such a terminal has proven useful.

Table 1: Terminal nodes

Node name Description

pt processing time of job j on the machine i
(pij)

pmin the minimal job processing time on all
machines: min{pij}∀i

pavg the average processing time on all machines

TFMA

time until fastest machine available - the
amount of time until the machine with the
minimal processing time for the current job

will be available

TMR
time until machine is ready - the amount of
time until the current machine becomes

available

age the time that the job spent in the system:
time− rj

Terminals used only for due date related criteria (tardiness
and number of tardy jobs)

dd due date (dj)
w weight (wj)
SL positive slack: max{dj − pij − time, 0}

Apart from the terminal nodes, it is also mandatory to define a set of functional
nodes which are used by GP in order to combine the terminal nodes into meaningful
expressions. Table 2 represents the set of functional nodes which were used in this
paper. These operators were chosen based on the results obtained in a previous study
[11]. The basic arithmetic operators were chosen since they denote the minimal set
needed to represent basic mathematical expressions. The POS node was included
since it is also quite often used in certain standard DRs, and since it achieved better
results than when using just the absolute value. Other functional nodes, like branch-
ing nodes (ifgt) or more sophisticated mathematical nodes (min and max) were
also tried out, but unfortunately they did not lead to any significant improvements
of the generated DRs. During the evolution process, GP uses both the functional
and terminal nodes in order to generate expressions which represent priority func-
tions in the DR. An example of such a priority function is given with the following
expression:

π = pos(pos(w ∗ SL) ∗ (SL+ pmin)
w ∗ pavg

)− (pos(w ∗ pt) + (w ∗ age))

−(pmin
w
− (TMR− age) + (dd− pt) + (pmin+ pavg))).

5 Ensemble Learning Methods for GP

In this section the four ensemble learning approaches, which were used in order to
create ensembles of DRs, will be shortly described. But before the ensemble learning



8 Marko Ðurasević, Domagoj Jakobović

Table 2: Functional nodes

Node name Description
+ binary addition operator
- binary subtraction operator
* binary multiplication operator

/
secure binary division:

/(a, b) =
{

1, if |b| < 0.000001
a
b
, else

POS unary operator: POS(a) = max{a, 0}

approaches can be described, first it must be defined in which ways the evolved
ensembles will be combined into a single DR. For this task two simple ensemble
combination methods will be used: sum and vote. The sum combination method will
simply sum the priority values of all DRs in the ensemble to get a priority value which
will be used to schedule jobs (in the same way as shown in algorithm 1). On the other
hand, the vote method functions a bit differently, as shown in Algorithm 2. For each
machine the vote method will first determine which job received the most votes, and
then it will choose the one with most votes in a pairwise comparison. Naturally, it
is possible that ties occur for both of the ensemble combination methods (although
it is more probable that they occur for the vote method). If such a situation occurs,
then the job with the earlier release time will be scheduled first.

The implementations of the algorithms described in this section have been done
using the Evolutionary Computation Framework (ECF) [21].

Algorithm 2 Vote combination method

1: Let bestPair represent the best selected job-machine pair (empty at the beginning)
2: for each machine do
3: for each DR in the ensemble do
4: Calculate the priority value by using the selected DR for all jobs
5: Determine the job for which the DR achieved the best value and vote for it
6: end for
7: Select the job with the most votes, or the one which is released earlier if ties occur
8: Let currentPair denote the job-machine pair chosen in this iteration
9: for each DR in the ensemble do
10: Make a vote between currentPair and bestPair
11: end for
12: if currentPair received more votes than bestPair then
13: bestPair:= currentPair
14: end if
15: end for
16: Schedule the job in the bestPair on the machine in the bestPair

5.1 Simple ensemble combinations

In this section the simple ensemble combination (SEC) approach will be described.
The motivation for this approach comes from the fact that GP is usually executed
several times, because of its stochastic nature, in order to obtain good DRs. Thus, it
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makes sense to see if maybe a combination of the generated DRs could provide better
results than a single DR. The idea behind this approach is, therefore, to first evolve
several DRs by using a standard GP approach. Following that, an optimal ensemble
is determined by trying out various subsets of these DRs, be it by exhaustive search,
random search, or some heuristic search method. This approach can be considered
similar to some portfolio approaches which combine several metaheuristic methods
in order to achieve better results [39] [46].

After obtaining a starting set of DRs by simply repeating the standard GP ap-
proach, various subsets of given size will be evaluated as ensembles. In this paper
the limit of 20 000 ensemble combinations, which was determined based on initially
conducted experiments, will be used. If for the given ensemble size there are less
possible combinations of DRs than the limit (i.e. for smaller ensembles), then ex-
haustive search is used in order to determine the optimal ensemble. Otherwise, 20 000
different ensembles are randomly generated and the one with the best fitness value
is chosen. Naturally, there is a possibility that when randomly generating ensembles
the same ensemble could be generated several times, but due to the sheer amount of
combinations this is very unlikely. Also, creating random combinations of decision
makers has previously proven to perform better than ensembles created by using
high quality decision makers [18].

The main advantage of this approach is that no new DRs need to be evolved, but
rather existing DRs which were evolved beforehand can be used and combined into
ensembles. On the other hand, this approach needs an additional problem instance
set which must be used in order to determine the set of DRs which form the optimal
ensemble. The only parameters of this approach are the size of the ensemble and the
ensemble combination method.

5.2 BagGP

BagGP is an ensemble learning approach which applies bagging to GP [20]. This
approach evolves DRs in a way that each DR is evolved on a different training set,
which is constructed by sampling with repetition from the original training set. The
evolved DRs are then combined to form an ensemble. This approach, in addition
to the ensemble size and combination method, has an additional parameter which
determines the size of the training set used to evolve the DRs. The size of the newly
sampled training set can be set to an almost arbitrary value which can be smaller,
larger or equal to the original training set size.

5.3 BoostGP

BoostGP is an approach which applies the AdaBoost [15] algorithm in GP [37], [44].
This ensemble learning approach evolves several DRs so that it weights the training
set instances in a way that instances that were solved poorly in previous GP runs
get a higher importance in the following GP runs, and that newly evolved DRs
focus more on solving such problematic instances. Algorithm 3 denotes the BoostGP
approach. The approach is mostly the same as the ones denoted in the literature with
one notable difference. Since this algorithm is adapted from the regression problem in
which the fitness is usually calculated as the difference between the value which was
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achieved by the individual and the expected value |fi − yi|, there is a need to adapt
it to the case of evolving DRs where there does not exist an explicit expected value
which needs to be achieved, but rather a certain criterion is minimised. Nevertheless,
since neither of the criteria tested in this paper can have a value lower than zero,
the approach is adjusted to treat zero as the expected values for each criteria.

Algorithm 3 BoostGP approach

1: Let P be the number of problem instances in the training set and T the ensemble size
2: Initialize the weights for each problem instance as D1(k) = 1/P
3: for t=1..T do
4: Run GP with the following fitness function: fitnesst =

∑P

k=1(f(individual, xk) ∗
Dt(k)) ∗ P where f represents the original fitness function

5: The best individual in the GP run is denoted as ind
6: Compute the loss for each example: Lk = |ft(ind,xk)|

maxk=1..m(ft(ind,xk))

7: Compute average loss: L̄ =
∑P

k=1 Lk ∗D(k)
8: Compute the confidence for the DR: βt = L̄

1−L̄

9: Update the distribution: Dt+1(k) := Dt(k)∗β1−Li
t

Zt

10: end for
11: The result: T DRs with the appropriate confidences

In order to combine the DRs into a single ensemble, four different combination
methods are used. The first two methods are the sum and vote methods described
previously. The other two methods represent the weighted sum and vote methods
which use the confidences obtained for each DR as the weights which will be used to
multiply the vote of the DR in the voting method, and the priority value of the DR
in the sum method. In addition to the combination method, the second parameter
of this approach is the size of the ensemble which needs to be generated.

5.4 Cooperative Coevolution

The cooperative coevolution approach is an evolutionary algorithm approach which
divides the optimisation problem into several sub-problems which are then solved in-
dependently in order to solve the original problem [43]. Each sub-problem is solved by
one sub-population in the evolutionary algorithm, and the only interaction between
individuals from different sub-populations is when they are combined for evaluation.
Naturally, it is not possible to combine one individual with all individuals from the
other sub-populations and calculate its fitness for all the combinations, since this
would be too time consuming. For that reason, there usually exists a list which con-
tains a representative from each sub-population. An individual is then evaluated in
combination with the representative individuals from other sub-populations. This
approach can also easily be used in order to evolve ensembles of DRs in a way that
each sub-population evolves a single DR which is then combined with DRs from
other sub-populations in order to form an ensemble. The ensemble size and ensem-
ble combination approach are the only parameters which need to be defined for this
approach.
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5.5 Ensemble Subset Search

In order to additionally improve the performance of the ensemble learning approaches
(SEC, BagGP, BoostGP and cooperative coevolution) after the learning process, an
additional search can be performed in order to determine the optimal subset of
the DRs which form the ensemble. The intuition behind this approach is that the
ensemble which is evolved by the ensemble learning approaches does not have to
be optimal, and that it is possible to construct a better ensemble by using only
a subset of the DRs contained in the original ensemble. This is especially possible
when using approaches where the DRs of the ensemble are evolved independently
of each other, like in BagGP or BoostGP. In those approaches the DRs forming the
ensemble are evolved in independent GP runs, after which they are collected to form
the ensemble. Therefore it is possible that the ensemble contains DRs that do not
positively contribute to the quality of the ensemble. In order to remedy this, the
original ensemble can modified by removing the unnecessary DRs from the ensemble
and consequentially improving the cumulative performance. By reducing the size of
the ensemble, the execution speed and interpretability of the ensemble can also be
improved.

This approach takes the ensemble evolved by one of the ensemble learning ap-
proaches and uses the DRs that formed the original ensemble in order to build
ensembles of smaller sizes. Since the largest ensemble evolved in this paper is of size
ten, it is possible to try out all ensemble combinations of smaller sizes in a reasonable
amount of time, and therefore to determine the optimal ensemble subset. Therefore,
if this approach is applied to an ensemble of size ten, all ensemble combinations of
sizes between two and nine will be evaluated. Then either the best overall ensemble
subset, or the best ensemble subset of a concrete size can be selected. From the de-
scription it can be seen that ESS is similar to the SEC approach, with the differences
being that it is applied on an existing ensemble of DRs, and that it constructs ensem-
bles of different sizes (smaller than the original ensemble), unlike the SEC approach
which creates ensembles of a predefined size only.

With this approach it is possible not only to decrease the ensemble size but
also improve its performance. However, for this step an additional problem instance
set needs to be defined, on which the optimal combination of DRs, that will form
the ensemble subset, can be determined. After the optimal ensemble combination is
determined, it is then used to solve unseen scheduling problems.

6 Results

6.1 Benchmark Setup and Evaluation

In order to be able to evolve and evaluate DRs and ensembles of DRs, an extensive
set of 180 scheduling problem instances has been defined. In order to be able to
evolve DRs which are applicable on problems of different sizes, problem instances
containing 12, 25, 50 or 100 jobs, and 3, 6 or 10 machines have been generated. The
detailed procedure of how the problem instances were generated can be found at the
project web site [22].

The set of 180 problem instances was divided into three sets, each containing
a third of the problem instances. The first set is the training set, which is used by
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all the approaches in order to evolve the DRs. The second set is the test set, which
is used in order to evaluate the effectiveness of the evolved ensembles. The third
set, called the validation set, is an additional problem set which is used by some
approaches to determine the optimal combination of DRs to form the ensemble. In
this paper, the validation set will be used by the SEC approach and ESS. The SEC
approach will use the validation set in order to determine the optimal combination of
previously evolved DRs, which will form the ensemble. In the ESS the validation set
will be used in order to determine the optimal subset of DRs to form the ensemble.

The total fitness of an individual for a certain criterion is calculated as the
sum of the criterion values on each of the individual problem instances. Since it was
already mentioned that the instances in a single set can have different characteristics,
all objective values were additionally normalised in order for them to have similar
values on different problem instances. Additionally, in order to obtain statistically
significant results, each experiment was run 30 times and the minimum, median and
maximum values were calculated based on those 30 runs. In the SEC approach, one
run denotes performing 20 000 random combinations of DRs, and choosing the best
one of them (evolving DRs by GP is not considered to be a part of a run since
they are evolved up front). On the other hand, in one run of BoostGP and BagGP
approaches, the underlying GP method is run once for each ensemble element that
needs to be generated. Finally, in the cooperative coevolution approach, one run
denotes performing one GP run that simultaneously evolves all the elements of the
ensemble. The Mann-Whitney statistical test was used in order to determine if a
statistically significant difference between two obtained results exists. The results
are considered statistically significant if the obtained p value is smaller than 0.05.

The parameters which were used for the standard GP and by the GP which was
used by all ensemble learning approaches are shown in Table 3. The table denotes only
those parameters which are shared between all the approaches, while the parameters
specific to the ensemble learning approaches will be denoted for each experiment
individually. The parameters denoted in the table were obtained through an extensive
parameter optimisation procedure for the standard GP. An additional point which
needs to be addressed here is the fact that the ensemble learning approaches will
perform e ∗ 80 000 function evaluations, where e denotes the size of the ensemble,
while the standard GP will perform only 80 000. Although this may seem to lead
to an unfair comparison, the standard GP has shown no improvement in the results
when increasing the number of evaluations beyond 80 000. Rather, the results were
starting to deteriorate, which means that GP started to overfit on the training set.

The next four sections will present the results obtained on the test set for each
ensemble learning approach individually, and the influence of the ensemble parame-
ters on them. For the experiments it was chosen to evolve ensembles between sizes
two and ten. Larger ensembles were not used since they did not show to improve
the results significantly. Additionally, larger ensembles also need more time to per-
form the decision on what job should be scheduled next, which could be undesirable
in dynamic environments, where scheduling decisions need to be performed quickly.
In those experiments only the weighted tardiness criterion will be optimised. The
baseline values to which all the experiments in the following four sections will be
compared to are the ones achieved by the standard GP denoted in table 4. In the
tables the results which are significantly better (tested with the Mann-Whitney sta-
tistical test) than those achieved by the standard GP will be underlined, while on
the other hand the overall best results for each column will be shown in bold. Ad-



Title Suppressed Due to Excessive Length 13

Table 3: Parameters for the GP

Parameter Value
Population size 1000

Termination criteria maximum number of evaluations (80
000)

Selection steady state GP using tournament
selection

Tournament size 3
Initialization ramped half-and-half

Mutation probability 0.3
Maximal tree depth 5

Crossover operators subtree, uniform, context-preserving,
size-fair

Mutation operators
subtree, Gauss, hoist, node

complement, node replacement,
permutation, shrink

Table 4: Weighted tardiness values achieved by the standard GP approach

min med max
15.23 15.94 17.59

ditionally, where possible, it was tested if there is a statistical difference between
ensembles of sizes two, five and ten when not using ESS, and sizes of two, five and
nine when using ESS. The last section compares the best results achieved by all the
approaches with the standard GP for the weighted tardiness criterion, and the other
three criteria mentioned earlier in the paper.

6.2 Results for SEC

This subsection will present the results achieved for the SEC approach. Table 5 rep-
resents the results which were achieved by this approach for the sum and vote combi-
nation methods and various ensemble sizes. For each size and ensemble combination
method, 20 000 random subsets of 50 DRs evolved by a standard GP approach were
tried out, and the best found ensemble was saved. This subset generation procedure
was repeated 30 times in order to obtain statistically significant results. Since for
the ensemble sizes of two and three the number of possible combinations is less then
20 000, it was possible to perform an exhaustive search and find the best possible
ensemble on the validation set. In order to eliminate the need for another problem
instance set which would be used by ESS, the same validation set is also used by
ESS in order to find the ensemble subset.

The sum method has achieved better results than the vote method for all en-
semble sizes. Both ensemble combination methods obtained the best results for the
ensemble size of five (the sum method a value of 14.84, and the vote method a value
of 14.91). Furthermore, when compared to the standard GP, it can be seen that the
sum combination method achieved statistically better results for all ensemble sizes
larger than three, while the vote combination method achieves statistically better re-
sults for ensemble sizes larger than five. The sum combination method has shown to
additionally improve the median values by 2.5-5.5% and maximum values by around
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10% when compared to the standard GP. For the minimum values improvements up
to 2.5% were achieved. Based on the results it can be concluded that this approach is
much more stable and more likely to achieve better results than standard GP. When
comparing ensembles of sizes five and ten it was shown that for the sum method
statistically better results were achieved when using ensembles of size five.

Table 5: Results for the SEC approach

sum vote
Ensemble Size min med max min med max

2 15.17 - - 15.23 - -
3 15.59 - - 15.86 - -
4 14.92 15.18 15.93 15.20 15.87 16.23
5 14.84 15.12 15.76 14.91 15.81 16.32
6 14.89 15.55 15.89 15.17 15.70 16.04
7 14.94 15.30 15.84 15.14 15.55 15.92
8 14.88 15.37 15.86 15.02 15.81 16.43
9 15.18 15.32 15.70 15.20 15.54 16.06
10 15.10 15.29 16.07 15.15 15.65 16.35

Now, ESS will be applied to the ensembles found by the SEC approach. Here we
will try out ESS with ensembles of sizes five (for which the SEC approach achieved the
best results) and ten (which offers the most subset combinations). Table 6 represents
the results achieved for ESS on the ensemble of size five. Here ESS was unable to
find subsets which achieve a better minimum value than that of the entire ensemble
in all but one occasion for the ESS of size four. Additionally, it can be seen that
except for the vote combination method with ensemble size of two DRs, in all other
experiments significantly better results are achieved than those of standard GP. For
example, the ensemble of size four attained by the sum combination method achieved
an improvement over the standard GP by 5% for the minimum, 4% for the median,
and 10% for the maximum value.

Table 6: Results for the SEC approach of size five with ESS

sum vote
Ensemble Subset Size min med max min med max

2 15.00 15.25 16.57 15.42 16.20 17.31
3 14.88 15.21 15.99 15.33 15.69 16.10
4 14.49 15.25 15.76 15.17 15.63 16.25

Table 7 represents the results achieved by ESS for the ensemble size of ten DRs.
For the sum combination method, all results are significantly better than those of the
standard GP. On the other hand, for the vote combination method all results were
significantly better except for ensemble sizes of two and seven. The improvements
on the median values amount to around 2.5-4% for the sum method, and 1-2.5%
for the vote method, therefore the sum method has proven to again outperform the
vote combination method. However, ESS was not able to achieve significantly better
results than SEC of the same ensemble size. Regarding the ensemble sizes, here it was
shown that there is no significant difference between ensembles of sizes two, five and
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Table 7: Results for the SEC approach of size ten with ESS

sum vote
Ensemble Subset Size min med max min med max

2 15.17 15.46 15.83 15.23 16.22 16.95
3 14.86 15.57 15.80 15.03 15.69 15.90
4 14.89 15.36 15.80 15.27 15.58 16.15
5 15.06 15.34 16.00 15.07 15.73 16.17
6 15.08 15.30 16.00 15.03 15.75 16.34
7 15.14 15.28 15.98 15.14 15.80 16.24
8 15.10 15.29 15.93 15.12 15.71 16.16
9 15.13 15.30 16.07 15.21 15.70 16.28

nine for the sum combination method. On the other hand, for the vote combination
method it was shown that ensembles of five and nine achieve significantly better
results than ensembles of size two.

6.3 Results for BagGP

In this section the results obtained for the BagGP approach will be presented. Apart
from testing the influence of the ensemble size and ensemble combination method
on the procedure, the influence of the sampled data set size (bag size) will also be
analysed. The results for this approach are shown in table 8.

Depending on the bag size the best results for the sum combination method were
achieved by ensembles of different sizes. On the other hand, for the vote combination
method, the best results are usually achieved by the larger ensembles (from seven to
ten) for most of the bag sizes. This is also backed up by the fact that for the sum
method there was no statistical difference between ensembles of sizes two, five and
ten for any of the bag sizes which were used. On the other hand, when using the vote
combination method, it was shown that ensembles of sizes five and ten always achieve
significantly better results than ensembles of size two. When comparing ensembles
of sizes five and ten, it was shown that for bag sizes of 30, 50 and 80, ensembles of
size ten achieved significantly better results. The overall best result achieved by the
sum method was for the bag size of 40 instances and ensemble of size nine (a value
of 14.77), while for the vote method the best achieved result was for the bag size of
70 instances and ensemble of size nine (a value of 14.88).

By comparing the two ensemble combination methods with each other, it can be
seen that the sum combination method achieves better minimum values for bag sizes
of 40 and 80, while for the other sizes the minimum values the two methods achieve
similar values. On the other hand, the median values of the evolved ensembles are
consistently better when using the vote combination method. Based on the minimum
and maximum values the methods achieved, it is evident that the vote combination
method achieves less dispersed results, and is thus more stable. When compared
to the standard GP, the ensembles were in most cases able to either find solutions
which were better or of the same quality as the best solution found by the standard
GP. Nevertheless, there were a few experiments in which the best found solution
by BagGP was worse then the best found solution from the standard GP (usually
for a smaller ensemble size). Regarding the median values, the sum method usually
achieved values which were worse than the median value achieved by the standard
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GP, while the vote method usually achieved better ones or values comparable to
the one achieved by standard GP. The statistical test shows that the sum method
did not achieve even one result which is better than the standard GP. However,
the vote combination method consistently achieved significantly better results for
larger ensemble sizes (of size seven and larger). For the vote combination method,
the BagGP approach was able to achieve improvements over the standard GP for
the minimum value by 2.4% and median by 3.3%. Out of the results which are
significantly better than those of the standard GP, the biggest improvements for the
median values were achieved when using the bag size of 50 and 80 problem instances,
in both cases for the ensemble of size nine.

The standard BagGP approach will additionally be enhanced with ESS described
earlier. It was chosen to apply ESS only on the ensemble of size ten. Since the number
of subsets of ten DRs is not large, an exhaustive search was performed in order to be
able to find the optimal ensemble subset for each ensemble obtained from the 30 runs
of the BagGP approach. The results obtained for this enhancement are shown in table
9. The vote method achieves a better median value on the 30 runs for larger ensemble
sizes, while for smaller ensemble sizes the sum combination method achieves a better
median value. Additionally, the vote method has also shown to be more stable than
the sum method, which can be seen from the fact the difference between the minimum
and maximum values is smaller when using the sum combination method. The best
result achieved by the sum method was when using the bag size of 30 problem
instances and ensemble subset size of four (a value of 14.41). On the other hand
the best result for the vote method was achieved in two situations, one for the
ensemble subset size of four and the bag size of 40 problem instances, and the other
for the ensemble subset size 9 and bag size 70 problem instances (a value of 14.85).
By comparing the results with the standard GP it can be noticed that the sum
combination method now achieves significantly better results for larger bag sizes
and smaller to medium ensemble sizes. In addition to achieving significantly better
results for larger ensemble sizes, the vote combination method now also achieves
significantly better results even for smaller and medium sized ensembles, when using
larger bag sizes. The improvements over the standard GP for the vote method are
mostly the same as without using ESS. The sum method achieved improvements up
to 2.8% for the minimum value and 3.4% for the median. The largest improvements
for the median value were achieved by using the bag size of 80, for both combination
methods.
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Table 10: Results for the unweighted BoostGP approach

sum vote
Size min med max min med max
1 15.12 16.00 18.13 15.12 16.00 18.13
2 15.26 15.82 17.33 15.27 16.02 18.01
3 15.28 15.74 17.45 15.02 15.72 16.42
4 15.22 15.86 17.45 15.09 15.67 16.52
5 15.37 15.89 17.52 14.93 15.50 16.11
6 15.16 15.86 17.81 15.08 15.65 16.14
7 15.14 15.84 16.42 14.99 15.59 16.00
8 15.14 15.86 16.42 15.15 15.62 16.05
9 15.09 15.86 16.76 15.10 15.52 16.49
10 15.14 15.85 16.78 15.08 15.54 16.24

By comparing the results of ESS and the results achieved without it, it was shown
that, when using the sum combination method, in 70% of experiments ESS was able
to achieve significantly better results than the original ensemble which was generated
by BagGP. On the other hand, for the vote combination method, the number of
significantly better results achieved by ESS was only 24%. Both methods achieved
the best overall result when additionally using ESS. Based on all the previously
outlined points it is possible to conclude that ESS should be used with the sum
method since it can lead to significantly better results, but can also be used with the
vote method since it also leads to improvements in the results.

6.4 Results for BoostGP

This section presents the results obtained for the BoostGP approach. Table 10 rep-
resents the results achieved by the unweighted BoostGP approach. The vote com-
bination method achieves better minimum and median values for all ensemble sizes
except for size two. When using the sum combination method there was no signifi-
cant difference for the results achieved between ensembles of sizes two, five and ten.
On the other hand, for the vote method it was shown that ensembles of sizes five and
ten achieved significantly better results than the ensembles of size two. For the sum
method the best result was achieved for the ensemble of size nine (a value of 15.09),
while the sum method achieved the best result for the ensemble of size five (a value
of 14.93). By comparing the results with the standard GP it can be seen that the
sum combination method was not able to achieve significantly better results, while
the vote combination method achieved significantly better results in all cases except
for the two smallest ensemble sizes. The improvements which the vote method can
achieve over the standard GP reach up to 2% for the minimum and 2.8% for the
median value, which were obtained by using an ensemble of size five.

After obtaining results for the BoostGP approach, ESS is used in order to find
optimal subsets of DRs to form an ensemble. These results are shown in table 11.
The vote method achieved better median values for larger ensembles, while the sum
method for smaller ensembles. Between ensemble sizes of two, five and nine there
was no significant difference for the sum combination method. For the vote method,
as previously, ensembles of sizes five and nine achieved significantly better results
than ensembles of size two.The sum method was able to achieve significantly better
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Table 11: Results for the unweighted BoostGP approach with ESS

sum vote
Ensemble Subset Size min med max min med max

2 15.09 15.83 17.19 15.10 16.04 16.82
3 15.03 15.67 16.27 15.02 15.67 16.63
4 14.81 15.56 17.07 15.15 15.67 16.19
5 15.05 15.77 17.15 14.78 15.63 16.13
6 14.89 15.80 17.15 14.93 15.66 16.25
7 14.92 15.76 17.19 14.98 15.60 16.34
8 15.20 15.78 17.30 15.03 15.62 16.49
9 15.16 15.80 17.26 14.99 15.54 16.11

Table 12: Results for the weighted BoostGP approach

sum vote
Ensemble Size min med max min med max

1 15.12 16.00 18.13 15.12 16.00 18.13
2 15.39 15.85 17.01 15.16 15.93 18.28
3 15.30 15.77 17.91 15.10 15.90 17.93
4 15.16 15.91 17.45 14.83 15.61 16.47
5 15.05 15.90 17.61 14.87 15.66 16.48
6 15.05 15.96 17.63 15.14 15.71 16.30
7 14.95 15.79 16.42 14.96 15.56 16.35
8 15.19 15.81 16.54 15.09 15.57 16.66
9 15.05 15.89 16.54 15.02 15.53 16.50
10 15.15 15.82 16.54 14.96 15.54 16.45

results than standard GP for ensemble sizes of three and four, while the vote method
achieved significantly better results for all ensemble sizes except for the smallest.
The largest improvements, for both methods, over the standard GP were around
3% for the minimum value and 2.8% for the median. When compared to the results
achieved by BoostGP, ESS was able to significantly improve the results only for the
sum method with ensemble sizes of four, five and six.

Table 12 represents the results obtained when using confidences as weights in
the sum and vote combination methods. Once again the vote method achieves bet-
ter median values for larger values, while the sum method achieves better results
for smaller ensembles. By comparing these results to the ones achieved by the un-
weighted approach, it can seen that the overall best solution was achieved when using
the weighted approach. For the sum combination method there was no significant
difference between the results achieved by ensembles of sizes two, five and ten. On
the other hand, for the vote ensembles of size ten achieved significantly better results
than ensembles of size five.The weighted BoostGP approach achieved significantly
better results than standard GP when using the vote combination method and for
ensemble sizes larger than three. The achieved improvements over the standard GP
are the same as without using the weights.

Finally, the weighted BoostGP approach will be used with ESS to further im-
prove the results. Table 13 represents the results achieved for the weighted BoostGP
approach by additionally using ESS. With ESS, BoostGP has achieved significantly
better results in six out of eight experiments for both the sum and vote methods.
The improvements over the standard GP are the same when using ESS without the
weights. ESS was able to significantly improve results for the sum method when
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Table 13: Results for the weighted BoostGP approach with ESS

sum vote
Ensemble Size min med max min med max

2 14.77 15.75 16.66 15.10 16.01 16.63
3 15.13 15.71 17.00 15.11 15.73 16.14
4 14.92 15.66 16.43 15.09 15.82 16.71
5 14.94 15.74 16.80 14.99 15.63 16.01
6 15.05 15.71 16.59 14.97 15.52 16.38
7 15.02 15.71 16.59 15.10 15.58 16.61
8 15.02 15.72 17.31 15.02 15.44 16.29
9 14.97 15.79 16.42 14.94 15.62 16.50

using ensmbles of sizes three, four and five. For the vote method it was only able to
improve the result for the ensemble of size three.

6.5 Results for Cooperative Coevolution

In this section the results obtained by the cooperative coevolution approach will
be presented. For this approach two configurations depending on the termination
criterion are used. The first configuration uses a termination criterion which depends
on the number of DRs that are evolved for the ensemble, namely 80000∗e evaluations,
where e represents the number of DRs in the ensemble. On the other hand, the second
configuration will use 80000 evaluations. Thus, with larger ensembles, the GP will
have less iterations on its disposal to evolve a good solution. The idea behind the
second configuration is to speed up the entire procedure, since the first configuration
can take quite some time to evolve the ensembles, especially for those of larger sizes.

Table 14 represents the results obtained by the first configuration. Immediately
it can be seen that only the sum method, with the ensemble size of two DRs, was
able to achieve a better solution than the standard DR. For the sum method, it was
observed that the quality of ensembles deteriorates as the number of DRs in them
increases, thus the best results are achieved for smaller ensembles. This is backed
up with statistical tests which show that ensembles of size two achieve significantly
better results than ensembles of sizes five and ten, and also that ensembles of size five
achieve significantly better results than ensembles of size ten. For the vote method
the situation is the same, with ensembles of smaller sizes achieving significantly
better results.

In no occasion did this method achieve significantly better results when compared
to the standard GP. Through statistical tests it was shown that when using the sum
method with ensembles of sizes two and three, there was no significant difference
between the standard GP and the cooperative coevolution approach. However, in
all other experiments it was shown that the cooperative coevolution achieved signif-
icantly worse results than the standard GP.

The results obtained by the second configuration, which uses only 80000 evalu-
ations, are shown in Table 15. The overall best solution was obtained by the vote
method for the ensemble size of three DRs. For both methods it was shown that en-
sembles of size two achieved significantly better results than those of ensemble sizes
five and ten. Once again neither of the experiments achieved better results than the
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Table 14: Results for the coevolution approach with the first configuration

sum vote
Ensemble Size min med max min med max

2 15.11 15.98 16.43 15.45 16.25 16.95
3 15.35 15.99 16.95 15.44 16.37 18.37
4 15.64 16.54 18.16 15.59 16.81 20.57
5 15.61 16.60 18.53 15.47 16.71 18.48
6 15.72 17.10 18.31 15.39 17.11 25.49
7 15.52 16.68 17.86 15.52 17.54 20.01
8 16.38 17.35 20.92 16.00 16.88 20.62
9 15.77 18.33 23.26 15.50 17.01 18.77
10 16.51 17.52 21.27 15.56 17.26 19.49

Table 15: Results for the coevolution approach with the second configuration

sum vote
Ensemble Size min med max min med max

2 15.21 16.09 23.39 15.33 16.30 17.53
3 15.18 16.43 18.80 15.14 15.97 16.96
4 15.49 16.73 22.57 15.23 16.27 18.50
5 15.83 17.35 23.39 15.76 16.49 18.79
6 15.67 16.78 23.68 15.30 16.60 19.26
7 15.37 17.19 22.55 15.70 16.64 19.79
8 15.83 17.13 25.74 15.62 17.30 18.93
9 15.50 17.33 26.23 16.24 17.59 20.18
10 16.13 17.57 19.66 15.81 16.90 17.86

standard GP. The statistical tests have again shown that the achieved results are
worse than those achieved by the standard GP.

By comparing the two configurations with each other, it is possible to determine
the influence of the termination criteria on the results of the cooperative coevolution
approach. It can be seen that neither configuration has consistently achieved better
results over the other. Therefore, the first configuration does not offer any advantage
over the second, even though it uses a larger number of evaluations.

Finally, table 16 represents the results obtained for the first configuration by
using ESS on the ensemble of size ten. ESS was unable to improve the results which
can be seen from the fact that none of the experiments were able to achieve signifi-
cantly better results than standard GP. In addition to that, ESS was also unable to
significantly improve the results when compared to the original results of cooperative
coevolution.

Table 17 represents the results for applying ESS on the second configuration.
For both methods it was shown that significantly better results were achieved by by
ensembles of sizes five and nine when compared to ensembles of size two. As in the
previous case, ESS was unable to improve the results over the standard GP or the
cooperative coevolution method.

6.6 Comparison of Ensemble Learning approaches

This section will compare the performances between the different ensemble learning
approaches on four scheduling criteria. For the Twt criterion the results which were
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Table 16: Results for the coevolution approach with ensemble search (first
configuration)

sum vote
Ensemble Size min med max min med max

2 16.52 20.41 33.34 16.62 18.72 24.15
3 15.77 18.10 22.66 16.24 17.91 23.39
4 15.75 17.56 19.91 15.23 17.64 22.18
5 15.78 17.39 21.04 16.14 17.39 21.20
6 15.74 17.52 19.90 15.51 17.14 22.46
7 15.75 16.77 20.69 15.80 16.92 19.23
8 15.75 17.47 20.68 15.57 17.01 19.60
9 14.98 17.31 21.74 15.58 17.12 21.49

Table 17: Results for the coevolution approach with ensemble search (second
configuration)

sum vote
Ensemble Size min med max min med max

2 15.80 19.87 34.80 15.60 18.17 22.80
3 15.86 18.16 28.44 16.28 17.33 19.62
4 15.86 17.90 21.31 15.76 17.29 20.34
5 15.86 17.31 20.54 15.50 16.89 19.64
6 15.81 17.57 20.54 15.39 16.75 18.55
7 16.10 17.59 20.28 15.75 16.75 19.11
8 16.10 17.71 19.52 15.43 16.76 19.46
9 16.10 17.58 20.71 15.50 16.79 19.29

displayed in the last four subsections will be aggregated. On the other hand, the
results for the other three criteria were not as fine tuned as for the Twt criterion.
Therefore better results could very likely be achieved if the parameters were further
optimised for each given criterion.

Before analysing the results, the nomenclature of the approaches must first be
described. The number alongside each approach will denote the size of the ensemble
which was used. The ESS flag denotes that ESS was used to find a subset of ensembles
and the size of the subset is denoted alongside the flag. The B flag in the BagGP
approach denotes the bag size of problem instances which was used for evolving
ensembles. This flag will only be denoted for the Twt criterion, since for the other
criteria a bag size of 40 was used for all experiments. The C flag denotes that the
confidences are used as weights in the BoostGP approach. Finally, the con1 and con2
flags denote that the first or the second configuration is used with the coevolution
approach. Additionally, this table includes a column denoted with p, which represents
the p value obtained by the Mann-Whitney statistical test. The tests were performed
in order to test whether there is a statistical difference between the ensemble learning
approaches and the results obtained by the standard DRs. Some values are denoted
with "<0.001" which means that a value less than 0.001 was obtained for the p value.

First the approaches will be compared by using the Twt criterion. Table 18
represents the best results from the tested approaches, which were aggregated from
the previous 4 subsections. With the optimised parameters, each one of the tested
ensemble learning approaches was able to find a better solution than the standard
GP. The best result, with a value of 14.41, was achieved by the BagGP approach with
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Table 18: Result comparison for the Twt criterion

Approach
min med max p

Standard GP 15.23 15.94 17.59 -
Sum ensemble construction

SEC-5 14.84 15.12 15.76 <0.001
SEC-5 ESS-4 14.49 15.25 15.76 0.001
BagGP-9 B40 14.77 16.15 17.84 0.040

BagGP-10 ESS-4 B30 14.41 16.06 17.54 0.183
BoostGP-9 15.09 15.89 16.76 0.669

BoostGP-10 ESS-4 14.81 15.56 17.07 0.015
BoostGP-7 C 14.95 15.79 16.42 0.279

BoostGP-10 C ESS-2 14.77 15.75 16.66 0.026
Coevolution-2 con1 15.11 15.98 16.43 0.669

Vote ensemble construction
SEC-5 14.91 15.81 16.32 0.024

SEC-10 ESS-3 15.03 15.69 15.90 <0.001
BagGP-9 B70 14.88 15.59 16.24 <0.001

BagGP-10 ESS-4 B40 14.85 15.85 16.73 0.330
BoostGP-5 14.93 15.50 16.11 <0.001

BoostGP-10 ESS-5 14.78 15.63 16.13 <0.001
BoostGP-4 C 14.83 15.61 16.47 0.005

BoostGP-10 C ESS-9 14.94 15.62 16.50 0.001
Coevolution-3 con2 15.14 15.97 16.96 0.355

the addition of ESS. This represents an improvement of 5.4% over the best result
achieved by the standard GP. The best results were generally achieved by the BagGP
and SEC approaches, while the BoostGP also achieved good results, but not to such
a great extent. The greatest improvement over the standard GP in the median value,
amounting to 5.4%, was achieved by the SEC approach. The cooperative coevolution
procedure has achieved the worst results of all the ensemble learning approaches.
Figure 1 represents a box plot representation of the achieved results (in order to stand
out, the results for SGP have been coloured with a specific pattern). The box plot
outlines several interesting characteristics of the tested approaches for this criterion.
First of all, the SEC approach with the sum combination method achieves solutions
which are least dispersed among all the approaches. The solutions found by BagGP
are largely dispersed when using the sum combination method, but by using the vote
combination method the dispersion is reduced. Additionally, for the vote combination
method the solutions of most ensemble learning approaches tend to be less dispersed
than when using the sum combination method. Regarding the statistical difference
between the ensemble learning approaches and the standard DRs, it can be seen that
in most cases there is a statistically significant difference (which is especially evident
when using the vote combination method). It is interesting to note that although
the BagGP-10 ESS-4 B30 approach achieved the singe best solution, there seems to
be no significant difference when comparing all the results achieved by this approach
with the results achieved by the standard GP.

Table 19 represents the results the ensemble approaches achieved for the Nwt
criterion. Here the best result, with a value of 7.435, was achieved by the BoostGP
approach with ESS. When compared to the best result achieved by the standard
GP, this represents an improvement of 3.1%. Even though an exhaustive parameter
optimisation was not performed for this criterion, most of the ensemble learning
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Table 19: Result comparison for the Nwt criterion

Approach
min med max p

Standard GP 7.674 8.107 8.669 -
Sum ensemble construction

SEC-5 7.556 8.064 8.276 0.008
SEC-5 ESS-4 7.556 8.064 8.276 0.016
BagGP-10 7.621 8.284 9.105 0.210

BagGP-10 ESS-6 7.601 8.001 8.827 0.002
BoostGP-10 7.616 7.949 8.455 0.001

BoostGP-10 ESS-2 7.435 7.989 8.694 0.003
BoostGP-10 C 7.516 7.995 8.472 0.005

BoostGP-10 C ESS-3 7.536 7.921 8.399 <0.001
Coevolution-2 con1 7.505 7.980 8.196 <0.001

Vote ensemble construction
SEC-5 7.699 7.946 8.212 <0.001

SEC-5 ESS-3 7.476 7.834 8.287 <0.001
BagGP-10 7.496 7.917 8.582 <0.001

BagGP-10 ESS-8 7.505 7.946 8.579 <0.001
BoostGP-6 7.560 7.979 8.195 <0.001

BoostGP ESS-4 7.497 7.912 8.257 <0.001
BoostGP-7 C 7.606 7.962 8.253 <0.001

BoostGP-10 C ESS-3 7.528 7.918 8.215 <0.001
Coevolution-3 con2 7.671 8.062 8.272 0.023

approaches were able to outperform the standard GP, to a larger or smaller extent.
The Coevolution-2 approach with the sum combination method achieved one of the
better results among all the approaches, unlike for the Twt criterion where it did
not achieve significantly better results than the standard GP. Figure 2 represents
the box plot representation of the results achieved for the Nwt criterion. Out of
all the approaches, the SEC approach with the vote combination method achieved
the smallest dispersion out of the results, while the BagGP has achieved the largest
dispersion of the results. It is also noticeable that the ensemble learning approaches
achieved less dispersed solutions when using the vote combination method. From
the table it is also interesting to note that only in one occasion, for the BagGP-
10 approach, there is no significant difference between the results obtained by the
ensemble methods and by the standard DRs.

Table 20 represents the results achieved for the Ft criterion. Here the best re-
sult of 157.1 was achieved by two approaches, and it represents an improvement of
around 0.7% when compared to the best result of the standard GP. The BagGP and
BoostGP approaches were again those which achieved the best results, while the
cooperative coevolution approach has achieved the worst results, even worse than
those of the standard GP for the vote combination method. Figure 3 represents
the box plot representation of the results achieved for the Ft criterion. This time
the least dispersed solutions are achieved by using the BoostGP approach with the
vote combination method, while the most dispersed solutions were achieved by the
BagGP approach. Even for this criterion it can be seen that less dispersed solutions
are mostly achieved when using the vote combination method. By examining the sta-
tistical difference between the ensemble learning approaches and the standard DRs,
it can be seen that there is a certain amount of cases in which there is no significant
difference between those approaches. However, such a result is expected since the
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Table 20: Result comparison for the Ft criterion

Approach
min med max p

Standard GP 158.1 159.3 161.6 -
Sum ensemble construction

SEC-5 157.6 158.7 160.3 <0.001
SEC-5 ESS-4 157.1 158.6 159.8 <0.001
BagGP-9 158.1 160.0 163.5 <0.001

BagGP-10 ESS-5 157.1 159.2 162.1 0.261
BoostGP-3 157.8 159.6 161.7 0.335

BoostGP-10 ESS-7 157.2 159.4 160.6 0.777
BoostGP-5 C 157.5 159.5 161.7 0.585

BoostGP-10 C ESS-6 157.3 159.1 160.1 0.183
Coevolution-2 con1 158.1 159.4 160.3 0.842

Vote ensemble construction
SEC-5 157.6 158.5 159.4 <0.001

SEC-5 ESS-3 157.8 158.8 159.7 0.001
BagGP-5 158.0 159.7 161.1 0.192

BagGP-10 ESS-2 157.5 159.8 161.4 0.032
BoostGP-9 157.7 158.8 159.8 <0.001

BoostGP-10 ESS-8 157.2 158.8 159.9 <0.001
BoostGP-6 C 157.5 158.7 160.3 0.002

BoostGP-10 C ESS-2 157.1 159.3 160.7 0.355
Coevolution-3 con2 158.4 160.0 161.6 0.003

improvement by the ensemble learning approaches for this criterion were not that
significant.

Table 21 represents the results achieved for the last criterion, the makespan. The
best result was achieved by the BoostGP which uses confidences as weights. The
criterion value achieved by this approach is 38.20, which represents an improvement
of only 0.3% in comparison to the best result achieved by the standard GP. For
this criterion most ensemble learning approaches were struggling to outperform the
best result achieved by the standard GP, with some approaches even achieving worse
results when compared to the standard GP. Figure 4 shows the box plot represen-
tation of the results achieved for the Cmax criterion. The SEC approach once again
achieves the least dispersed solutions. On the other hand, BagGP has again shown to
achieve the most dispersed solutions. Even for this criterion the approach achieved
less dispersed solution when the vote combination method was used. The statistical
tests have shown that in several cases there was no significant difference between
the results obtained by the ensemble learning approaches and the results obtained
by the standard GP (which is especially evident when using the sum combination
method), but as with the Ft criterion such a behaviour is expected because of the
smaller improvements achieved for this criterion.

7 Discussion

This section gives a short discussion on the results achieved by all the tested ensemble
learning approaches. First, each approach will be discussed individually, after which
all the approaches will be compared with each another.
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Table 21: Result comparison for the Cmax criterion

Approach
min med max p

Standard GP 38.29 38.70 39.45 -
Sum ensemble construction

SEC-5 38.34 38.51 38.73 <0.001
SEC-5 ESS-2 38.31 38.45 38.77 <0.001
BagGP-9 38.27 38.83 39.86 0.101

BagGP-10 ESS-9 38.27 38.75 39.64 0.874
BoostGP-5 38.35 38.65 39.02 0.054

BoostGP-10 ESS-4 38.33 38.62 38.93 <0.001
BoostGP-4 C 38.28 38.69 38.99 0.126

BoostGP-10 C ESS-8 38.27 38.62 38.90 0.003
Coevolution-2 con1 38.34 38.76 38.99 0.648

Vote ensemble construction
SEC-5 38.28 38.37 38.71 <0.001

SEC-5 ESS-3 38.22 38.40 38.83 <0.001
BagGP-7 38.24 38.58 38.92 <0.001

BagGP-10 ESS-5 38.27 38.59 39.04 <0.001
BoostGP-7 38.23 38.59 39.04 <0.001

BoostGP-10 ESS-4 38.30 38.58 38.90 <0.001
BoostGP-7 C 38.20 38.61 39.02 <0.001

BoostGP-10 C ESS-6 38.22 38.61 38.91 0.008
Coevolution-3 con2 38.33 38.71 39.10 0.713

7.1 SEC

Although it is quite a simple approach, the SEC approach has nevertheless shown
to be able to outperform the best result from the standard GP in most of the exper-
iments. Regarding the combination method, we can conclude that the sum combi-
nation method is more effective since it consistently achieved better results. Also it
was shown that the SEC approach achieves the best results when using an ensemble
of moderate size (from around four to eight DRs. This is probably a consequence of
the fact that smaller ensembles do not have the expressive value of the medium and
larger sized ensembles, while on the other hand it is much more difficult to find a
good ensemble combination for larger ensemble sizes because of the random choice
of DRs which form the ensemble.

The most obvious benefit of this approach is that it can be used with already
existing DRs, and thus it can eliminate the need for evolving new rules. But, even if
new DRs need to be evolved, the time needed for that is significantly smaller then
when evolving entire ensembles by some of the other three approaches. One additional
benefit of this approach, which became evident after analysing the results, is that
it achieves solutions with results which less dispersed than the results achieved by
other approaches. This means that the approach has a higher probability of achieving
good solutions. Therefore the second benefit of this approach is its speed and the
possibility to quickly create ensembles of DRs which are not greatly dispersed. The
main drawback is that it requires an additional problem set on which it will determine
the DRs that form the ensemble, since using the same set which was used for evolving
DRs could possibly lead to overfitting.
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7.2 BagGP

The results achieved for the BagGP offer some interesting conclusions about the
approach. Namely, it was demonstrated that the sum combination method did not
achieve any results which were significantly better than that of standard GP. How-
ever, by using the vote method, this approach did manage to achieve significantly
better results only for larger ensemble sizes. This approach also introduces an addi-
tional parameter into the GP approach, namely the bag size. In the experiments it
was shown that the quality of the achieved results heavily depends on the value of
this parameter, thus demonstrating the need to find an optimal value for it. Since
the execution time of the procedure also depends on the bag size, the entire approach
can be sped up by using smaller bag sizes. When using the bag size of 60 instances
the execution speed is comparable to the execution speed of the BoostGP approach.
Another benefit of this approach is that the evolved DRs which form the ensemble
are completely independent. This makes it possible to run this approach in parallel
on several computers and thus speeding up the entire process (for example if an
ensemble of 10 DRs is evolved, the approach can be run once to evolve all ten DRs,
or ten instances can be run in parallel where each instance evolves one DR).

Although the experiments were performed with bag sizes from those smaller than
the standard problem set to those which were larger, the experiments did not give a
conclusive answer as to which bag sizes were preferable by the procedure. However,
on the average better results were achieved when using larger bag sizes.

Through the experiments one disadvantage for the BagGP approach was dis-
covered. Namely the approach usually achieved the biggest dispersion among the
solutions it found. This behaviour could prove to be problematic since this means
that the approach will achieve solutions of variable quality.

7.3 BoostGP

Since the BoostGP approach offers additional information for each DR it evolves,
namely its confidence, it was tested whether the inclusion of this information in
the sum and vote combination methods improves the performance of this approach.
Through the experiments it was shown that in almost all cases better results could
be obtained when including the information about the confidences obtained by the
BoostGP approach (especially when additionally using ESS). For both the weighted
and unweighted approach it was shown that the sum method was unable to achieve
significantly better results than the standard GP, while with the vote combination
method this was possible for all tested ensembles of medium and larger sizes.

Although this approach achieves good results, it has several disadvantages. First
of all this is surely the most complex approach when compared to the other ap-
proaches which were used. Secondly, unlike with the BagGP approach, the DRs
which form one ensemble can not be evolved in parallel. Although there is no direct
dependence between the different DRs which are evolved, when one DR is evolved it
will influence the weights which are used to determine the importance of the training
instances when learning the new DR. Therefore, in this approach the rules need to
be evolved sequentially one after another.
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7.4 Cooperative coevolution

Although it was expected that the cooperative coevolution procedure would achieve
good results, considering that it evolves DRs in dependence to other DRs that form
the ensemble, the approach has achieved quite disappointing results for all criteria
except the Nwt criterion. One possible explanation for such a behaviour could be
that the procedure overfitted on the training set. This assumption is backed up by
the fact that the cooperative coevolution approach achieves better results on the
test set then the standard GP. Even trying out different termination criteria did not
manage to improve the results significantly, thus in the future some other methods of
preventing overfitting should be tried out in order to determine if this could improve
the performance of the approach. Additionally, the few good results obtained by this
approach were achieved mostly when using smaller ensemble sizes, which also sug-
gests that the procedure struggles in evolving good DRs which complement the other
DRs in the ensemble. This was especially evident for the vote combination method,
where in certain situations the ensemble consisted of several rules which together
made suboptimal choices. However, when one of those rules would be replaced, the
effectiveness of the ensemble would deteriorate even further, therefore the algorithm
would be stuck in a local optimum. Because of that reason, the procedure should be
extended with mechanisms that could prevent such occurrences or correct them (for
example by reinitialising the ensemble with random DRs).

The cooperative coevolution copes with another important problem, and that is
its execution time. Namely, the execution time of this procedure heavily depends
on the number of ensembles it evolves, but to a much greater extent than any of
the aforementioned procedures. This is a consequence of the fact that in each it-
eration the cooperative coevolution approach has to evaluate an ensemble of DRs,
thus prolonging the evaluation process, whereas the other procedures only evaluated
individuals by themselves. This results in slower execution times especially for larger
ensemble sizes.

Since the cooperative coevolution approach wasn’t able to evolve bigger ensem-
bles of good quality, the best subsets found by ESS were usually not better than the
best solution found by the cooperative coevolution approach. Even by using ESS it
was not possible to achieve results which would be significantly better than those of
standard GP.

7.5 ESS

ESS has shown to be very promising in improving the results of the ensemble learn-
ing approaches. Naturally, ESS was not able to find a subset with a better quality
than the original ensemble in every single occasion, but in many cases it was able to
determine an ensemble subset which significantly improved the results when com-
pared to the original ensemble. ESS has especially proven useful when being used
with ensemble learning approaches which independently evolve the DRs which form
the ensemble (BagGP and BoostGP). For SEC it was not able to significantly im-
prove the results, since that approach is already similar to ESS. For cooperative
coevolution ESS also did not achieve any improvements, however this could be due
to the fact that in this approach DRs are much more interdependent than in other
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approaches (since the DRs are all evolved simultaneously). The best minimum values
for all criteria, except the Cmax criterion, have been achieved by using ESS.

There are several benefits of using ESS. First of all it tries not only to find a bet-
ter ensemble, but also to find an ensemble of a smaller size. As the experiments have
shown, ESS was in many occasions able to find a better subset which significantly
reduced the size of the original ensemble used by ESS. Secondly, it was shown that
this approach is applicable to any of the tried out ensemble learning approaches,
and that for some approaches (BagGP and BoostGP) it will be able to addition-
ally improve their performances. Lastly, the execution time of this approach is fast
even when performing an exhaustive search for ensembles of size ten. Naturally,
with bigger ensembles the execution time of ESS would grow drastically, however
it is questionable if there is even a need to evolve larger ensembles than the ones
considered in this paper. Nevertheless, even if there would be a need to evolve larger
ensembles, the execution time of ESS can be improved by not using an extensive
search for the subsets of ensembles, but rather a random search or a search guided
by some heuristic method.

Based on all the previous outlined characteristics, it is safe to conclude that ESS
represents a good addition to ensemble learning approaches in order to improve its
results and decrease the ensemble size.

7.6 Comparison of all approaches

This section gives a discussion on the complete results achieved by all the approaches.
The cooperative coevolution approach has achieved the overall worst results, while
the other approaches achieved good results depending on the considered criterion
and algorithm parameters. The proposed SEC approach has demonstrated to be
very effective and has achieved the best results for the Twt criterion. On the other
criteria it also achieved results which were significantly better than those of standard
GP. BagGP and BoostGP have shown to produce more dispersed results which in the
end lead to the situation that for certain parameter combinations the two approaches
are unable to find significantly better results than the standard GP. The cause for
such more dispersed results comes from the fact that the ensemble is formed by
independently evolved and selected DRs. In order to try and increase the performance
of the evolved ensembles, the ESS method was used. This method has shown to be
able to improve the results of the BagGP and BoostGP approaches, while for the
other two approaches it did not have a significant effect.

By comparing the vote and sum combination methods which were used by the
ensemble learning approaches, it is hard to determine which of those two methods
would be better. For the Twt and Nwt criteria the best overall results were achieved
when using the sum combination method, for the Cmax criterion the best overall
result was achieved when using the vote combination method, while for the Ft crite-
rion both methods achieved the same best result. On the other hand, it was shown
that in most cases when the ensemble learning approaches were using the vote com-
bination method, they were able to achieve less dispersed results, than when using
the sum combination method.

Regarding the ensemble sizes, it is hard to determine which of the ensemble sizes
produces the best results, as this heavily depends both on the approach and the
optimised criterion. If the cooperative coevolution approach is excluded (because of
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the problems it has with larger ensembles), most approaches usually achieve the best
results when using ensembles of medium and large sizes. Therefore it seems to be
advisable to use these approaches with such ensemble sizes. In addition to that, it was
shown that the vote combination method performed better when using ensembles of
larger sizes, while the sum combination method preferred smaller ensemble sizes.

8 Conclusion

This paper analysed the application of different ensemble learning approaches for
creating ensembles of DRs: SEC, BagGP, BoostGP and cooperative coevolution.
Through the carried out experiments it was shown that, by using the aforemen-
tioned ensemble learning approaches, it is possible to create ensembles of DRs which
can significantly outperform the result obtained by the standard GP method. The
best results were usually achieved by the SEC, BagGP and BoostGP approaches
(depending on the criterion and ensemble size), while the worst results were clearly
achieved by the cooperative coevolution approach. The proposed SEC approach has
shown to be even more efficient than the BagGP and BoostGP methods, achieving
not only better results, but also being able to create the ensembles much faster if
previously generated DRs are available.

Furthermore, it was shown that it is possible to improve the results even further
by using ESS to find the optimal subset of DRs to form the ensemble. The benefit of
using ESS is not only in achieving better results, but also in reducing the ensemble
size, which can improve interpretability, and speed up the dispatching process since
a smaller number of DRs need to be calculated. With the application of ESS it was
possible to significantly improve results the BoostGP and BagGP approaches, thus
demonstrating the effectiveness of this approach. Therefore this approach represents
a viable addition to the already existing ensemble learning approaches.

In future studies the application of ensemble learning for creating ensembles of
DRs will be studied further. One possible direction is to investigate what other
ensemble learning approaches could be adapted and used for solving this problem.
It would also be interesting to see if some other ensemble combination methods
could be used, and how their results could compare to the results of the sum and
vote combination methods. For the SEC approach it would be interesting to design
heuristics which could be used for finding the optimal combination of ensembles (and
maybe even the optimal size), rather than by using the random search used in this
paper. Finally, it would also be interesting to try out all of the described procedures
in the job-shop and other machine environments.
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Fig. 1: Box plot representation of results
for the Twt criterion

Fig. 2: Box plot representation of results
for the Nwt criterion
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Fig. 3: Box plot representation of results
for the Ft criterion

Fig. 4: Box plot representation of results
for the Cmax criterion


