
Evolving Scheduling Heuristics with Genetic
Programming for Optimization of Quality of Service in

Weakly Hard Real-Time Systems

Karla Salamuna,∗, Ivan Pavića, Hrvoje Džapoa, Marko Ðurasevića

aUniversity of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000
Zagreb, Croatia

Abstract

The weakly hard real-time system model is used for describing the real-
time systems that allow occasional violations of real-time timing constraints.
These systems include real-time control systems, multimedia systems, and
communication systems. In some approaches that deal with mitigating the
system overload in real-time systems with periodic tasks, namely job-skipping
algorithms, the constraints defined by the weakly hard real-time model are
used as a mechanism for defining the pattern of task instances (jobs) that
may be skipped in order to reduce the system load. The performance of these
algorithms is usually evaluated with respect to the quality of service metric,
which depends on the number of skipped jobs. In this work, we investigate
the possibility of using genetic programming in the automated synthesis of
scheduling heuristics for optimizing skipping patterns in order to increase the
average quality of service in comparison with the conventional job-skipping
algorithms. Using genetic programming to automatically synthesize heuristics
allows for an easy and quick design of novel heuristics for various problem
types and optimization criteria. We present two different approaches for
implementing the proposed method. The first approach is to encapsulate the
evolved heuristics into job-skipping algorithms known from the literature,
namely Red Tasks as Late as Possible (RLP) and Blue When Possible (BWP).
The idea of the second approach is to employ the evolved heuristics as

∗Corresponding author
Email addresses: karla.salamun@fer.hr (Karla Salamun), ivan.pavic2@fer.hr

(Ivan Pavić), hrvoje.dzapo@fer.hr (Hrvoje Džapo), marko.durasevic@fer.hr (Marko
Ðurasević)

Preprint submitted to Applied Soft Computing January 29, 2023



standalone job-skipping algorithms. The results show an improvement of up to
15% in comparison with the state-of-the-art algorithms. The novel methods
described in this work present a significant upgrade of the standard job-
skipping algorithms as they provide a notable improvement in terms of quality
of service while ensuring the fulfillment of weakly hard constraints. Moreover,
the presented methods are computationally efficient and are therefore suitable
for implementation on real-time operating systems, which is not the case with
similar methods based on optimization techniques.

Keywords: weakly hard real-time systems, genetic programming, scheduling,
overload

1. Introduction

Handling overloaded conditions in various real-time computer systems
is an active research area. Overload in real-time systems is defined as a
condition in which the computational demand requested by the application
exceeds the processor capacity [1]. Real-time systems are typically modelled
as sets of periodic or sporadic tasks which release an infinite sequence of
task instances that are referred to as jobs. The released jobs are placed in
a queue, where they wait to be scheduled for execution. In an overloaded
real-time system, the corresponding tasks are unable to fulfill their real-
time timing requirements—the computation required by each job cannot be
completed by its respective deadline. In certain real-time applications, such
as control systems or multimedia streaming systems, providing response after
the deadline is referred to as skipping or missing the deadline, since late
response brings no significance to the system. The severity of consequences
caused by missing job deadlines depends on the target application of the
real-time system. In this paper, we consider real-time systems that allow a
certain degree of missing deadlines as long as they occur in a bounded and
predictable manner, i.e., weakly hard real-time systems [2]. Weakly hard
real-time systems can tolerate deadline misses either because their robust
design ensures that the stability of the system will not be jeopardized by
missing some deadlines, or deadline misses are not noticeable by the user if a
certain degree of timely completed tasks is ensured. However, certain timing
constraints must be fulfilled in order to ensure the stability and satisfactory
performance of the system. The timing constraints that specify acceptable
ratios and distributions of skipped deadlines in weakly hard real-time systems

2



are referred to as weakly hard constraints [2].
In this work, we deal with systems that have a constraint on the minimal

number of subsequent jobs which must be completed for every job that is
skipped. In other words, it is only allowed to skip a single task instance,
i.e., job, in a given number of consecutive jobs. The job that may be
skipped without violating this constraint is referred to as skippable job. This
task model is known in the literature as skip-over model [3]. According to
the skip-over model, tasks are periodic and preemptable, and there are no
precedence constraints among the tasks. The considered real-time system
model is typically applied in real-time control systems, monitoring systems,
and communication systems. These applications are mostly implemented
on embedded computer platforms with limited computational and memory
capacity. These constraints must be taken into account upon selecting the
algorithm for scheduling tasks. It is often required for the scheduling algorithm
to run on-line, and therefore complex algorithms that introduce computational
overhead are not suitable for these applications.

The problem of scheduling tasks under the skip-over model comes down to
constructing an algorithm that guarantees the satisfaction of the constraints
provided by the skip-over task model. In overloaded conditions, it is certain
that some of the jobs will be skipped, and therefore the performance of the
scheduling algorithms is usually evaluated with regard to the obtained quality
of service, i.e., the ratio of completed jobs in the total number of released
jobs.

There are several existing approaches that address the problem of schedul-
ing in real-time systems under skip-over model [3, 4, 5]. In this work, we
interpret these approaches as meta-algorithms. A meta-algorithm defines
how the jobs are scheduled according to the system state and the constraints
defined by the given scheduling environment [6, 7]. The meta-algorithms
encapsulate a priority function, i.e., a function that assigns priority values to
jobs, considering the properties of the respective job and the overall system
state. In the considered context, a meta-algorithm provides a mechanism
that guarantees that the generated schedule will fulfill the constraints defined
by the skip-over model. More precisely, a meta-algorithm ensures the timely
completion of jobs that are crucial for the fulfillment of constraints given by
the skip-over model. These jobs are referred to as mandatory jobs and the jobs
that may be skipped are referred to as skippable jobs. The priority function
defines an expression for calculating the priorities of the jobs, regardless of
whether the job is mandatory or skippable.

3



The scheduling problem that arises from the skip-over model can be viewed
as an optimization problem—the goal is to design a scheduling meta-algorithm
or standalone scheduling heuristic that maximizes the obtained quality of
service while guaranteeing the fulfillment of skip-over constraints. In the
literature, methods for solving optimization problems that proceed from
scheduling problems often rely on machine learning techniques [8]. Nowadays,
machine learning is present in numerous fields of scientific research, as it is
widely used for solving prediction [9] and classification [10] problems. Due
to the high complexity and stochastic nature of most scheduling problems,
the most commonly-used approaches for solving these problems are heuristic
methods for optimization, specifically, hyper-heuristic methods [11]. The
main idea of these methods is to automate the design of scheduling heuristics
that solve a specific scheduling problem. The most popular area of research
focus for hyper-heuristic approaches is production scheduling [12], and genetic
programming is the dominating technique [13].

In this paper, we investigate the possibility of evolving custom priority
functions by genetic programming with the aim of increasing the quality of
service. The evolved priority functions are computationally efficient, and
therefore the methods presented in this work are suitable for implementation
on real-time embedded systems. To the best of our knowledge, our approach
is the first to apply the genetic programming technique and hyper-heuristic
approach to scheduling problems derived from the weakly hard real-time
system model. Moreover, it is one of the few approaches in general to apply
the hyper-heuristic technique to scheduling problems in real-time systems,
as previous research is mainly focused on production scheduling. The key
difference between production scheduling problems and real-time scheduling
problems is that real-time systems do not allow job execution after its respec-
tive deadline—tardy jobs are discarded. On the other hand, job tardiness
is allowed in production scheduling problems. Moreover, in weakly hard
real-time systems, there are additional constraints that specify jobs that must
not be discarded, making the scheduling problem even more specific.

We present and discuss two different variants of the approach. Firstly,
we consider encapsulating the evolved priority functions into existing meta-
algorithms for scheduling tasks under the skip-over model. In the paper, we
refer to this approach as GP-QoS-MA. The goal of this approach is to evolve
a generalized algorithm that can be applied to any problem instance. The GP-
QoS-MA algorithm relies on the skip-over meta-algorithm in order to ensure
the fulfillment of weakly hard real-time constraints while aiming to maximize

4



the quality of service through a best-effort heuristic for scheduling skippable
jobs. The other approach is to evolve the priority function as a scheduling
heuristic that is not incorporated into any meta-algorithm. We denote this
approach as GP-QoS-S. However, by adequately modifying the optimization
process, the evolved heuristic can behave as the considered job-skipping meta-
algorithms in terms of guaranteeing the satisfaction of constraints provided
by skip-over task model. The GP-QoS-S approach is applicable in a scenario
where we deal with a predefined scheduling problem and we need to design
a scheduling heuristic that is optimized for the corresponding task set and
a given metric. Although the scheduling problem for a single task set can
be solved by search-based techniques, e.g. genetic algorithms [14, 15], there
are strong arguments in favor of employing genetic programming in the
application considered in this work. Generally, the output of the search-based
techniques is a schedule that determines the execution of tasks in a given
time interval, which needs to be statically stored in the memory on the
target real-time system. The time interval of interest typically corresponds
to the hyperperiod of the task set: a time interval after which the schedule
repeats itself. The hyperperiod can be extremely large and consequently the
schedule can consume an immense amount of memory, which is not feasible
in the context of embedded systems since they typically have limited memory
resources [16]. Moreover, in overloaded conditions that are addressed in this
work, the schedule does not repeat itself after the hyperperiod and therefore
it is not possible to find a time interval such that the entire schedule can be
stored in the memory [2]. Therefore, in dynamic and uncertain conditions
it is far more appropriate to employ the genetic programming technique as
it searches the space of algorithms that provide solution to the scheduling
problem instead of searching the space of solutions, i.e., schedules.

The main contributions of this work can be summarized as follows:

• We introduce a method for designing priority functions using genetic
programming, which can be integrated into conventional scheduling
algorithms for skip-over system models, with the aim of maximizing the
quality of service (GP-QoS-MA).

• We present and discuss a method for designing standalone scheduling
heuristics using genetic programming for specific problem instances in
the context of the skip-over system model, with the aim of maximizing
the quality of service. We demonstrate how the obtained heuristics can
learn the behavior of conventional job-skipping algorithms in the sense

5



of fulfilling the weakly hard constraints (GP-QoS-S).

• We provide systematic evaluation of the proposed methods and com-
parison to existing conventional approaches.

• We suggest the possibility for the implementation of the presented
approaches in real-time embedded systems and evaluate the feasibility
of the suggested methods with regard to the computational complexity
of the generated heuristics.

It is important to emphasize that the presented approach can be easily
customized for different scheduling environments and for optimizing different
performance metrics.

The rest of the paper is organized as follows. Section 2 outlines the
related work and gives practical examples that illustrate the motivation
for this research. Section 3 describes the considered system model and
the corresponding scheduling problem. The genetic programming method
for evolving scheduling heuristics is described in Section 4. The setup for
experimental evaluation and the obtained results are described in Section
5. Suggestions on how the presented methods can be applied in real-time
embedded systems are given in Section 6. Section 7 summarizes the most
important results and contributions and describes potential directions for
future research.

2. Background

2.1. Related work
Our research is related to several approaches for designing scheduling

algorithms for overloaded real-time systems and using genetic programming
for evolving scheduling heuristics. Since the approach presented in this work is
related specifically to weakly hard real-time systems, we will give an overview
of the approaches from the literature that share the common task model.

The earliest research associated with real-time systems that allow occa-
sional deadline violations is the work of Hamadaoui and Ramanathan, in
the context of scheduling messages in communication systems. In [17], they
introduced the concept of (m, k)-firm deadlines as an approach for modeling
tasks that must meet m deadlines in every k consecutive jobs.

In [2], the authors present the weakly hard model of a real-time system as
a framework for specifying real-time systems that tolerate occasional deadline

6



misses. According to this model, the restrictions regarding the ratio and
distribution of skipped jobs in a given number of jobs are classified as four
constraints. The approach described in this work is related to the constraint〈
m
k

〉
(meets row m in k deadlines) which specifies that in any window of k

consecutive invocations of the task, at least m consecutive invocations must
meet their deadlines.

The techniques for mitigating the effects of overload in real-time systems
are reviewed in [18]. There are two types of overload in real-time systems:
transient overload that occurs due to task overruns and permanent overload
that ocurrs in periodic task systems, when the total utilization of the task
set is greater than one. Since this work targets periodic task systems, we
will review the approaches that deal with permanent overload only. The
existing approaches for reducing permanent overload are based on one of
three methods: job skipping, period adaptation, and service adaptation. The
period adaptation technique is based on regulating the effective utilization
factor by enlarging the task periods [19]. Service adaptation aims to reduce
system load by reducing the computational time required by the tasks [20].
Since our work focuses on job skipping technique, we will describe this method
in more detail in the rest of the paper.

The main idea of the job skipping technique is to reduce the effective
utilization of the system by skipping a certain number of jobs and therefore
enabling to schedule task sets which would otherwise be infeasible. Job-
skipping algorithms provide a mechanism that guarantees that a minimum
number of jobs per task will execute within their deadlines. This approach is
suitable for applications where occasional deadline violations do not harm
the performance or the stability of the system as long as the violations occur
according to a predefined pattern, e.g., control applications or multimedia
systems. The job skipping technique is based on the skip-over task model,
which was introduced by Koren and Shasha in [3]. The authors introduced the
skip factor parameter Si as a specific case of

〈
m
k

〉
weakly hard constraint where

m = k − 1. More precisely, the skip factor notation corresponds to weakly
hard constraint

〈
Si−1
Si

〉
. Skip factor ensures that every job that missed its

deadline will be followed by at least Si−1 timely completed jobs. The authors
proposed a model for classifying jobs depending on whether the deadline of the
current job can be skipped by declaring the job state as red or blue. A red job
must complete its execution before the deadline, while a blue job can miss its
deadline. Koren and Shasha introduced two job-skipping algorithms, namely
Red Tasks Only (RTO) and Blue When Possible (BWP). The implementation

7



of these algorithms will be described in detail in Subsection 3.3. The skip-over
model was further investigated by Marchand and Silly-Chetto in [4] where
they introduced a new and more efficient algorithm Red Tasks as Late as
Possible (RLP). This algorithm relies on scheduling skippable jobs in spare
processing time given by non-skippable jobs. Since this approach requires
on-line computation of time intervals that correspond to idle time given by
non-skippable jobs, it is not suitable for implementation on systems with
limited resources due to high computational complexity. The state-of-the-art
techniques based on job skipping can be improved by introducing dispatching
rules designed specifically for skip-over task model that maximize the number
of completed jobs.

The majority of approaches that deal with designing dispatching rules
for scheduling problems are based on hyper-heuristic methods. The most
commonly-used method is genetic programming, as it has shown many advan-
tages over other hyper-heuristic approaches such as decision tree [21], logistic
regression [22], support vector machine [23], and artificial neural networks
[24]. Unlike mentioned approaches, genetic programming provides flexibility
for representation of the heuristics, it can simultaneously explore both the
structure and the parameters of a heuristic, and it supports multi-objective
optimization. Moreover, heuristics obtained by genetic programming are
easily interpretable and computationally efficient [13], [25]. The research
presented in [26] describes how existing scheduling heuristics can be improved
in terms of schedule makespan by employing a reinforcement learning agent.

In the following text, we provide a brief overview of the recent work
that employs genetic programming for evolving priority rules for different
scheduling environments to show that this is an active research area. The
approaches that employ genetic programming in production scheduling are
covered in an extensive survey in [13]. The research presented in [7] describes
how genetic programming may be applied to arbitrary scheduling evironments
by encapsulating the evolved heuristic into a meta-algorithm that corresponds
to the given environment. The authors demonstrate that the heuristics
synthesized by genetic programming dominate multiple common approaches,
e.g., Earliest Due Date (EDD), Weighted Shortest Processing Time (WSPT).
The overview of the approaches that apply genetic programming in job
shop scheduling is given in [27]. The application of genetic programming in
parallel machines environment is described in [28, 29]. In recent years, the
trends in designing the dispatching rules by genetic programming are focused
on constructing ensembles of dispatching rules, with the aim of improving

8



performance [30, 31].
The single-machine environment, which is of interest in this work, was

investigated in [32], [33], [34]. The authors proposed methods for evolving
scheduling policies in the form of dispatching rules with the objective of
minimizing the total tardiness. In [35], similar approach was used, with an
additional objective that minimizes the average wait time for the jobs. In a
recent research related to single-machine scheduling, genetic programming
is used for developing priority rules in the context of scheduling a fleet of
electric vehicles arriving to a charging station [36]. The problems addressed
in the described research papers can be categorized as production scheduling
problems. The corresponding problem formulation allows jobs to be tardy,
and hence the goal is to minimize tardiness. Our work focuses on a differ-
ent problem formulation—tardy jobs are discarded, and the objective is to
maximize the quality of service. In [37], the single machine environment is
extended to the real-time mixed-criticality systems, and it is presented how
genetic programming may be used for generating dynamic priority assignment
functions for scheduling low-criticality tasks. The considered system model is
similar to the one described in this work; however, in [37], the restrictions on
jobs are formed in terms of criticality, whereas in this work, the restrictions
are defined through weakly-hard real-time constraints, i.e., jobs are either
mandatory or skippable.

2.2. Motivation
In this section, we provide practical examples that illustrate the motivation

for analyzing weakly hard real-time systems. Moreover, we demonstrate how
introducing weakly hard constraints into the system model and using adequate
scheduling algorithms can improve performance in overloaded conditions.

2.2.1. Control systems
A typical example of a weakly hard real-time system in the industrial

context is a computer-driven control system [38]. Computer-driven control
systems can be modelled as sets of periodic real-time tasks, where each task
carries out a single functionality of a control loop, e.g., samples the data from
sensors, executes a control algorithm or sends commands to the actuators.
The frequency of task invocations is determined by the sampling frequency
of the input signal. Moreover, it is suggested that the sampling frequency
should be between 5 to 10 times larger than the frequency demanded by the
sampling theorem, since the control system can benefit from oversampling

9



Table 1: Parameters of the subsystems in an automotive control system.

Functionality Task Processor Utilization factor (ui) Criticality
Engine control τ1 P1 0.3 high

Antilock braking control τ2 P1 0.25 high
Traction control τ3 P2 0.25 high
Cruise control τ4 P2 0.25 medium

[39, 40]. Each task invocation (job) has a deadline by which it must complete
its execution. Typically, the deadline of the current job corresponds to the
activation time of the following job. In some conditions, such as processor
failure or arrival of aperiodic requests, the system can become overloaded and
that causes the deadline miss for some jobs. In this example, we will analyze
the behavior of a control system under overload in two different cases:

• in the first case, the scheduling algorithm discards jobs according to a
precisely defined pattern,

• in the second case, the jobs are discarded randomly with a predefined
probability.

In practice, many control algorithms implement advanced techniques such
as reinforcement learning [41], [42], evolutionary computation [43], [44], and
fuzzy logic [45], [46]. The weakly hard real-time model can be applied to
any type of control system, regardless of the implemented control algorithm.
However, as this paper addresses scheduling problems rather than control
problems, the control system in this example will be based on a PID regulator
for simplicity.

Example 2.1. Consider an automobile control system that consists of four
subsystems: engine control, antilock braking control, traction control, and
cruise control. The functionality of each subsystem is carried out by a real-time
task, and the tasks execute on two processors. The properties of all the tasks
are summarized in Table 1. The utilization factor ui of a task τi represents
the fraction of CPU time demanded by task τi.

The tasks are executing on two processors, P1 and P2. The total utilization
factor of each processor is determined by the sum of the utilization factors of
the corresponding tasks: the utilization factor of processor P1 equals 0.55, while
the utilization factor of processor P2 equals 0.5. Suppose that due to a failure
of processor P2, all of the tasks must execute on the processor P1. The system

10



Figure 1: A computer-driven control system for car cruise control.

is now overloaded since total utilization factor equals: u1 + u2 + u3 + u4 =
0.3+0.25+0.25+0.25 = 1.05. In that case, it is reasonable to adjust the policy
for scheduling less critical tasks in order to reduce the system load and thus
ensure that tasks of higher criticality, namely engine control, traction control,
and cruise control, will meet their deadlines. We will analyze the behavior
of the cruise control subsystem under overload and evaluate the possibility
to decrease the system load by systematically rejecting some jobs of cruise
control task, thus reducing its utilization.

A simplified implementation of a control loop for car cruise control is
depicted in Fig. 1. The regulator is modelled as a simple PID controller, while
the components of the process, namely throttle, fuel dynamics, vehicle dynamics
and sensor characteristic are modelled as first-order transfer functions. The
parameters of these transfer functions are selected as in the example from
[47]. We will analyze the response signal of the control loop with respect to
timing constraints of the task that carries out the PID controller functionality.
Suppose that the car is cruising at a constant speed of 50 kilometers per hour.
At t = 40s, the required speed is increased from 50 to 55 km/h. Note that this
increase corresponds to a step signal with an amplitude of 5. We will analyze
the response of the system vr(t) to the change in input speed. For reference,
we simulated the behavior of the system in underload conditions, where all
tasks completed before their deadlines. The output signal is shown in Fig. 2
by a solid line. The response signal obtained in this case corresponds to ideal
behavior.

In the second case, the system is overloaded and the total utilization factor
equals 1.05. Suppose that the scheduling algorithm guarantees that 4 out of 5
jobs of the cruise control task will be completed before their deadlines. Note
that the ability to skip 1 in 5 jobs can reduce system load by exactly 5%,

11



30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

50

51

52

53

54

55

t[s]

v r
(t
)[
k
m
/h

]

underload
overload, (4, 5) constraint
overload, no constraint

Figure 2: A comparison of the performance of the control system in underloaded and
overloaded conditions. Two cases are considered for handling overloaded conditions: (4, 5)
weakly hard constraint and setting no constraints on deadline violations.

reducing the utilization of task τ4 to 4/5 · 0.25 = 0.2. The total utilization
factor is now u1+u2+u3+u4 = 0.3+0.25+0.25+0.2 = 1. The obtained step
response is shown in Fig. 2 by a dashed line. In this case, the performance
is not significantly degraded and skipping a single job in a sequence of 5 jobs
impacts the rise time of the step response only. More precisely, rise time is
increased by 30% with respect to the response signal obtained in underloaded
case.

Lastly, we will analyze a condition where the utilization factor is 1.05, but
no constraints are set for the considered task. We assume that the scheduling
algorithm ensures that jobs of tasks τ1, τ2, and τ3 will complete before their
deadlines, while the jobs of the task τ4 will miss their deadlines with the
probability of 20%. The response signal obtained in this case is shown in Fig.
2 by a dotted line. As in the previous case, the rise time of the response signal
is increased, but the stability in steady state is significantly degraded.

In this example, we demonstrated how the consequences of overload may
be mitigated by setting a constraint that enables discarding jobs according to
a precisely defined pattern and thus reducing the effective utilization of the
system. In this case, the deadlines are violated in a predefined and predictable

12



Figure 3: Multiple Input Queue Single Server (MIQSS) model.

manner and the performance of the system is slightly degraded, but its stability
is not jeopardized.

2.2.2. Communication systems
Weakly hard real-time systems are also used for specifying the temporal

constraints in communication systems that consist of messages from multiple
streams that are transmitted through the same medium. The system model
of this concept consists of streams of schedulable entities, referred to as
customers, that must be scheduled on a single server [17]. In the literature,
this model is referred to as MIQSS model (Multiple Input Queue Single
Server) and it is illustated in Fig. 3. Each stream consists of a source and a
queue. The server schedules a customer at the head of a queue according to
its scheduling policy. The customers have a specified service time: the time
required for serving the customer. Note that this parameter is equivalent
to the execution time of tasks in real-time scheduling theory. The request
of a customer must be fully serviced in a specified time interval which is
determined by the deadline. The requests of the same customer are invoked
with a specified inter-arrival time, which is equivalent to the period in classical
real-time scheduling theory.

The performance of communication systems is usually evaluated by the
quality of service metric: the ratio of fully serviced requests with respect to
the total number of requests. In overloaded conditions, not all requests can
be serviced and an increase in the utilization causes a degradation of quality
of service. Although these systems are usually considered as soft real-time
systems because violating the timing constraints does not cause catastrophic
consequences, it can be useful to provide constraints which ensure that a
certain quality of service will be achieved. Moreover, it can be important to

13



provide a mechanism that guarantees not only the overall quality of service,
but also the quality of service for each individual customer in the system.
These functionalities can be achieved by including weakly hard constraints in
the scheduling algorithm of the server.

In the described examples, we illustrated the motivation for the methods
introduced in this work through practical use cases. In this paper, we focus
on the optimization of the quality of service in task sets under the skip-
over model, and we perform our analysis on synthetically generated task
sets without targeting specific task sets from real-world applications such as
control systems or multimedia systems.

3. System model and problem definition

3.1. System model
The real-time system model considered in this paper consists of a set T of

N periodic tasks: T = {τ1, τ2, ..., τn}. In classical real time scheduling theory,
each task is characterized by means of three temporal parameters, a period
Ti, deadline Di, and worst-case execution time (WCET) Ci. In the system
model considered in this work, the task deadlines are implicit, i.e., equal to
the task periods, Di = Ti. Each task releases an infinite sequence of instances,
which are referred to as jobs Jij. The dynamic parameters that characterize
each job include remaining execution time cij(t), absolute deadline dij(t), and
remaining time until deadline ρij(t). In the rest of the paper, we will refer to
these parameters with annotations cij, dij, and ρij for brevity. A utilization
factor ui of task τi corresponds to the fraction of CPU time demanded by
task τi and it is computed as:

ui =
Ci
Ti

(1)

The total utilization factor of the task set T is computed as:

U(T ) =
N∑
i=1

ui (2)

In this work, we consider an extended real-time task model that includes
weakly hard real-time constraints. A weakly hard real-time constraint defines
the requirements on the pattern of missed and met deadlines for each task
and in the literature it is denoted by λi [2]. Our work focuses on the skip-over

14



task model which is based on a specific case of a weakly hard constraint
denoted by

〈
n
m

〉
which specifies that in any window of m consecutive jobs,

at least n jobs in a row must meet their deadlines. The constraints of the
skip-over model are more conservative than

〈
n
m

〉
constraint. Specifically, in a

window of m consecutive jobs, at least m− 1 jobs must be timely completed.
In skip-over model, this constraint is defined through the skip factor Si: if a
job of a task τi is skipped, at least Si − 1 subsequent jobs of the same task
must meet their deadlines. According to the skip-over model, the state of
each job is described as either red or blue. A red job must complete within
its deadline, whereas a blue job can be aborted (skipped) at any time. This
requirement can be described by the following characteristics [48]:

• the distance between two consecutive skips must be at least Si periods,

• if a blue job is skipped, the next Si − 1 jobs are necessarily red,

• if a blue job completes successfully, the next job is also blue.

By definition in [3], the values of the skip factor can be in the interval
[2,∞). Note that Si =∞ corresponds to a hard real-time system where no
deadline violations are allowed. In our work, we consider task sets that also
include soft real-time tasks where deadline violations are always tolerated.
We specify soft real-time tasks by Si = 1. The (4, 5) constraint defined in
example 2.1 can be represented in the skip-over model as S4 = 5, while the
skip factors for tasks τ1, τ2, τ3 can be defined as S1 = S2 = S3 =∞.

The authors of the skip-over model have proven that the problem of
determining the schedulability of a set of periodic skippable tasks is NP-hard
[3]. However, they showed that the worst case for the feasibility of a task set
consisting of skippable tasks is the deeply red condition: a condition when the
first Si − 1 released jobs of task τi are red. If a task set is schedulable under
this condition, it is also schedulable in any other condition and therefore
the feasibility tests for sets of skippable tasks are derived under the deeply
red condition. A necessary schedulability condition was derived in [3], and a
sufficient condition was introduced in [49]. As discussed in [3], the problem
of making optimal use of skipping jobs is likely to be NP-hard. Therefore,
the approaches for finding optimal job-skipping patterns, i.e., patterns that
minimize the number of skipped jobs, are not adequate for an on-line im-
plementation in real-time systems due to exponential time complexity of an
optimal algorithm.

15



3.2. Optimizing quality of service of periodic task sets
The problem that is investigated in the literature in context of skip-over

model is optimization of quality of service by choosing a scheduling algorithm
A for periodically released jobs [4, 50]. Quality of service for a periodic task
τi at time instant t for scheduling algorithm A is defined as:

qi(t) =
number of releases− number of skips

number of releases
(3)

The average quality of service (QoS) for a task set T can be defined as:

Q(T ) = 1

N

N∑
i=1

qi(t) (4)

Note that the skipping factor is directly related to the minimal quality of
service that can be achieved for a certain task. Skipping factor Si guarantees
that task τi will achieve a quality of service qi ≥ (Si − 1)/Si.

In this paper, our focus is on the optimization of the quality of service
by constructing the scheduling algorithm A using the hyper-heuristic genetic
programming approach. Prior to explaining the details of the approach, we
revisit existing scheduling algorithms for skip-over model and discuss them in
more detail.

3.3. Scheduling approaches
This section will present several algorithms known in the literature which

are designed to reduce the system load by skipping some jobs in the task set.
It is ensured that the remaining jobs will complete within their deadlines,
while aiming to increase the total quality of service (QoS) of the task set.

3.3.1. RTO algorithm
The simplest skip-over algorithm is the Red Tasks Only algorithm (RTO).

This algorithm systematically rejects all of the blue jobs, whereas the red jobs
are scheduled according to Earliest Deadline First (EDF) algorithm. Note
that the distance between each two skips in an RTO schedule is exactly Si
periods.

16



3.3.2. BWP Algorithm
The Blue When Possible (BWP) algorithm was introduced in [3]. This

algorithm allows blue jobs to execute if there are no red jobs present in the
system. If there is more than one blue job in the ready state, they can be
dispatched according to several heuristics, including earliest deadline, latest
deadline, a lookahead heuristic that verifies whether scheduling a certain job
will introduce overhead in the future [3], etc. The red jobs are scheduled
according to the EDF algorithm. The disadvantage of this approach is that
it does not make full use of the slack time given by red jobs. More precisely,
blue jobs that are currently running are immediately aborted if a red job
is activated, regardless of whether the running blue job can be completed
without jeopardizing the timely completion of the red job.

3.3.3. RLP Algorithm
The Red Tasks as Late as Possible algorithm, introduced in [4, 48], stimu-

lates the execution of blue jobs by executing them at idle times of a preliminary
schedule considering only the red jobs. Idle time refers to the time span in
the schedule where none of the red jobs are in ready state. RLP algorithm is
specified by the following characteristics [48, 50]. If there are no blue jobs
in the system, red jobs are scheduled as soon as possible according to the
EDF. Otherwise, red jobs are processed as late as possible and blue jobs are
processed in the idle time of red jobs. It is worth noting that blue jobs can
be scheduled in idle time by any scheduling algorithm.

The mechanism for determining the idle times of the red jobs relies on the
Earliest Deadline as Late as Possible (EDL) algorithm. The EDL algorithm
was introduced in [51] and it was initially designed for minimizing the response
time of soft aperiodic tasks by dispatching them in the idle times of periodic
tasks. In the context of the RLP algorithm, the EDL algorithm is used for
determining the latest start time for red jobs in order to maximize the slack
time for dispatching blue jobs. Moreover, once the idle intervals are known, it
can be decided on-line whether it is feasible to accept blue jobs. Chetto and
Chetto proved in [51] that the EDL algorithm is optimal in a sense that it
guarantees the maximum idle time in a given interval. The start and length of
the idle intervals in an EDL schedule can be specified by means of two vectors:
a deadline vector and an idle time vector. A deadline vector contains the time
instants at which the system is potentially in the idle state, i.e., the absolute
deadlines of the red jobs. The lengths of the idle times corresponding to the
deadlines are contained in the idle time vector. The methods for computing

17



the deadline and idle time vectors are described in detail in [52]. Silly and
Chetto proved in [52] that on-line computation of deadline and idle time
vectors is required only upon arrival of a request when no other requests
are already present in the system. In this context, the vectors need to be
computed upon arrival of a blue job, when no blue jobs are present in the
system, but also when a blue job completes because this causes a shift in the
previously computed vectors. It is sufficient to track only the idle times from
the first hyperperiod, i.e., the least common multiple of the task periods, since
the schedule repeats itself in the subsequent hyperperiods. In the skip-over
model, the hyperperiod must be computed by taking the skip factors into
account:

H = lcm(S1 · T1, S2 · T2, ..., Sn · Tn). (5)

It is shown in [52] that the computational complexity of the deadline and
idle time vectors is O(bR/pcN), where R and p are the longest deadline and
the shortest period of active jobs, respectively. Since on-line computation of
the deadline and idle time vectors introduces additional overhead, it is not
suitable for implementation on hardware platforms that are typically used in
embedded systems due to limited resources.

An interesting observation about both BWP and RLP algorithms is the
ability to arbitrarily choose a heuristic for scheduling of blue jobs without
jeopardizing the feasibility of the system with regard to skipping factors.
Intuitively, the quality of service can be optimized only by choosing different
heuristics for scheduling blue jobs, which are executed in slack time of red
jobs in case of the BWP algorithm or in the idle time of red jobs scheduled
as late as possible in case of the RLP algorithm.

3.4. Problem definition
Formally, the problem that we solve in this paper is the maximization of

the quality of service:

maximize Q(T ) = 1

N

N∑
i=1

qi(t) (6)

for any task set T for which the sufficient schedulability condition is satisfied
and thus an algorithm that produces a feasible schedule exists. Less formally,
the above problem can be described as: Find a heuristic from the space
of heuristics which optimizes the observed metric across a set of problem

18



instances. In this context, problem instances are different sets of periodic
skippable task sets and the considered metric is the quality of service. These
heuristics in our proposed approach are generated using the hyper-heuristic
genetic programming approach which will be described in detail in Section
4. In this work, the heuristics are considered as priority functions that
are integrated into scheduling meta-algorithms (BWP, RLP) or they act as
standalone scheduling algorithms. In the following text, we provide a formal
definition of the priority function.

3.5. Priority functions
The heuristics evolved by genetic programming correspond to priority

functions. A priority function is an expression for computing the priority of
each active job, as defined below:

Definition 3.1. Priority function. Priority function πij(t) assigns a value
to a job Jij of task τi at some time instant t. The lower the assigned value,
the higher is the priority.

The priority function enables the definition of scheduling policies (heuristics)
in a relatively simple manner. For instance, the EDF scheduling policy can
be simply defined as πij(t) = dij(t), i.e., the lower is the deadline, the higher
is the priority.

3.6. Motivational example
In the following text, we will provide an example of building schedules

for an overloaded task set based on the algorithms described in the previous
subsection. We will demonstrate how system load can be reduced by skipping
a certain number of jobs and we will compare the presented approaches
with respect to achieved quality of service. Moreover, we will consider two
approaches that employ a custom heuristic for scheduling skippable jobs: in
the first case, the custom heuristic is used for scheduling blue jobs in the
context of RLP algorithm (GP-QoS-MA approach), whereas in the second case
the heuristic acts as a stadalone scheduling algorithm (GP-QoS-S approach).
We will demonstrate how custom scheduling heuristics can maximize the
quality of service of the given task set.

Example 3.1. Consider a task set given in Table 2. Since the utilization
factor of the set U(T ) > 1, the task set is overloaded:

U(T ) =
N∑
i=1

Ci
Ti

=
2

8
+

4

8
+

3

6
= 1.25. (7)

19



Table 2: Task set parameters for Example 3.1.

Task Ci Pi = Di Si

τ1 2 8 1
τ2 4 8 2
τ3 3 6 2

We aim to find a scheduling heuristic which provides a schedule with minimal
number of skipped jobs—a heuristic with the maximal QoS. First, we observe
a schedule provided by RTO algorithm, depicted in Fig. 4. The activation
times of the jobs are denoted by upwards arrows, while deadlines are denoted
by downwards arrows. The total number of released jobs equals 20. Since RTO
systematically rejects every blue job, there are no completed jobs of task τ1
and there are 7 completed jobs of tasks τ2 and τ3. The total quality of service
equals 0.35.

Figure 4: Schedule generated according to the RTO algorithm for the task set given
in Table 2.

Fig. 5 shows a schedule produced by the BWP algorithm. Note that red
jobs always have a higher priority than blue jobs. The blue jobs that are
skipped are denoted in the schedule by a hatched pattern. In this case, 6 blue
jobs were able to execute to completion and the total quality of service is now
increased to 0.6.

Next, we will observe a schedule produced by the RLP algorithm. Blue
jobs now have the same priority as red jobs, and idle time given by red jobs
is maximally utilized. In this case, blue jobs are scheduled according to the
EDF algorithm. The obtained schedule is shown in Fig. 6. The total quality
of service obtained in this case is 0.6. Although RLP usually performs slightly
better than BWP in terms of QoS [4], for this particular task set BWP and
RLP yield the same QoS.

We will now analyze the possibility for using an alternate heuristic for

20



Figure 5: Schedule generated according to the BWP algorithm for the task set
given in Table 2.

Figure 6: Schedule generated according to the RLP algorithm for the task set given
in Table 2, with blue jobs scheduled according to EDF.

scheduling blue jobs in combination with RLP algorithm which would minimize
the total number of skips. We will consider assigning the priority values to
each blue job according to the following priority function:

πij(t) = min

(
max(ρij, Si),

Si
ρij

)
(8)

where parameter ρij denotes the remaining time until deadline for job Jij
and Si is the skip factor for task τi. The division operator is implemented as
protected division: if the denominator is zero, the operator returns 1. It is
important to emphasize that jobs with a lower value of priority function πij(t)
execute first, i.e., the lower the value of priority function πij(t), the higher
the priority.

The obtained schedule is shown in Fig. 7 and it can be seen that the total
quality of service is now increased to 0.7. A table that denotes the calculated
priority values of all active jobs is given in Appendix A.

21



Figure 7: Schedule generated according to the RLP algorithm for the task set given
in Table 2, with blue jobs scheduled according to priority function given in (8).

Finally, we consider a scheduling heuristic that acts as a standalone job-
skipping algorithm, i.e., the priorities of both red and blue jobs are assigned
according to the following expression:

πij(t) = max

(
ρij
Si
,
Ci
σij

)
(9)

where parameter σij denotes the state of job Jij:

σij =

{
0 if job is red,
1 otherwise.

(10)

The obtained schedule is shown in Fig. 8. We can note that there are no
violations of the skip factor, even though the scheduling heuristic does not
provide a mechanism that guarantees that the constraint given by skip factor
will be fulfilled. Moreover, the total quality of service is increased to 0.75. The
priorities of active jobs are given in Appendix A, Table A.5.

Figure 8: Schedule for the task set given in Table 2, obtained by standalone priority
function given in (9).

The latter examples illustrate the motivation for including custom schedul-
ing policies into algorithms that guarantee the satisfaction of weakly hard

22



constraints corresponding to the skip-over task model. Moreover, it is worth
considering the optimization techniques for finding the adequate heuristic
for scheduling blue jobs, which can reduce the total number of skipped jobs
and thus increase the total QoS. We also showed how scheduling heuristics
generated by optimization techniques specifically for a given task set can be
used as standalone job-skipping algorithms that maximize the QoS, while
ensuring that the constraint defined through skip factor will be fulfilled.

4. Methodology: evolving scheduling heuristics with genetic pro-
gramming

This section will describe the method for employing genetic program-
ming for evolving scheduling heuristics. Genetic programming is suitable for
searching the space of scheduling heuristics that provide schedules for an
arbitrary scheduling environment [6], while aiming to find a heuristic that
yields the best results considering the requirements of the system model. We
evaluate the best heuristic on a large number of task sets for validation and
compare the obtained results to state-of-the art algorithms for task scheduling
under the skip-over model, namely RTO, BWP, and RLP. The setup for
experimental evaluation and the obtained results will be presented in Section
5.

We use genetic programming for finding the priority function which best
suits the given meta-algorithm and user demands regarding the system perfor-
mance. A single priority function, i.e., solution to the optimization problem
is referred to as an individual, while a set of individuals is referred to as a
population.

The priority functions evolved by genetic programming are represented
as tree structures that consist of function and terminal nodes [7]. Function
nodes correspond to standard arithmetical operators, while the terminal nodes
represent static or dynamic properties of jobs. An overview of the terminal
and function nodes used in this work is given in Table 3.

23



Figure 9: Example of a priority function represented with a tree structure.

Table 3: Description of function and terminal nodes.

Function name Description
ADD, SUB, MUL addition, subtraction and multiplication of child nodes
DIV protected division (returns 1 if second argument is zero)
MAX returns maximum value of two arguments
MIN returns minimum value of two arguments
Terminal name Description
Ci execution time of task τi
Ti period of task τi
Si skip factor of task τi
cij remaining execution time of active job Jij
dij absolute deadline of active job Jij
ρij remaining time to deadline of active job Jij
qi current quality of service of task τi
σij job state: 0 if job is red, 1 otherwise, used for GP-QoS-S only

The priority value is calculated by traversing the tree and evaluating the
corresponding expression. An example of a tree structure which represents
a scheduling heuristic is depicted in Fig. 9. The tree shown in the exam-
ple corresponds to the priority function πi(t) = qi

cij
+ dijρij − cij. In the

approaches presented in this work, priority functions are encapsulated into
meta-algorithms, which define the manner of scheduling jobs at a certain time
instant depending on their priorities and other system constraints.

The proposed approach is depicted in Fig. 10. The inputs of the opti-
mization process include the parameters of the scheduling environment and

24



the genetic algorithm. The scheduling environment parameters determine
how the task sets will be generated and they include the number of tasks in
the set, the maximum period of the tasks in the set, the distribution of the
utilization factors per task set, and the configuration of skip factors per task.
The task sets for training and validation were generated using the UUnifast
algorithm [53]. This algorithm is commonly used in research papers that
deal with analyzing the performance of scheduling algorithms as it allows the
synthetization of a large number of task sets with a given utilization factor.
The parameters of the genetic algorithm include the population size, the
termination condition, configuration of mutation and crossover operators, etc.
The exact configuration of the environment and genetic algorithm parameters
will be described in Section 5. The output of the process is the best heuristic
evolved by the genetic algorithm, whose performance is evaluated on the task
sets for validation. In the validation process, we examined the performance
of the best heuristic with respect to several parameters of the task sets,
namely utilization factor, maximum task period, number of tasks in the set,
and skip factor. The analysis of the average performance of the heuristics
in comparison with other job-skipping algorithms is given in Section 5. A
thorough statistical analysis of the obtained results is given in Appendix D.

Figure 10: Genetic programming approach for design of heuristics for scheduling blue jobs.

25



The optimization process can be divided into two components: an evaluator
and a genetic algorithm. We used a genetic algorithm implemented in the
Evolutionary Computation Framework (ECF) [54]. The framework implements
a steady-state variant of the genetic algorithm. In every step of the algorithm,
each individual is evaluated, i.e., it is assigned a fitness value according to its
performance in solving the problem of interest. After the evaluation of the
individuals in the population, the genetic algorithm performs selection of two
individuals which will represent parents. Then, the operators of crossover
and mutation are applied to form a new individual which is referred to as
the offspring. In the genetic programming approach that we use in this
work, crossover and mutation operators are implemented as sub-tree crossover
and sub-tree mutation as described in [55]. The offspring then replaces the
worst individual in the population. As the evolution process continues, the
individuals converge towards the optimal heuristic. This process repeats
until the termination condition is fulfilled. The termination condition can
be defined through various events or states, but the most commonly used
include:

• evolution reached a maximum number of generations,

• evolved individuals reached the target fitness value,

• maximum number of consecutive generations without improvement
exceeded.

In this case, the individuals are evolved through a predefined number of
generations, which means that the evolution process is stopped once the
maximum number of generations is reached. When the termination condition
is fulfilled, the algorithm returns the best individual in the population.

The evaluator assigns fitness values to individuals by simulating the
execution of task sets in a real-time environment. For the purpose of this
work, we implemented an evaluator that corresponds to the optimization
problem addressed in this work and a simulator of a real-time environment
corresponding to the skip-over model. In the simulation, the jobs are scheduled
according to a given meta-algorithm and the individual that is being evaluated
is integrated in the meta-algorithm as a priority function.

The execution of the task sets in the simulation is configured as shown
in Example 3.1: the jobs are released periodically with no initial offset, the
overload conditions are simulated by executing each job for its worst-case
execution time (WCET). Moreover, we simulate the execution of the tasks

26



under deeply red condition— the first Si − 1 jobs of each task are in the red
state. At every time instant, the highest-priority job is selected as the running
job according to the considered meta-algorithm. The meta-algorithms are
described in more detail in Subsection 4.1. The execution of the task set is
simulated in the first hyperperiod only. When the simulation time expires,
each individual is assigned a fitness value based on its performance in the
simulation. The computation of fitness functions will be described in more
detail in Subsection 4.2. A thorough description of the simulator can be found
in Appendix B.

The result of the optimization process is the best individual, i.e., the
heuristic that obtained the best performance in the evaluations. The best
individual is then evaluated on the task sets for validation.

4.1. Scheduling meta-algorithms
In the GP-QoS-MA approach, we integrate the priority functions generated

by genetic programming into conventional job-skipping algorithms, namely
BWP and RLP. In the scheduling environment that corresponds to these
algorithms, priority functions are used for scheduling blue jobs and they are
incorporated into different meta-algorithms, depending on the scheduling
technique that is being used (BWP or RLP). The outline of the meta-algorithm
corresponding to the BWP approach is shown in Alg. 1. If there is any active
red job, the scheduler always dispatches a red job, regardless of the priority
of blue jobs. On the other hand, RLP approach stimulates the execution of
blue jobs by determining whether the current time instant belongs to an idle
interval of red jobs. The meta-algorithm for the RLP approach is given in
Alg. 2.

In the GP-QoS-S approach, the priority functions are used as standalone
algorithms and the priorities are assigned in the same manner for red and
blue jobs. Therefore, the meta-algorithm consists of priority assignment and
dispatching only, as shown in 3.

Algorithm 1 Meta-algorithm for BWP scheduling
1: if there are active red jobs then
2: schedule red job with the earliest deadline
3: else
4: calculate priorities πij(t) for every blue job
5: schedule blue job with highest priority

27



Algorithm 2 Meta-algorithm for RLP scheduling
1: if t belongs to idle interval then
2: calculate priorities πij(t) for every blue job
3: schedule blue job with highest priority
4: else
5: schedule red job with the earliest deadline as late as possible

Algorithm 3 Meta-algorithm for GP-QoS-S approach
1: calculate priorities πij(t) for all jobs
2: schedule job with the highest priority

4.2. Fitness functions
The fitness of the individuals is assigned through an evaluator, which

simulates the behavior of the input task sets for each scheduling heuristic in
the population.

In the GP-QoS-MA approach, the fitness of an individual depends on the
corresponding priority function that is used for best-effort scheduling of blue
jobs. The fitness value is directly related to the quality of service obtained by
the generated schedule and it is computed as described in Equation 6.

On the other hand, in the GP-QoS-S approach, the same heuristic is used
for scheduling both red and blue jobs. This approach does not provide a
mechanism which guarantees that no red jobs will be skipped. However, by
using an adequate fitness function, the heuristic can ensure that no violations
of the skip factor will occur for a given task set. Thus, in the GP-QoS-S
approach, we modified the QoS fitness function in a way that the violations
of the skip factor constraint are penalized. Specifically, this fitness function,
denoted by F (T ), subtracts the number of skipped red jobs from the QoS
value and thus yields a negative QoS for a heuristic that allows the violations
of the skip factor. The value of fitness function F (T ) is computed as:

F (T ) = Q(T )−
N∑
i=1

Mi∑
j=1

V(i, j) (11)

where Mi is the number of released jobs of task τi in the first hyperperiod,
and V(i, j) is a function that determines whether job Jij has violated the

28



skip factor Si, i.e., job Jij is in red state and has skipped its deadline:

V(i, j) =

{
1 if job Jij is in red state and skipped,
0 otherwise.

(12)

It is important to emphasize that there is a difference in the evolution
process for GP-QoS-MA and GP-QoS-S approaches. In the GP-QoS-MA
approach, a single priority function is applied to all of the training task sets
(Ti1, Ti2...). The idea of the GP-QoS-S approach is to evolve a scheduling
heuristic specifically for a given task set and therefore we perform a separate
evolution process for every training task set. This approach thus yields
multiple scheduling heuristics - one for each training task set Tij.

5. Experimental evaluation

In this section, we evaluate the effectiveness of using heuristics evolved
by genetic programming for scheduling jobs in a weakly hard real-time en-
vironment. For implementation of the genetic programming procedure, we
used the Evolutionary Computation Framework (ECF). The current version
of the framework is available from [54]. The performance of our approach is
evaluated with respect to several parameters, namely the utilization of task
sets U(T ), the maximum period in the task set Tmax, the number of tasks
in the set N , and maximum skip factor in the set Smax. We compare the
performance of the heuristics with standard implementations of RTO, BWP
and RLP.

5.1. Task set generation
As mentioned in the previous section, we used the UUnifast algorithm for

generating the task sets for training and validation. The methods for selecting
the number and the parameters of the sets for training and validation will
be described in Subsections 5.2 and 5.3. We can describe the process of
synthesizing the task sets as follows:

• the total utilization factor of the task set U(T ) is chosen,
• the utilization of each task in the set ui is computed according to the
UUnifast algorithm,

• period value Ti for each task is chosen as a random variable with uniform
distribution from the interval given with minimum and maximum period
values (Tmin and Tmax),

29



• the WCET for each task is calculated from the values ui and Ti.

Using a constant skip factor for every task simplifies the scheduling problem
and does not yield accurate results. Upon creation of every task set, it is
validated that the set is schedulable according to the sufficient schedulability
condition, which is defined in [49]. In order to decrease the runtime of the
simulations, we set an upper limit to the hyperperiod of the tasks to 10000.
In each of our experiments, we varied one of the parameters, while the others
were set to their default values. The default values of the task parameters
are as follows:

• utilization factor U(T ) = 1.2,

• the number of tasks in the task set N = 6,

• maximum allowed period Tmax = 500,

• maximum skip factor in the task set Smax = 6.

The skip factor for each task is generated as a random variable with uniform
distribution from the interval [1, Smax].

5.2. Selection of genetic programming parameters
In order to determine the specifications of the environment for evolution

of scheduling heuristics, we explored several crucial parameters, namely the
number of generations, the genotype size, and the number of individuals in
the population. We analyzed the impact of the considered parameters and
determined the parameter values that are most suitable for our study:

• stopping criterion: 15 generations reached,

• population size: 100,

• maximum depth of the tree genotype: 4.

A thorough analysis of the parameters is given in Appendix C.
We also observed the influence of the parameters for crossover, mutation,

and selection operations and concluded that the impact of these parameters
is much smaller than the parameters such as tree depth which we analyzed in
more detail. Therefore, for these parameters typical values were chosen. In
the evaluation, we used steady-state tournament as the selection operator,
with size of the tournament set to 3. We used a generic approach for crossover

30



and mutation in genetic programming, which includes sub-tree swapping and
sub-tree mutation. Typically, the mutation of the offspring occurs with a
given probability and in this case we set the probability of the mutation to
0.3.

5.3. Experimental results
In this section, we analyze the results obtained by the evolved scheduling

heuristics for GP-QoS-MA and GP-QoS-S approaches and compare their per-
formance with standard implementations of RLP, BWP, and RTO algorithms.
Additional experiments that verify the statistical significance of the obtained
results are described and discussed in Appendix D. It is important to em-
phasize that RLP and BWP are state-of-the-art algorithms for scheduling
tasks under skip-over model and our research is the first to present methods
that outperform these algorithms.

In our evaluation, we provide a comparison with all of the existing algo-
rithms that address the skip-over model. Moreover, we analyze the perfor-
mance of the proposed approaches in comparison with the EDF algorithm and
the Shortest Remaining Time First (SRTF) algorithm. The SRTF algorithm
typically brings over-the-average performance with regard to QoS since it
gives the highest priority to the jobs that require the lowest amount of CPU
time. However, EDF and SRTF provide no mechanisms for ensuring that the
weakly hard constraints will be fulfilled.

In the experiments, we measured the performance of a priority function
that corresponds to the best individual obtained by genetic programming.
The performance of the best individual is evaluated over a larger amount of
task sets that were not included in the training process. More precisely, we
generated 100 times more task sets for validation to demonstrate that the
evolved heuristic has learned generalized behavior. We validated the priority
functions with respect to several parameters, namely the utilization of the
task sets, the number of tasks in the system, the maximum allowed period of
the tasks in the task set, and two different principles of skip factor assignment.
Besides analyzing the performance regarding the objective function, i.e., QoS,
we also discuss the performance of the presented approaches with regard to a
metric that corresponds to the number of violations of the skip factor. For
each task τi, this metric is computed as a ratio of skipped red jobs in the

31



total number of released jobs:

ni =
1

Mi

Mi∑
j=1

V(i, j) (13)

where Mi is the number of released jobs of tasks τi in the first hyperperiod
and V(i, j) is computed as described in (12).

In our evaluations, we consider an average value of this metric for the
given task set and it is computed as:

N(T ) = 1

N

N∑
i=1

ni (14)

5.3.1. Evaluation of the GP-QoS-MA approach
Firstly, we compare the performance of the GP-QoS-MA approach with

regard to the utilization factor of the task sets U(T ). We varied the utilization
factor in the interval [0.9, 1.4] with an increment of 0.05. For training process,
we generated 100 task sets per each utilization factor which results in a total
of ((1.5− 0.9)/0.05 + 1) · 100 = 1300 task sets for training. In the validation
process, we generated 10000 task sets per each utilization factor, thus the total
number of task sets for validation equals 130000. We expect that the increase
in utilization factor will decrease the average quality of service. Fig. 11
shows the performance of the evolved heuristics and conventional algorithms
(RTO, BWP, RLP) with regard to average quality of service at the end of
hyperperiod. The heuristics obtained by the approach described in this paper
are denoted by BWP+GP-QoS-MA and RLP+GP-QoS-MA and it can be
seen that they dominate conventional job-skipping algorithms in overloaded
conditions. If we observe the rest of the algorithms, we can see that RTO
yields the lowest QoS, which is expected. BWP and RLP perform similarly
in terms of average QoS, both in underloaded and overloaded conditions. It
is interesting to notice that the BWP+GP-QoS-MA approach performs worse
than standard BWP when U(T ) < 1. This is due to the fact that standard
BWP employs the EDF algorithm for scheduling blue jobs, which is optimal
for U(T ) < 1. Consequently, all jobs released after resolving the deeply-red
condition are blue. On the other hand, an arbitrary heuristic for scheduling
blue jobs in the BWP+GP-QoS-MA approach may not be optimal and some
of the jobs may be skipped. This causes the activation of red jobs and the
remaining blue jobs are aborted until red jobs are completed. This behavior

32



0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization factor U(T )

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF

Figure 11: Average QoS with respect to the utilization factor U(T ).

is not as emphasized in the RLP+GP-QoS-MA approach because in that
case, upon skipping a job, the activated red job is postponed to be executed
as late as possible, giving the remaining blue jobs maximum slack time for
execution.

For completeness, we simulated the behavior of scheduling algorithms
EDF and SRTF on the validation task sets. We notice that EDF performs
similarly as RLP and BWP under overloaded conditions and SRTF yields
significantly higher values of average QoS when U(T ) > 1. However, SRTF
brings an artificial improvement of the average QoS since it penalises the
most time-consuming jobs. Moreover, EDF and SRTF do not guarantee the
satisfaction of the weakly hard constraint given by the skip factor, which is
illustrated in Fig. 12. The figure shows the performance of the algorithms with
respect to the frequency of the violations of the weakly hard constraint, i.e.,
the N(T ) metric. The algorithms RTO, BWP, and RLP, both conventional
and combined with evolved heuristics, guarantee the satisfaction of weakly
hard constraint defined by the skip factor. Therefore, the graphs RTO,
BWP+EDF, BWP+GP-QoS-MA, RLP+EDF, and RLP+GP-QoS-MA are
on the x-axis, i.e., N(T ) = 0. SRTF and EDF, however, allow the violations
of the constraint and the number of violations escalates when the utilization

33



0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.1

0.2

0.3

0.4

Utilization factor U(T )

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF

Figure 12: Average ratio of skip factor violations with respect to the utilization
factor U(T ).

factor is increased.
Further, we analyze the performance of the described approach with respect

to different values of maximal allowed period in the task set. We varied the
maximal period values from Tmax = 100 to Tmax = 1000 with increment of
Tδ = 100. This corresponds to a total of ((1000− 100)/100 + 1) · 100 = 1000
sets for training and ((1000−100)/100+1) ·10000 = 100000 sets for validation.
In this experiment, the utilization factor is fixed to 1.2. The number of tasks
in the task sets is 6, and the skip factors for the tasks are generated randomly
from the interval [1, 6]. Fig. 13 shows that the heuristics generated by genetic
programming generalize well when the maximum task period Tmax is varied
and they perform better than the conventional job skipping algorithms in
terms of quality of service. The evolved heuristics yield expected results in
terms of weakly hard constraint satisfaction, which is shown in Fig. 14.

Next, we compare the performance of the described approaches with regard
to different number of tasks in a task set. We generate task set sizes for each
integer N , 4 ≤ n ≤ 8 which yields a total of 5 · 100 = 500 sets for training
and 5 · 10000 = 50000 sets for validation. As in the previous experiment,
the utilization factor of the task sets is fixed to 1.2. Fig. 15 shows that the

34



100 200 300 400 500 600 700 800 900 1,000

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum allowed period Tmax

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 13: Average QoS with respect to the maximum allowed period Tmax.

100 200 300 400 500 600 700 800 900 1,000
0

0.05

0.1

0.15

0.2

Maximum allowed period Tmax

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 14: Average ratio of skip factor violations with respect to the maximum
allowed period Tmax.

35



proposed genetic programming approach generalizes well and achieves the
best performance in overload conditions, regardless of the size of the task sets.
Once again, the N(T ) metric is greater than zero only for task sets scheduled
by EDF and SRTF, which is shown in Fig. 16.

4 5 6 7 8
0.4

0.6

0.8

Number of tasks n in the task set

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 15: Average QoS with respect to the number of tasks N in the task set.

4 5 6 7 8
0

0.1

0.2

Number of tasks n in the task set

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 16: Average ratio of skip factor violations with respect to the number of
tasks n in the task set.

In the last experiments, we examine the achieved quality of service with
respect to the skip factor of the tasks. We analyzed two different configura-
tions. First, we generated skip factors for each task randomly, while varying

36



the upper bound on the generated values. The lower bound for skip factors of
the tasks is set to 1, while the skip factors for individual tasks are generated
as random variables from the interval [1, Smax]. Fig. 17 shows the obtained
QoS with respect to the maximum skip factor Smax. RLP and BWP algo-
rithms in combination with evolved heuristics outperform the conventional
algorithms. It is interesting to notice that for Smax = 1, BWP+GP-QoS-MA
and RLP+GP-QoS-MA yield the same QoS as SRTF. Since all jobs are
blue when Smax = 1, the heuristics integrated in BWP+GP-QoS-MA and
RLP+GP-QoS-MA have learned the behavior of SRTF. Moreover, when
Smax = 1, RTO algorithm skips all of the jobs and therefore Q(T ) = 0. Fig.
18 shows that only EDF and SRTF violations of the skip factor.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Maximum skip factor Smax

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 17: Average QoS with respect to the maximum skip factor Smax.

In the second configuration, we assumed that all tasks in the set have
the same skip factor. The skip factor was varied in the interval [1, 4]. For
skip factors larger than 4, it was impossible to find feasible task sets with
utilization factor 1.2. The result of the validation with respect to QoS are
shown in Fig. 19. For Si = 1, we can apply the same observations as in Fig. 17
for Smax = 1, i.e., BWP+GP-QoS-MA and RLP+GP-QoS-MA yield the same
QoS as SRTF and Q(T ) = 0 for RTO. We notice that BWP+GP-QoS-MA
and RLP+GP-QoS-MA outperform conventional job-skipping algorithms for

37



smaller skip factors with respect to quality of service. However, for skip factor
Si = 4, RLP and BWP algorithms combined with the evolved heuristics yield
similar results as classical RLP and BWP. Note that even RTO achieved
similar quality of service. This is due to the fact that with larger skip factors,
there are fewer blue jobs released, and consequently there is less scope for
improvement in terms of quality of service. Fig. 20 shows N(T ) with respect
to skip factor Si for all tasks. Once again, N(T ) > 0 for EDF and SRTF
only.

An example of a QoS maximizing heuristic generated in our experiments
is shown in (15).

πij = qi · (dij + (Ci − cij)) (15)

The term (Ci − cij) corresponds to the amount of computation that has been
done by the current time instant for job Jij and thus it decreases the priority
of the jobs that have already been executing for a larger amount of time.
Adding dij will decrease the priority of the jobs with the farthest deadline.
The priority is also tuned with regard to the current quality of service of the
job Jij. Higher priority is given to the job with lower quality of service.

Even though this heuristic is rather simple, it dominates conventional
scheduling heuristics. However, there are more complex heuristics with even
better performance, but they would be too challenging to interpret. It is
important to emphasize that larger trees that correspond to complex heuristics
often contain redundnant subtrees that can be removed. For instance, if a
tree contains the subtree dij + (Ci − Ci), it can be reduced to dij.

5.3.2. Evaluation of the GP-QoS-S approach
In the evaluation of the heuristics applied in GP-QoS-S approach, we

analyze heuristics that are evolved specifically for a given task set, as described
in Section 4. The performance of the heuristics is therefore validated on the
same task sets that they were designed for, i.e., task sets used for training.
Moreover, we compare the standalone heuristics to heuristics generated by
GP-QoS-MA and integrated into job-skipping meta-algorithms. In these
experiments, the GP-QoS-MA heuristics are evolved and validated in the
same manner as in the GP-QoS-S approach: we consider a separate heuristic
for each input task set and validate it on its corresponding task set.

In the validation process, parameters of the task sets, namely utilization
factor u, maximum period value Tmax, number of task sets n, and maximum
skip factor value Smax are selected as described in the previous experiments.

38



1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Maximum skip factor Smax

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 18: Average ratio of skip factor violations with respect to the maximum skip
factor Smax.

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Skip factor Si for all tasks

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 19: Average QoS with respect to the skip factor Si for all tasks.

39



1 2 3 4
0

0.05

0.1

0.15

0.2

Skip factor Si for all tasks

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF
EDF

Figure 20: Average ratio of skip factor violations with respect to the skip factor Si
for all tasks.

For each considered parameter value, we generated 10 task sets and performed
the evolution of the priority function for each task set. Fig. 21 shows the
average quality of service obtained by the considered algorithms with respect
to the utilization factor. We notice that generally, using the priority functions
that are designed specifically for the task sets of interest can improve the QoS
in comparison with the scenario where a single priority function is applied
to task sets that are different from the sets used in training process. For
instance, for utilization factor of 1.4, the QoS is increased by 3%. Moreover,
BWP and RLP algorithms achieved optimality in underload conditions, which
was not the case in the previous experiments. It is also important to notice
that the heuristic which is evolved independently from the job-skipping
meta-algorithms, denoted as standalone heuristic, performs better than the
job-skipping algorithms combined with the evolved heuristics. Although the
obtained QoS is still lower than the QoS obtained by SRTF, the standalone
heuristic has achieved optimality in the underload conditions, and in Fig. 22
it is shown that the heuristic has learned guaranteed behavior—it produced
zero violations of the skip factor. Fig. 23 shows a comparison of the GP-
QoS-S approach and the previously discussed algorithms with respect to

40



0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization factor U(T )

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 21: Average QoS with respect to the utilization factor U(T ), evaluated on
the task sets used for training.

the maximum task period (Tmax). We notice that GP-QoS-S consistently
outperforms BWP+GP-QoS-MA and RLP+GP-QoS-MA by up to 10%. The
results with respect to N(T ) metric are shown in Fig. 24. Once again,
standalone heuristics produced no violations of the skip factor. In Fig. 25, the
results of the observed algorithms in terms of QoS are compared with respect
to the number of tasks in the set. It can be seen that GP-QoS-S method
outperforms both conventional and GP-QoS-MA algorithms regardless of the
task set size. Fig. 26 shows that heuristics evolved by GP-QoS-S showed
guaranteed behavior on validation sets of different sizes. Fig. 27 shows the
average QoS with respect to the maximum skip factor Smax. It is interesting
to notice that GP-QoS-S heuristics perform the same or better than SRTF
for Smax = {1, 2, 3}. In Fig. 28, we can see that job skipping algorithms,
including GP-QoS-S heuristics, produced no skip factor violations.

The QoS for the configuration where all tasks have the same skip factor
Si is shown in Fig. 29, while Fig. 30 shows the results with respect to N(T )
metric. We notice an increase in the number of violations produced by the
standalone heuristics. This is due to the fact that the scheduling problem is
more complex if the weakly hard constraint of the tasks is more conservative

41



0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.1

0.2

0.3

0.4

0.5

Utilization factor U(T )

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 22: Average ratio of skip factor violations with respect to the utilization
factor U(T ), evaluated on the task sets used for training.

and therefore the current configuration of the heuristics evolution process is
not able to find a heuristic that satisfies the weakly hard constraint for all
the task sets. This can be overcome by adjusting the parameters of genetic
programming, e.g., increasing the tree depth or using a different stopping
criterion for the evolution.

An example of a standalone priority function that maximizes the QoS,
while guaranteeing the satisfaction of the weakly hard constraints for the
given overloaded task set is shown in the following equation:

πij = min(σij, cij + ρij) (16)

The min operator with parameter σij as operand ensures that the red jobs will
have the highest priority—the value of the priority function πij will be 0. This
expression shows that the heuristic has become aware of the state of the job
(red or blue). For blue jobs, priority will be assigned as a sum of the remaining
execution time cij and remaining time to deadline ρij. Such heuristic for
scheduling blue jobs is a combination of the SRTF and EDF heuristics. We
can conclude that, given the proper inputs to the optimization process, the
evolved heuristic can learn the behavior of the job-skipping meta-algorithm.

42



100 200 300 400 500 600 700 800 900 1,000

0.2

0.4

0.6

0.8

1

Maximum task period Tmax

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 23: Average QoS with respect to the maximum task period Tmax, evaluated
on the task sets used for training.

100 200 300 400 500 600 700 800 900 1,000
0

0.05

0.1

0.15

0.2

Maximum task period Tmax

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 24: Average ratio of skip factor violations with respect to the maximum task
period Tmax, evaluated on the task sets used for training.

43



2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

Number of tasks n in the task set

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 25: Average QoS with respect to the number of tasks N in the task set,
evaluated on the task sets used for training.

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Number of tasks n in the task set

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 26: Average ratio of skip factor violations with respect to the number of
tasks N in the task set, evaluated on the task sets used for training.

44



1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Maximum skip factor Smax

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 27: Average QoS with respect to the maximum skip factor Smax, evaluated
on the task sets used for training.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Maximum skip factor Smax

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 28: Average ratio of skip factor violations with respect to the maximum skip
factor Smax, evaluated on the task sets used for training.

45



1 2 3 4
0

0.2

0.4

0.6

0.8

1

Skip factor Si for all tasks

Q
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 29: Average QoS with respect to the skip factor Si for all tasks, evaluated
on the task sets used for training.

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Skip factor Si for all tasks

N
(T

)

RTO BWP+EDF
BWP+GP-QoS-MA RLP+EDF
RLP+GP-QoS-MA SRTF

EDF GP-QoS-S

Figure 30: Average ratio of skip factor violations with respect to the skip factor Si
for all tasks, evaluated on the task sets used for training.

46



6. Applicability in embedded systems

In the presented approach, the skippable jobs are scheduled according
to priorities assigned by priority functions. The process of evolving the
priority functions is performed offline, and the resulting priority function
can be embedded into the scheduler of a real-time operating system. During
the execution of real-time task sets, the priorities of the skippable jobs are
calculated by traversing a tree and the required number of operations is
directly related to the depth of the tree. For instance, if a priority function
corresponds to a tree with depth 3, the priority is calculated in 23 + 1 = 9
operations. For trees of smaller depths, the time required for computing
the priority is negligible with respect to the typical timing characteristics of
real-time operating systems. For instance, the invocation of the scheduler in
the FreeRTOS operating system by default occurs every millisecond.

In the work presented in [56], it is described how the FreeRTOS kernel
can be modified in order to support dynamic priority assignment and the
usage of custom scheduling heuristics. The scheduling heuristics generated by
techniques desribed in this work can be easily incorporated into the FreeR-
TOS (or similar real-time operating systems) without introducing additional
overhead. We suggest the implementation of dynamic scheduling with custom
scheduling heuristics in RTOS kernel as follows. Upon every context switch,
the scheduler calculates the priorities according to the given priority function
for each job that is currently in the ready state. The job descriptors are
inserted into a ready jobs list, sorted in increasing order of the priority value.
As in the considered environment the lower priority value corresponds to
the higher priority, the scheduler dispatches the job that corresponds to the
descriptor at the head of ready jobs list. This mechanism is depicted in
Fig. 31. The notations in the schematic are inspired by the terminology in
FreeRTOS. The data structures that describe tasks are often referred to as
task control blocks, which are denoted in the schematic as TCB. The TCB
contains all the parameters of the tasks, as well as the dynamic parameters
of the jobs, which are necessary for computing the priority. In the schematic,
some of the parameters are omitted for simplicity. The priority function
corresponds to the EDF algorithm: πij = dij.

Besides enabling the usage of optimized scheduling heuristics, another
advantage of the presented approach is its modularity. If it is required to
design heuristics for different scheduling environments, it is sufficient to modify
the meta-algorithm in the evaluator. On the other hand, if a different metric

47



Figure 31: An example of a possible implementation of the considered scheduling environ-
ment in a real-time operating system.

must be optimized, it is only required to change the fitness function. For
instance, if we need to optimize the scheduling heuristic in a soft real-time
environment, we would use a different fitness function (e.g., average tardiness
for all tasks in the set) and modify the evaluator in a way that the simulator
corresponds to soft real-time instead of weakly hard real-time environment.
Moreover, if we wanted to optimize multiple metrics, for instance, both quality
of service and wasted processing time (CPU time wasted on executing skipped
jobs), multi-objective optimization can be achieved with minimal changes in
the evaluator.

7. Conclusion

In this paper, we presented a method for applying scheduling heuristics
evolved by genetic programming for improving a custom performance metric
in real-time systems with skippable jobs. The evolved heuristics are applied
as functions for calculating the priorities of skippable jobs with the aim

48



of increasing the quality of service in overload conditions. This scheduling
environment corresponds to various applications, including real-time control
systems, multimedia systems, and communication systems. We demonstrated
a method for off-line design of efficient scheduling heuristics which can be
customized in a straightforward way, depending on the target scheduling
meta-algorithm. Moreover, we illustrated how the evolved heuristics can
learn the behavior of the meta-algorithm if they are applied in a scheduling
environment with predefined parameters of the task sets. The heuristics are
suitable for on-line implementation in embedded systems which have limited
resources due to their simplicity and computational efficiency.

In our experimental evaluation, we compared the performance of the
evolved heuristics to the algorithms known from the literature (RTO, BWP,
RLP). The heuristics that were encapsulated into BWP and RLP meta-
algoritms and used for scheduling blue jobs achieved an improvement of
the quality of service by up to 10% in comparison with the conventional
algorithms. In a scenario where the heuristics are evolved specifically for
considered task sets and are used as standalone scheduling algorithms, the
QoS was improved by up to 15%. We conclude that this approach is suitable
for optimizing custom performance metrics such as average quality of service
in weakly hard real-time systems and it can also be applied for optimizing
other metrics in different scheduling environments.

To conclude, our novel methods introduce several benefits. Firstly, the GP-
QoS-MA method enhances the performance of the conventional job-skipping
algorithms in terms of QoS. Secondly, the GP-QoS-S method provides both
a mechanism for guaranteeing the fulfillment of weakly hard constraints
and a best-effort scheduling rule that maximizes the QoS, integrated in a
single heuristic. Thirdly, both methods can be easily customized for different
scheduling environments and performance metrics. Finally, the methods are
computationally efficient and therefore they are suitable for implementation
in various real-time applications, including embedded systems.

A possible limitation of the presented approaches is that they maximize the
quality of service of the entire task set, and do not regulate the deviations from
the quality of service obtained per each task. To amend this, our future work
will be focused on introducing multi-objective optimization in order to include
additional metric, namely deviation from the defined quality of service for
each task. The presented methods can also be further improved by integrating
on-line acceptance tests for blue jobs in order to reduce processing time wasted
on executing blue jobs that are eventually aborted. The acceptance tests

49



could be evolved as separate heuristics using cooperative coevolution. This
technique would perform with significantly lower overhead in comparison
with conventional scheduling algorithms that employ on-line acceptance tests
(RLP/T).

Acknowledgement

This work has been supported by the European Regional Development Fund under
the project "A-UNIT - Research and development of an advanced unit for autonomous
control of mobile vehicles in logistics" (KK.01.2.1.02.0119).

References
[1] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms and applica-

tions, Vol. 24, Springer Science & Business Media, 2011.

[2] G. Bernat, A. Burns, A. Liamosi, Weakly hard real-time systems, IEEE transactions on Computers
50 (4) (2001) 308–321.

[3] G. Koren, D. Shasha, Skip-over: Algorithms and complexity for overloaded systems that allow skips,
in: Proceedings 16th IEEE Real-Time Systems Symposium, IEEE, 1995, pp. 110–117.

[4] A. Marchand, M. Silly-Chetto, Rlp: Enhanced qos support for real-time applications, in: 11th
IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA’05), IEEE, 2005, pp. 241–246.

[5] A. Queudet-Marchand, M. Chetto, Quality of service scheduling in the firm real-time systems, Real-
Time Systems, Architecture, Scheduling, and Application (2012) 191.

[6] D. Jakobović, L. Budin, Dynamic scheduling with genetic programming, in: P. Collet, M. Tomassini,
M. Ebner, S. Gustafson, A. Ekárt (Eds.), Genetic Programming, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006, pp. 73–84.

[7] D. Jakobović, K. Marasović, Evolving priority scheduling heuristics with genetic programming, Ap-
plied Soft Computing 12 (9) (2012) 2781 – 2789. doi:https://doi.org/10.1016/j.asoc.2012.03.065.

[8] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd Edition, Springer Publishing Com-
pany, Incorporated, 2008.

[9] S. Surono, K. W. Goh, C. W. Onn, A. Nurraihan, N. S. Siregar, A. Borumand Saeid, T. T. Wijaya,
Optimization of markov weighted fuzzy time series forecasting using genetic algorithm (ga) and
particle swarm optimization (pso), Emerg. Sci. J 6 (2022) 1375–1393.

[10] N. Kadhim, N. T. Ismael, N. M. Kadhim, Urban landscape fragmentation as an indicator of urban
expansion using sentinel-2 imageries, Civil Engineering Journal 8 (09).

[11] J. Branke, S. Nguyen, C. W. Pickardt, M. Zhang, Automated design of production scheduling heuris-
tics: A review, IEEE Transactions on Evolutionary Computation 20 (1) (2015) 110–124.

[12] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-heuristics: A
survey of the state of the art, Journal of the Operational Research Society 64 (12) (2013) 1695–1724.

50



[13] S. Nguyen, Y. Mei, M. Zhang, Genetic programming for production scheduling: a survey with a
unified framework, Complex & Intelligent Systems 3 (1) (2017) 41–66. doi:10.1007/s40747-017-0036-
x.

[14] F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop scheduling
problem, Computers & operations research 35 (10) (2008) 3202–3212.

[15] H. Nazif, L. Lee, A genetic algorithm on single machine scheduling problem to minimise total weighted
completion time, European Journal of Scientific Research 35 (3) (2009) 444–452.

[16] I. Lee, J. Y. Leung, S. H. Son, Handbook of real-time and embedded systems, CRC Press, 2007.

[17] M. Hamdaoui, P. Ramanathan, A dynamic priority assignment technique for streams with (m, k)-firm
deadlines, IEEE transactions on Computers 44 (12) (1995) 1443–1451.

[18] G. Buttazzo, S. Babamir, Handling overload conditions in real-time systems, in: Real-Time Systems,
Architecture, Scheduling, and Application, Vol. 7, InTech, 2012.

[19] G. C. Buttazzo, G. Lipari, L. Abeni, Elastic task model for adaptive rate control, in: Proceedings
19th IEEE Real-Time Systems Symposium (Cat. No. 98CB36279), IEEE, 1998, pp. 286–295.

[20] W. Shih, J. Liu, J. Chung, D. W. Gillies, Scheduling tasks with ready times and deadlines to minimize
average error, ACM SIGOPS Operating Systems Review 23 (3) (1989) 14–28.

[21] A. Shahzad, N. Mebarki, Learning dispatching rules for scheduling: A synergistic view comprising
decision trees, tabu search and simulation, Computers 5 (1) (2016) 3.

[22] H. Ingimundardottir, T. P. Runarsson, Supervised learning linear priority dispatch rules for job-shop
scheduling, in: International conference on learning and intelligent optimization, Springer, 2011, pp.
263–277.

[23] Y.-R. Shiue, Data-mining-based dynamic dispatching rule selection mechanism for shop floor control
systems using a support vector machine approach, International Journal of Production Research
47 (13) (2009) 3669–3690.

[24] G. R. Weckman, C. V. Ganduri, D. A. Koonce, A neural network job-shop scheduler, Journal of
Intelligent Manufacturing 19 (2) (2008) 191–201.

[25] J. Branke, T. Hildebrandt, B. Scholz-Reiter, Hyper-heuristic evolution of dispatching rules: A com-
parison of rule representations, Evolutionary computation 23 (2) (2015) 249–277.

[26] Z. Hua, F. Qi, G. Liu, S. Yang, Learning to schedule dag tasks, arXiv preprint arXiv:2103.03412.

[27] S. Nguyen, M. Zhang, M. Johnston, K. C. Tan, Genetic programming for job shop scheduling, in:
Evolutionary and Swarm Intelligence Algorithms, Springer, 2019, pp. 143–167.

[28] M. Ðurasević, D. Jakobović, K. Knežević, Adaptive scheduling on unrelated machines with genetic
programming, Applied Soft Computing 48 (2016) 419–430.

[29] D. Jakobović, L. Jelenković, L. Budin, Genetic programming heuristics for multiple machine schedul-
ing, in: European Conference on Genetic Programming, Springer, 2007, pp. 321–330.

[30] J. Park, S. Nguyen, M. Zhang, M. Johnston, Evolving ensembles of dispatching rules using genetic
programming for job shop scheduling, in: European Conference on Genetic Programming, Springer,
2015, pp. 92–104.

51



[31] J. Park, Y. Mei, S. Nguyen, G. Chen, M. Zhang, An investigation of ensemble combination schemes
for genetic programming based hyper-heuristic approaches to dynamic job shop scheduling, Applied
Soft Computing 63 (2018) 72–86.

[32] C. Dimopoulos, A. M. Zalzala, Investigating the use of genetic programming for a classic one-machine
scheduling problem, Advances in engineering software 32 (6) (2001) 489–498.

[33] C. Dimopoulos, A. Zalzala, A genetic programming heuristic for the one-machine total tardiness
problem, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Vol. 3, IEEE, 1999, pp. 2207–2214.

[34] C. D. Geiger, R. Uzsoy, H. Aytuğ, Rapid modeling and discovery of priority dispatching rules: An
autonomous learning approach, Journal of Scheduling 9 (1) (2006) 7–34.

[35] T. P. Adams, Creation of simple, deadline, and priority scheduling algorithms using genetic program-
ming, Genetic Algorithms and Genetic Programming at Stanford 2002 (2002) 84.

[36] F. J. Gil-Gala, C. Mencía, M. R. Sierra, R. Varela, Evolving priority rules for on-line scheduling of
jobs on a single machine with variable capacity over time, Applied Soft Computing 85 (2019) 105782.

[37] I. Pavić, Optimization of schedulability and quality of service in real-time mixed-criticality systems.
(2021).

[38] L. Palopoli, L. Abeni, G. Buttazzo, F. Conticelli, M. Di Natale, Real-time control system analysis:
An integrated approach, in: Proceedings 21st IEEE Real-Time Systems Symposium, IEEE, 2000, pp.
131–140.

[39] C. C. Bissell, Control engineering, Chapman & Hall, London, 1994.

[40] C. Houpis, Digital control systems : theory, hardware, software, McGraw-Hill, New York, 1992.

[41] J. Kober, J. A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey, The International
Journal of Robotics Research 32 (11) (2013) 1238–1274.

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous
control with deep reinforcement learning, arXiv preprint arXiv:1509.02971.

[43] R. A. Krohling, J. P. Rey, Design of optimal disturbance rejection pid controllers using genetic
algorithms, IEEE Transactions on Evolutionary computation 5 (1) (2001) 78–82.

[44] Z.-L. Gaing, A particle swarm optimization approach for optimum design of pid controller in avr
system, IEEE transactions on energy conversion 19 (2) (2004) 384–391.

[45] A. Pandey, R. K. Sonkar, K. K. Pandey, D. Parhi, Path planning navigation of mobile robot with
obstacles avoidance using fuzzy logic controller, in: 2014 IEEE 8th international conference on intel-
ligent systems and control (ISCO), IEEE, 2014, pp. 39–41.

[46] H. Asere, C. Lei, R. Jia, Cruise control design using fuzzy logic controller, in: 2015 IEEE International
Conference on Systems, Man, and Cybernetics, IEEE, 2015, pp. 2210–2215.

[47] P. Ramanathan, Overload management in real-time control applications using (m, k)-firm guarantee,
IEEE Transactions on parallel and distributed systems 10 (6) (1999) 549–559.

[48] A. Marchand, M. Silly-Chetto, Dynamic real-time scheduling of firm periodic tasks with hard and
soft aperiodic tasks, Real-Time Systems 32 (1-2) (2006) 21–47.

52



[49] M. Caccamo, G. Buttazzo, Optimal scheduling for fault-tolerant and firm real-time systems, in:
Proceedings Fifth International Conference on Real-Time Computing Systems and Applications (Cat.
No. 98EX236), IEEE, 1998, pp. 223–231.

[50] A. Marchand, M. Chetto, Quality of service scheduling in real-time systems, International Journal
of Computers, Communications and Control 3 (4) (2008) 354–366.

[51] H. Chetto, M. Chetto, Some results of the earliest deadline scheduling algorithm, IEEE Transactions
on software engineering 15 (10) (1989) 1261–1269.

[52] M. Silly, The edl server for scheduling periodic and soft aperiodic tasks with resource constraints,
Real-Time Systems 17 (1) (1999) 87–111.

[53] E. Bini, G. C. Buttazzo, Measuring the performance of schedulability tests, Real-Time Systems
30 (1-2) (2005) 129–154.

[54] Ecf - evolutionary computation framework, accessed: 2021-05-26 (2017).
URL http://ecf.zemris.fer.hr/

[55] M. O’Neill, Riccardo poli, william b. langdon, nicholas f. mcphee: a field guide to genetic program-
ming (2009).

[56] K. Salamun, I. Pavić, H. Džapo, Dynamic priority assignment in freertos kernel for improving per-
formance metrics, in: 2021 44th International Convention on Information, Communication and Elec-
tronic Technology (MIPRO), IEEE, pp. 880–885.

Appendix A. Supplement to Example 3.1.

Table A.4 contains the priorities calculated by the priority function 8 of all active
jobs upon every time instant that corresponds to idle time. The job that is dispatched

Table A.4: Priorities of blue jobs given by (8) for the schedule shown in Fig. 7.

t πi t πi t πi t πi

0 π1 = 0.125 16 π1 = 0.125
π2 = 0.25

24 π1 = 0.125
π2 = 0.25

34 π3 = 1

8
π1 = 0.125
π2 = 0.25
π3 = 0.5

18
π1 = 0.167
π2 = 0.333
π3 = 0.333

25 π1 = 0.143
π2 = 0.286

36 π3 = 0.333

9
π1 = 0.143
π2 = 0.286
π3 = 0.667

19 π2 = 0.4
π3 = 0.4

26 π2 = 0.333 40
π1 = 0.125
π2 = 0.25
π3 = 1

10 π2 = 0.333
π3 = 1

20 π2 = 0.5
π3 = 0.5

30 π2 = 1
π3 = 0.333

41
π1 = 0.143
π2 = 0.286
π3 = 2

11 π2 = 0.4
π3 = 2

21 π2 = 0.667
π3 = 0.667

31 π2 = 3
π3 = 0.4

42 π2 = 0.333

12 π2 = 0.5 22 π2 = 1
π3 = 1

32 π1 = 0.125
π3 = 0.5

43 π2 = 0.4

13 π2 = 0.667 23 π3 = 2 33 π1 = 0.143
π3 = 0.667

44 π2 = 0.5

is denoted in red. If there are multiple jobs with the same priority, the job with the

53



earliest release time is dispatched. Although in practical applications it is unnecessary to
compute priorities when there is only one active job, this case is covered in Table A.4 for
completeness.

Table A.5 contains the priorities of all active jobs calculated by the priority function 9.

Table A.5: Priorities of jobs given by (9) for the schedule shown in Fig. 8.

t πi t πi t πi t πi t πi t πi

0
π1 = 8
π2 = 4
π3 = 3

8
π1 = 8
π2 = 4
π3 = 3

16
π1 = 8
π2 = 4
π3 = 3

24
π1 = 8
π2 = 4
π3 = 3

32
π1 = 8
π2 = 4
π3 = 3

40
π1 = 8
π2 = 4
π3 = 3

1
π1 = 7
π2 = 3.5
π3 = 2.5

9
π1 = 7
π2 = 4
π3 = 3

17 π1 = 7
π2 = 3.5

25
π1 = 7
π2 = 4
π3 = 2.5

33 π1 = 7
π2 = 3.5

41
π1 = 7
π2 = 4
π3 = 3

2
π1 = 6
π2 = 3
π3 = 2

10
π1 = 6
π2 = 4
π3 = 3

18
π1 = 6
π2 = 3
π3 = 3

26
π1 = 6
π2 = 4
π3 = 2

34 π1 = 6
π2 = 3

42
π1 = 6
π2 = 4
π3 = 3

3 π1 = 5
π2 = 2.5

11 π1 = 5
π2 = 4

19
π1 = 5
π2 = 2.5
π3 = 3

27 π1 = 5
π2 = 4

35 π1 = 5
π2 = 2.5

43
π1 = 5
π2 = 4
π3 = 3

4 π1 = 4
π2 = 2

12
π1 = 4
π2 = 4
π3 = 3

20
π1 = 4
π2 = 2
π3 = 3

28 π1 = 4
π2 = 4

36
π1 = 4
π2 = 2
π3 = 3

44
π1 = 4
π2 = 4
π3 = 3

5 π1 = 3
π2 = 1.5

13
π1 = 3
π2 = 4
π3 = 3

21 π1 = 3
π3 = 3

29 π1 = 3
π2 = 4

37 π1 = 3
π3 = 3

45 π1 = 3
π2 = 4

6
π1 = 2
π2 = 1
π3 = 3

14
π1 = 2
π2 = 4
π3 = 3

22 π1 = 2
π3 = 3

30 π2 = 4
π3 = 3

38 π1 = 2
π3 = 3

46 π1 = 2
π2 = 4

7 π1 = 2
π3 = 3

15 π2 = 4
π3 = 3

23 π3 = 3 31 π2 = 4
π3 = 3

39 π3 = 3 47 π2 = 4

Appendix B. Description of the simulator used for evaluation of
the heuristics

The operation of the simulator is described by pseudocode in Alg. 4. The simulator
registers three job events: release, completion, and skipping. Each event is tracked
througout the simulation. Based on this information, the values of the given performance
metric are computed at the end of the simulation. For instance, if quality of service is the
metric of interest, it is necessary to register the number of released jobs and the number of
completed jobs (line 10 and 16 in Alg. 4).

In each time instant, the highest-priority job is selected as the running job and its
remaining execution time cij is decreased. The highest-priority job is determined according
to the given scheduling meta-algorithm. In the case of GP-QoS-MA approach, the simulator
executes a meta-algorithm that corresponds to either RLP or BWP, whereas for GP-QoS-S
the meta-algorithm consists of priority calculation and dispatching only. The BWP and
RLP meta-algorithms are implemented according to Alg. 1 and 2. At the end of the
simulation, the value of the fitness function is computed based on the performance of the
given individual in the simulation.

54



Algorithm 4 Simulation of task execution with job skipping.
Require: task set T , scheduling meta-algorithm
Ensure: value of the performance metric at the end of the simulation
1: initialize T
2: initialize queue of active jobs Q
3: for t← 0 to hyperperiod do
4: for all jobs Jij in Q do
5: if cij = 0 then
6: register Jij as completed
7: remove Jij from Q
8: for all tasks τi in T do
9: if job Jij is released then
10: if job Ji(j−1) is still active then
11: register Ji(j−1) as skipped
12: remove Ji(j−1) from Q
13: initialize σij , cij , ρij
14: register Jij as released
15: add Jij to Q
16: if Q is not empty then
17: get the highest-priority job according to the scheduling meta-algorithm
18: for all jobs Jij in Q do
19: decrease ρij
20: decrease cij for the highest-priority job
21: for all jobs Jij in Q do
22: register Jij as skipped
23: calculate value of the performance metric

Appendix C. Analysis of the genetic programming parameters

In the parameter tuning process, we varied one parameter at a time while the other
parameters remained fixed and set to their default values. We chose the default values for
the parameters as follows:

• the number of generations was set to 30,
• the maximum genotype size (tree depth) was set to 8,
• the population size was set to 100.

We analyzed the impact of the observed parameters based on the results obtained by
running 10 consecutive experiments and extracting the average performance of the best
individuals in the population. The best individuals were evaluated on 1000 task sets for

55



validation. The parameters of the task sets were set to default values as described in the
previous subsection. In the parameter tuning process, we considered GP-QoS-MA approach,
and a configuration where individuals are incorporated into the RLP meta-algorithm.

Firstly, we studied the impact of the number of generations as a stopping criterion
for the evolution process. Fig. C.32 shows the average value of the fitness function, i.e.,
quality of service, obtained by the best individual of the population with respect to the
number of generations. Note that the value of quality of service does not increase drastically

0 5 10 15 20 25 30 35 40 45 50
0.785

0.79

0.795

0.8

Number of generations

A
ve

ra
ge

Q
oS

Figure C.32: Average QoS with respect to different number of generations. Genera-
tion 0 corresponds to the initial population.

after approximately 15 generations and therefore we chose 15 generations as the stopping
criterion for the evolution. Secondly, we analyzed how varying the number of individuals
in the population impacts the quality of service. In Fig. C.33, we notice that generally, the
average quality of service is increased if the population size is increased. Clearly, increasing
the population size causes an increase in the runtime of the training process and therefore
we chose a population size of 100 as a trade-off. Finally, we examined the influence of the

40 50 60 70 80 90 100 110 120 130 140
0.78

0.785

0.79

0.795

0.8

Population size

A
ve

ra
ge

Q
oS

Figure C.33: Average QoS with respect to different population sizes.

maximum depth of the tree genotype. In this application, smaller trees are preferred over

56



larger trees due to demands on the efficiency of priority function computation. Therefore,
we considered trees with depths between 2 and 10. The infulence of tree depth on the
average quality of service is depicted in Fig. C.34. We can note that increasing the tree

2 4 6 8 10

0.785

0.79

0.795

Tree depth

A
ve

ra
ge

Q
oS

Figure C.34: Average QoS with respect to different tree depths.

depth from 2 to 10 increases the fitness value by less than 0.01. Since increasing the
depth does not significantly improve the performance of the individuals, but it significantly
increases the runtime of the evaluation, we chose a tree depth of 4 as the upper limit on
the tree depth.

Appendix D. Statistical analysis of the proposed methods

In additional experiments, we performed statistical tests in order to verify that the
results presented in Section 5 offer statistically significant improvement over the results
achieved by standard scheduling algorithms.

Appendix D.1. Analysis of GP-QoS-MA approach
First, we analyzed the statistical differences in the performance of the RLP+GP-QoS-

MA and BWP+GP-QoS-MA with respect to conventional RLP and BWP algorithms.
Genetic programming was run for 30 times and we assessed the performance of the best
individual from each run on the validation sets. Validation sets were generated with
respect to parameters U(T ), N , Tmax, Si, and Smax, as described in Section 5. The
best individuals from 30 runs performed similarly, which we confirmed by computing
the correlation between the results of each individual. More precisely, we computed the
Pearson’s correlation coefficient of the QoS of the validation sets between each pair of
the 30 best individuals. The minimal correlation coefficient that we obtained equals 0.98.
Therefore, we concluded that it is sufficient to perform analysis on the individual from the
first run.

Fig. D.35 shows the box plots obtained by evaluating the considered algorithms on
the validation sets. Validation sets that are generated with respect to different parameters
are shown on separate subplots. For brevity, GP-QoS-MA heuristics are denoted in the
figure as GP and RLP+EDF and BWP+EDF are denoted as RLP and BWP, respectively.

57



The results shown in box plots coincide with the results from Section 5—algorithms with
GP-QoS-MA dominate conventional algorithms in all of the performed experiments. It is
important to notice that in experiments shown on Subfig. D.35a and D.35e, the outliers of
the algorithms combined with GP-QoS-MA are still greater than the minimum (Q0) of
the conventional RLP and BWP algoritms. Moreover, in the experiment shown in Subfig.
D.35d, the outliers are greater than the lower quartile (Q1) of the conventional algorithms.

We also performed the Mann-Whitney test to compare the performance of the algorithm
RLP+GP-QoS-MA with RLP+EDF and BWP+GP-QoS-MA with BWP+EDF. In the
tests, we used the significance level α = 0.05. If the Mann-Whitney test is run on all of
the validation sets, the obtained p-value is approximately 0. Since in Section 5 the most
extreme differences between the algorithms were obtained when evaluated with respect to
different utilization factors, we ran the test separately on the sub-sets with the same U(T ).
The obtained results are shown in Table D.6. For overloaded sets (U(T ) > 1) the obtained
p-value equals 0. The p-values for sets with U(T ) ≤ 1 indicate that there is no significant
difference between RLP and BWP combined with evolved heuristics and conventional RLP
and BWP, which is expected and it was discussed in Section 5.

Table D.6: P-values obtained by comparing RLP+GP-QoS-MA with RLP and BWP+GP-
QoS-MA with BWP.

U(T ) 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
RLP 0.84 0.99 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BWP 0.46 0.40 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Appendix D.2. Analysis of GP-QoS-S approach
For testing the GP-QoS-S method, we generated validation sets in the same manner

as described in Section 5. We performed the Mann-Whitney test with a significance level
α = 0.05. on separate subsets for each utilization factor. The results are summarized
in Table D.7. The p-values for sets with U(T ) > 1 indicate that the obtained results
are statistically significant, while the sets with U(T ) ≤ 1 yield similar results as the
GP-QoS-MA method.

The differences between the GP-QoS-S heuristic and conventional algotihms is depicted
as a scatter plot in Fig. D.36. QoS of sets scheduled with standalone heuristics are
shown on y-axis, and the QoS of sets scheduled with conventional algorithms are shown
on x-axis. The results with respect to each parameter for validation sets generation
are shown on separate subplots. We notice that the data is grouped above the line
QoS(standalone heuristics) = QoS(conventional algorithms), and thus we can conclude
that the QoS obtained by GP-QoS-S approach is greater than or equal to the QoS obtained
by conventional algorithms for all of the validation sets.

Table D.7: P-values obtained by comparing GP-QoS-S with RLP and BWP.

U(T ) 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
RLP 0.42 0.29 0.13 0.04 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00
BWP 0.42 0.29 0.13 0.02 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00

58



RLP BWP RLP+GP BWP+GP
0.2

0.4

0.6

0.8

1

Q
oS

(a) Utilization factor U(T )
RLP BWP RLP+GP BWP+GP

0.2

0.4

0.6

0.8

1

Q
oS

(b) Maximum task period Tmax

RLP BWP RLP+GP BWP+GP
0.2

0.4

0.6

0.8

1

Q
oS

(c) Number of tasks in the set N

RLP BWP RLP+GP BWP+GP
0.2

0.4

0.6

0.8

1

Q
oS

(d) Skip factor Si for all tasks

RLP BWP RLP+GP BWP+GP
0.2

0.4

0.6

0.8

1

Q
oS

(e) Maximum skip factor Smax

Figure D.35: QoS obtained by algorithms RLP+GP-QoS-MA, BWP+GP-QoS-MA,
RLP+EDF, and BWP+EDF.

59



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS (conventional algorithms)

Q
oS

(s
ta
n
d
al
on

e
h
eu
ri
st
ic
s)

(QRLP(T ), QGP−QoS−S(T ))
(QBWP(T ), QGP−QoS−S(T ))

(a) Utilization factor U(T )

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS (conventional algorithms)

Q
oS

(s
ta
n
d
al
on

e
h
eu
ri
st
ic
)

(QRLP(T ), QGP−QoS−S(T ))
(QBWP(T ), QGP−QoS−S(T ))

(b) Number of tasks in the set N

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS (conventional algorithms)

Q
oS

(s
ta
n
d
al
on

e
h
eu
ri
st
ic
s)

(QRLP(T ), QGP−QoS−S(T ))
(QBWP(T ), QGP−QoS−S(T ))

(c) Maximum task period Tmax

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS (conventional algorithms)

Q
oS

(s
ta
n
d
al
on

e
h
eu
ri
st
ic
s)

(QRLP(T ), QGP−QoS−S(T ))
(QBWP(T ), QGP−QoS−S(T ))

(d) Skip factor for all tasks Si

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS (conventional algorithms)

Q
oS

(s
ta
n
d
al
on

e
h
eu
ri
st
ic
s)

(QRLP(T ), QGP−QoS−S(T ))
(QBWP(T ), QGP−QoS−S(T ))

(e) Maximum skip factor Smax

Figure D.36: QoS obtained by GP-QoS-S, RLP, and BWP algorithms for task sets with
different parameters.

60


